

PRELIMINARY HYDROLOGY REPORT

FOR SARES-REGIS INDUSTRIAL DEVELOPMENT (SARES-REGIS GROUP)

> COUNTY OF RIVERSIDE CALIFORNIA

July, 2019 Prepared by: Rick Howe JN 152480

Table of Contents

SECTION 1 - SUMMARY

INTRODUCTION EXISTING CONDITIONS PROPOSED CONDITIONS HYDRAULICS OVERLAND RELIEF WATER QUALITY METHODOLOGY CONCLUSION

SECTION 2 - APPENDIX

RCFC & WCD BACKUP INFORMATION SOIL GROUP MAP PLATE C-1.29 **INTENSITY-DURATION TABLE PLATE D-4.1** SUB-AREAS - SOIL TYPE AND LAND USE SYNTHETIC UNIT HYDROGRAPHS (4) PLATE E-2.1 **2-YEAR PRECIPITATION PLATE E-5.5 100-YEAR PRECIPITATION PLATE E-5.6 RAINFALL VS RETURN PERIOD PLATE E-5.7** RUNOFF INDEX NUMBERS PLATE E-6.1 INFILTRATION RATE VS RUNOFF INDEX NUMBERS PLATE E-6.2 HYDRAULIC CALCULATIONS **EXISTING CONDITION AES COMPUTER PRINTOUT RESULTS 10-YEAR STORM EVENT 100-YEAR STORM EVENT PROPOSED CONDITION AES COMPUTER PRINTOUT RESULTS 10-YEAR STORM EVENT 100-YEAR STORM EVENT** UNIT HYDROGRAPHS 10-YEAR STORM AES COMPUTER PRINTOUT RESULTS **EXISTING CONDITION PROPOSED CONDITION REFERENCE PLANS (11x17) RIVERSIDE COUNTY DRAWING NO. 4-1060 RIVERSIDE COUNTY AS-BUILT FILE NO. 964B** FACILITIES DRAINAGE BOUNDARIES MASTER DRAINAGE PLAN FOR THE PERRIS VALLEY AREA MASTER PLAN OF DRAINAGE - BLOW UP **OVERLAND RELIEF MAP**

FOLDED MAPS IN THE REAR POCKET (30x42) PRELIMINARY HYDROLOGY MAP – EXISTING CONDITION PRELIMINARY HYDROLOGY MAP – PROPOSED CONDITION

SECTION 1 - SUMMARY

INTRODUCTION

The purpose of this report is to provide hydrologic analysis for Sares-Regis Group's development of 47.1 acres in the Perris Valley area into a two-building industrial "Site". The Site is bounded by Nandina Avenue to the north, Oleander Avenue to the south, and Decker Road to the east, and grading limits approximately 1800' east of Day Street to the east in a portion of unincorporated Riverside County. The Site is in the center of the larger 136.7 acre hydrologic boundary this report will study. The hydrologic boundaries extend westerly to Day St and 1000' further easterly of Decker Rd. This drainage study is intended to provide:

- Schematically map out the major storm drain infrastructure for the project area
- The County of Riverside has informed us that the storm drain system this site is tributary
 to is sized to convey 100-year ultimate buildout runoff from the area, but that further downstream Caltrans has constructed storm drain infrastructure designed to convey only the
 10-year runoff rates. Calculations of the 10-year and 100-year existing and proposed
 runoff rates will be provided. Per County of Riverside comments until Caltrans up-sizes
 their infrastructure (which we were told is planned for in the future) peak runoff rates for
 these storm events shall not increase due to development of the site.
- Calculations of the 10-year existing and proposed volume of storm runoff. The County of Riverside has told us that on-site extended detention will be required to prevent an increase in peak runoff rates due to development and the preliminary sizing of detention basins should be equivalent to the difference in runoff volume between the existing and proposed 10-year storm events.
- Show where off-site runoff from natural terrain is intercepted up-stream of the site and released back into natural terrain down-stream of the site
- Show that the Site is adequately protected in the event that all inlets are clogged and where runoff overland relief occurs.
- Show hydraulically that the immediate down-stream infrastructure is sufficiently sized to accept 100-year storm event runoff rates.

EXISTING CONDITIONS (INFRASTRUCTURE, PEAK RUNOFF RATES, AND TOTAL VOLUME OF STORM RUNOFF)

The project site is currently vacant land with seasonal weeds and rock outcroppings. The project site is located within the San Jacinto River watershed. The site has a natural fall from west to east with three well defined watersheds for analysis. There are no identified USGS "blue lines" crossing the site. The local high point from which off-site flows originate is nearby, approximately 2000' to the west of the site.

Currently the three watersheds are broken up and named based on the storm drain lateral that the watershed is tributary to as follows (see also Preliminary Hydrology Map):

Watershed B-9AA is 34.7 acres north-west of the intersection of Decker Rd and Harley Knox Blvd. Historically runoff from Watershed B-9AA flowed easterly and per Master Drainage Plan for Perris Valley Area June 1991 was intended to be tributary to storm drain Lateral B-9. Now upon construction of 30" RCP storm drain Lateral B-9AA per Riverside County File No. 964B runoff is picked up in a Decker Rd adjacent 48" riser tributary to storm drain Lateral B-9AA and ultimately Lateral B-9. The existing runoff rates are: Q10=33.67 CFS and Q100=53.35 CFS. Additionally, runoff from Lateral B-9AA2 located on the east side of Decker Rd (Not-A-Part) near Nandina Ave constructed per Riverside County File No. 964B adds 1.90 CFS to the Q100 totaling Q100=55.25 CFS. Hydrograph analysis of the 10-year/24-hour storm event shows that the total storm volume is 4.03 acre-feet of runoff.

Note: Included in the 34.7 acres is 5.6 acres (Sub-areas T and U) of partially offsite area to the north-west of the Site. Historically runoff from this area flowed north of Nandina Ave at the now Decker Rd intersection. Upon construction of Nandina Ave and Decker Rd circa 2017 an 18" culvert was installed per Riverside County As-Built File No. 964B directing runoff north of Nandina Ave to be picked up easterly in 36" RCP storm drain Lateral B-9A (see reference plan in appendix). To be able to compare existing flow rates to proposed flow rates from equal areas it has assumed that the runoff from Sub-areas T and U joins other on-site runoff at the Decker Rd-Nandina Ave intersection. The amount of culvert runoff crossing Nandina Ave is: Q10=6.24 CFS and Q100=9.59 CFS.

Watershed B-8 is 71.0 acres beginning near the intersection of existing Day St and future Oleander Ave and ends at the future Decker Rd and is tributary to existing 48" RCP storm drain Lateral B-8. Historically runoff from Watershed B-8 flowed easterly and per Master Drainage Plan for Perris Valley Area June 1991 was intended to be tributary to storm drain Lateral B-8. Now upon construction of Harley Knox Blvd to Decker Rd and construction of the extension of Lateral B-8 per Riverside County Drawing No. 4-1060 it is (see appendix for reference plan). The existing runoff rates are: Q10=63.66 CFS and Q100=98.73 CFS.

Hydrograph analysis of the 10-year/24-hour storm event shows that the total storm volume is 8.25 acre-feet of runoff.

 Watershed B-8A is 31.9 acres zoned for future industrial facility and is tributary to Lateral B-8 as historically intended per Master Drainage Plan for Perris Valley Area June 1991 by way of existing 48" RCP Lateral B-8A. This watershed is outside the area of the development but is analyzed because the project site is tributary to it and because it must be shown that Lateral B-8 is sufficiently sized. The existing runoff rates are: Q10=27.19 CFS and Q100=42.17 CFS. Note that the runoff rate in the existing Nandina Ave 30" RCP storm drain Lateral B-9AA per the Riverside County File No. 964B plan is by our calculations under-reported at Q100=42.3 CFS; our calculations suggest the actual flow rate is Q100=44.52 CFS.

Note that the runoff rate in the existing 48" RCP storm drain Lateral B-8 per Riverside County Drawing No. 4-1060 is by our calculations over-stated at Q100=182.0 CFS; our calculations suggest the actual flow rate is Q100=140.90 CFS

Summation of Existing Condition Hydrology for the 105.7 acre hydrologic boundary (Watersheds B-9AA and B-8): 10-year runoff volume=12.28 acre-feet Q10=27.19 CFS Q100=42.17 CFS.

PROPOSED CONDITIONS

(INFRASTRUCTURE, PEAK RUNOFF RATES, AND TOTAL VOLUME OF STORM RUNOFF

The proposed storm drain system will be made of HDPE or RCP pipe. Off-site flows will not be mixed with on-site flows prior to on-site flows being treated for water quality (see Proposed Condition Hydrology Map). Storm drain pipes will convey runoff to the existing down-stream storm drain systems. Proposed drainage patterns have the intent to respect the tributary drainage areas depicted on the Master Drainage Plan for Perris Valley Area June 1991. Proposed storm drain infrastructure and routing will ensure runoff rates are within the criteria imposed by the County of Riverside.

Street-side catch basins:

The two catch basins proposed on Harley Knox Blvd and the two catch basins on Decker Road southerly of Harley Knox Blvd will convey runoff to Lateral B-8 in Harley Knox Blvd. The three catch basins proposed near the intersection of Nandina Ave and Decker Rd will convey runoff to Lateral B-9AA in Nandina Ave.

Runoff from undeveloped areas tributary to the site:

The 2.8 acre Sub-area HH up-stream and north-west of the Site will be intercepted at an inlet structure near Nandina Ave and conveyed by storm drain pipe in Nandina Ave to Lateral B-9AA.

Runoff from the up-stream 56.2 acres of undeveloped (Portion of Watershed B-8) barren natural land up-stream of the Site will be intercepted by brow-ditches at the western edge grading limit. The runoff will be reintroduced into the existing 48" RCP storm drain Lateral B-8 at the intersection of Harley Knox Blvd.

Most runoff from the undeveloped areas is conveyed within obvious earthen gulleys as concentrated flow. Inlet structures are positioned where concentrated runoff flow occurs. Where runoff from undeveloped areas is conveyed by sheet-flow brow-ditches are proposed to capture runoff. Brow-ditches along the westerly grading limit shall not convey more than 10 CFS of runoff. Hydrologic calculations have shown that the maximum flow-rate expected in any brow-ditch is Q100=3.9 CFS (see Sub-area D on the Proposed Hydrology Map). An access road for maintenance of the drainage inlets and brow-ditches runs the entire westerly edge of the site.

Runoff from undeveloped areas west of the Site flowing northerly across Nandina Ave: With the extension of Nandina Ave northerly to future Day St runoff is disrupted. Culverts will be constructed under the proposed Nandina Ave roadway to intercept runoff at points of concentration on the southerly side and convey that runoff to the northerly side of Nandina Ave to maintain existing drainage patterns.

2:1 slope at the westerly edge of the Site:

A 2:1 slope is to be cut in the existing bedrock. Geotechnical investigation suggests that the slope will be solid rock. The slope will be treated as Commercial/Industrial cover type for hydologic calculations. Though shown to have terrace drainage, in final engineering it is not expected to exist, because erosion is not expected to occur on the solid rock face. At the bottom of the slope there will be a v-ditch intercepting all runoff that will be conveyed to the on-site storm drain system.

Watershed B-9AA:

Runoff from the 21.3 acre Watershed B-9AA is conveyed to the 30" RCP Lateral B-9AA at the intersection of Nandina Ave and Decker Rd. The proposed runoff rates to that location are Q10=31.35 CFS and Q100=45.25 CFS. Hydrograph analysis of the 10-year/24-hour storm event shows that the total storm volume is 2.63 acre-feet of runoff. Analysis of peak runoff rate and storm volume shows a reduction in both, peak runoff rate and volume, as compared to the existing condition. Underground detention to mitigate for increased flow is not expected to be necessary, but in the event that in final engineering analysis determines differently it will be provided. The proposed hydrology map shows a place holder for underground retention if necessary.

Comparison of existing vs proposed runoff for Watershed B-9AA: Existing 10-year runoff volume=4.03 acre-feet, Q10=33.67 CFS, Q100=53.35 CFS Proposed 10-year runoff volume=2.63 acre-feet, Q10=31.35 CFS, Q100=45.25 CFS

Watershed B-8:

Runoff from the 84.8 acre Watershed B-8 is conveyed to the 48" RCP Lateral B-8 that currently terminates easterly of Decker Rd in Harley Knox Blvd. The proposed runoff rates to that location are Q10=90.53 CFS and Q100=135.68 CFS. Hydrograph analysis of the 10-year/24-hour storm event shows that the total storm volume is 10.30 acre-feet of runoff. Analysis of peak runoff rate and storm volume shows an increase in both, peak runoff rate and volume, as compared to the existing condition. Underground detention to mitigate for increased flow will be required. Preliminary sizing of underground detention is based on the difference between the existing 10-year runoff volume and the proposed runoff volume. The proposed hydrology map shows a place holder for preliminarily sized underground retention.

Comparison of existing vs proposed runoff for Watershed B-8: Existing 10-year runoff volume=8.25 acre-feet, Q10=63.66 CFS, Q100=98.73 CFS Proposed 10-year runoff volume=10.30 acre-feet, Q10=90.53 CFS, Q100=135.68 CFS The increased flow rates will be mitigated down to exiting condition flow rates by utilizing underground detention. The required volume of detention to reduce flow rates is equal to the increase in 10-year runoff volume=2.05 acre-feet=89,300 CF. Three locations on-site have been designated for underground storage: 17,000 CF at the south-east corner of the northern building, 47,000 CF at the north-east corner of the southern building, and 26,000 CF at the south-east corner of the south-east c

Through routing of on-site runoff though underground storage the peak runoff rates for Watershed B-8 will be that of the existing condition Q10=63.66 CFS, Q100=98.73 CFS.

Watershed B-8A:

The 31.9 acre undeveloped parcel south-easterly of the Site and east of Decker Rd makes up Watershed B-8A. Flow rates attributed to this watershed are addressed in the existing condition section of this report. Off-site runoff from 71.0 acres of natural terrain will no longer be tributary to Watershed B-8A. The existing infrastructure on that parcel was designed to convey all of its runoff and the runoff from the 71.0 off-site acres. The existing infrastructure is assumed to be sufficiently sized to convey the lower proposed runoff flow rates.

Comparison of existing vs proposed runoff to the existing Watershed B-8A infrastructure: Existing Q10=90.85 CFS, Q100=140.90 CFS Proposed Q10=27.19 CFS, Q100=42.17 CFS

Lateral B-8 Runoff Rates:

The total flow tributary to Lateral B-8 is the summation of runoff from Watersheds B-8 (Q10=63.66 CFS, Q100=98.73 CFS) and B-8A (Q10=27.19 CFS, Q100=42.17 CFS) = Q10=90.85 CFS, Q100=140.90 CFS.

HYDRAULICS

Lateral B-9AA, 30" RCP, constructed per Riverside County File No. 964B was designed with a stated Q100=42.3 CFS. The existing plan does not state whether this is its capacity, but appears oversized based on HGL, so normal depth calculations have been performed. The existing and proposed flow rates were used in the analysis. Normal depth calculations show that in the existing condition with Q100=55.25 CFS the 2.50' pipe runs at 2.36' deep when using the minimum pipe slope of 1.5%. Normal depth calculations show that in the proposed condition with Q100=47.15 CFS the 2.50' pipe runs at 1.92' deep when using the minimum pipe slope of 1.5%. The pipe is sufficiently sized to convey the proposed runoff.

Lateral B-8, 48" RCP, constructed per Riverside County Drawing No. 4-1060 was designed to convey Q100=182.0 CFS (see reference plans in appendix). The proposed runoff rate to Lateral B-8 is Q100=140.90 CFS. This is a reduction to 77% of its approved conveyance rate and is therefore considered sufficiently sized.

OVERLAND PROTECTION

Infrastructure and private properties are protected in the event that all catch basin inlets are clogged. An "Overland Relief Map" showing the runoff flow-path in such an event is included in the appendix.

WATER QUALITY

The water treatment and runoff mitigation are not a part of this report; they are outlined in the Preliminary WQMP for this project. For reference though, the Treatment Control BMP for this project is volume-based under-ground retention followed by bio-filtration utilizing Modular Wetlands System.

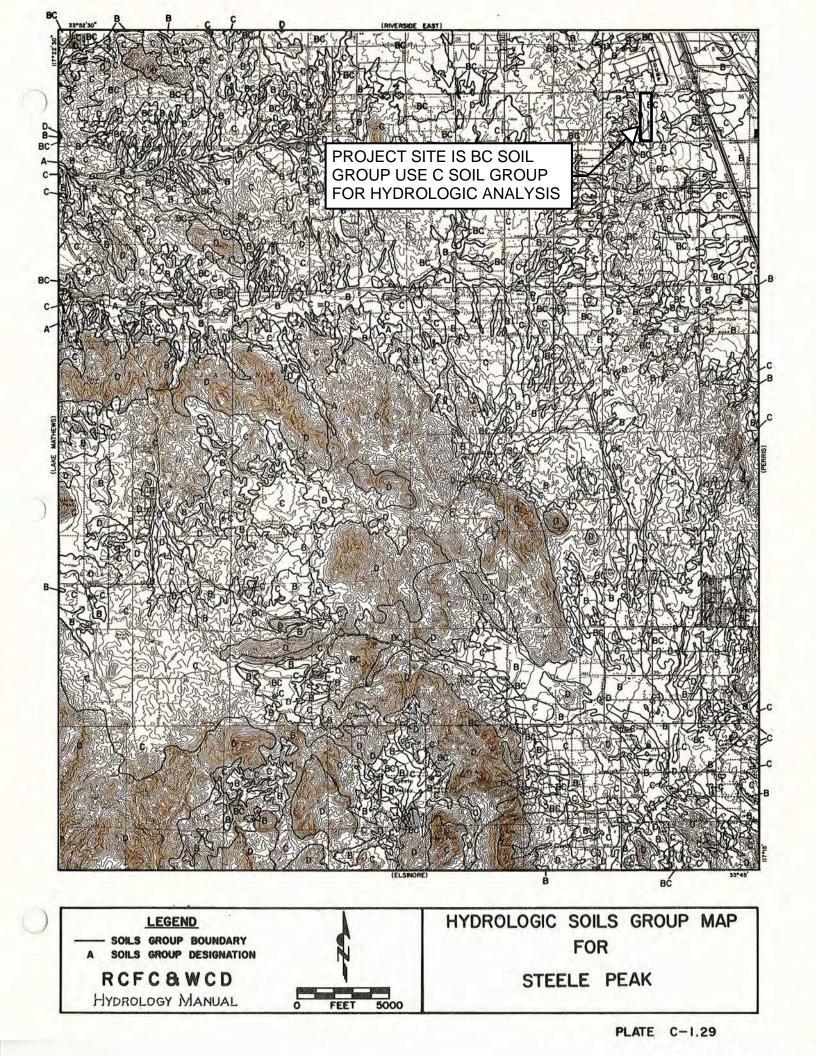
The routing of runoff through underground retention basins is described below:

- There are 4 areas on-site in which runoff is collected and routed through underground retention basins. The areas are in the same location as the underground storm storage shown on the proposed hydrology map.
- Diversion structures route all first flush/low flow runoff into underground retention basins to capture the required volume of runoff.
- Runoff beyond the required capture volume by-passes the water quality basins and must enter the proposed underground storm detention storage basins as shown on the proposed hydrology map before leaving the site.
- Runoff that enters the water quality basins is metered out into Modular Wetlands System bio-filtration devices.
- The now cleaned runoff is reintroduced to the main storm drain system up-stream of the storm detention basins to be metered out for hydro-modification reasons.

METHODOLOGY

The Rational Method was used to calculate 100-year and 10-year peak storm runoff rates. The Advanced Engineering System (AES) computer program approved for the County of Riverside was utilized for the calculations. Input values/criteria came from the Riverside County Flood Control Hydrology Manual. Rainfall intensity values were obtained from Intensity-Duration Table plate D4.1 located in the Riverside County Flood Control Hydrology Manual for the Perris Valley Area (see appendix). This site is comprised primarily of type BC soils so Type C Soils was used for analysis (see Hydrologic Soils Group Map for Steele Peak Plate C-1.29 in the appendix).

Unit Hydrographs were developed to calculate the total volume of runoff for the 10-year/24 hour storm event. These calculations will be performed in the existing and proposed condition. The difference in total storm runoff volume between existing and proposed condition is a good approximation of the volume of runoff that will be required to be retained on-site to mitigate for an increase in runoff rates due to development.


Hydrographs were developed utilizing the Advanced Engineering System (AES) computer program approved for the County of Riverside. Input values/criteria came from the Riverside County Flood Control Hydrology Manual. Precipitation values for the 2-year and 100-year storms came from Isohyetal Maps (Plates E-5.5 and E-5.6 respectively). The 10-year precipitation was derived from the 2-year and 100-year values plotted on Plate E-5.7. Loss rates were determined by Plates E-6.1, E-6.2, and E2.1.

CONCLUSION

This report and associated calculations are based on preliminary engineering. Final engineering of the site will be completed and will incorporate a finalized hydrologic and hydraulic analysis, to be submitted in the future for final approval. Based on the findings in this report, it is concluded that the proposed development can be adequately protected according to the District's requirements in conjunction with the ultimate development and maintenance of the proposed facilities.

This drainage study provided:

- A schematic map of the major storm drain infrastructure for the project area (see the Existing and Proposed Hydrology Maps in the appendix.
- Calculations of the 10-year and 100 year existing and proposed runoff rates reflect an increase in runoff rates that will be mitigated by routing runoff through underground detention facilities sized per the County of Riverside criteria.
- Calculations of the 10-year runoff volume were used to determine preliminary sizing of underground detention facilities to reduce peak runoff rates down to existing condition.
- The plan shows where off-site runoff from natural terrain (westerly portion of the proposed Nandina Ave roadway) is intercepted up-stream of the site and released back into the natural terrain down-stream of the site where it previously flowed.
- Runoff rates are reduced or limited to the existing runoff rates to the tributary storm drain system. Hydraulic calculations show that the existing down-stream storm drain system is sufficiently sized to convey proposed runoff.
- In the unlikely event that every inlet is 100% clogged the Site is protected by overland relief.

VALLEY	REQUENCY 0 100 2 AR YEAR		.72 2.46 .65 2.37 .59 2.37 .59 2.29 .41 2.028 .41 2.028	34 1.92 28 1.83 22 1.75 18 1.69 13 1.63	10 1.57 06 1.52 03 1.48 00 1.44	95 1.37 90 1.29 85 1.22 85 1.22 81 1.12 78 1.12	75 1.08 72 1.08 70 1.06 68 .97 66 .94	.490
PERRIS VA	DURATION F MINUTES 1 YE	~~~~		55 55 55 58 55 55 58 55 55	33440 33440 366440	• • • • • • • • • • • • • • • • • • •	25588 25588	SLOPE =
56	REQUENCY 0 100 Ar year		10-MIN VALUES	S	2.39 2.39 2.22 2.15 2.15	2.02 1.89 1.78 1.68 1.60	1.53 1.45 1.33 1.33 1.33	60-MIN VALUES USED
SPRINC	r 10		2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1.89 1.79 1.62 1.562	1 • • • • • • • • • • • • • • • • • • •	1.27 1.18 1.11 1.05 1.00	. 95 . 91 . 88 . 88 . 88 . 88 . 88 . 88	99 • 29 #
PALM	DURATION MINUTES		984 1984 1984 1984	864800 26420 2622	9 9 4 9 0 9 9 7 9 9 9 9 4 9 9	4 4 N N A C N C N C	65 70 80 85	SLOPI
	EQUENCY 100 R YEAR		2.68 2.58 2.58 2.58 2.53 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.1	2.08 1.98 1.82 1.82	1.70 1.64 1.59 1.55	1.47 1.39 1.25 1.25	1.15 1.07 1.01 1.01	<u> </u>
NORCO	F R 10 Y E A	► 10 m m m m m m m m m m m m m m m m m m	1.42 .42 .42 .42 .42 .42 .42 .42 .42 .42	1.39 1.32 1.26 1.22 1.17	1.13 1.10 1.06 1.03 1.01	000000 000000 00000	77 77 72 69	0 • H
NORCO	DURATION MINUTES		100400 101111 100400	8 6 4 9 0 7 7 7 7 9 8	8 6 4 9 9 9 9 9 9 9 9 9 9 9 9	4 4 N N A O N O N O	65 70 88 85 85	SLOPE
	UENCY 100 Year			2.38 2.26 2.15 2.06 1.98	1.90 1.84 1.78 1.72 1.67	1.62 1.52 1.36 1.36	1.24 1.19 1.15 1.11 1.07	 0
- TEMECULI CALIFORNI	FREG 10 Year		• • • • • • •	1.61 1.53 1.53 1.39 1.39	1.29 1.24 1.20 1.17 1.13	1.10 1.03 .97 .98 .88	• 84 • 81 • 78 • 75 • 73	• 22 •
MURRIETA & RANCHO	DURATION MINUTES		100700 101111 100700	0 N A 9 & N N N N N N N N N N N N N N N N N N N	0 N 4 9 0 N 4 9 0	44ທທູ ວິທິວທິວ	6 8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SLOPE
	REQUENCY 0 100 Ar year	4 4 8 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	n n in the second	2.15 2.04 1.95 1.87 1.80	1.53 1.67 1.67 1.62 1.53 1.53		1.15 1.07 1.03 1.00	
A LOMA	Υ.Π. F	2.84 2.58 2.37 2.37 2.37 2.37 2.37 2.08 1.96		1 • 36 1 • 29 1 • 2 • 1 • 1 8 1 • 1 8	1.10 1.05 1.03 1.00	400 400 400 400	• 43 • 66 • 65 • 65	⊧ •530
MIRA	DURATION MINUTES	00000011		8	0 N 4 9 8 0 N 7 9 9	44ທິທິຈ ວິທິວທິວ	65 80 80 80	SLOPE
		WCD Manua	L			STANE NSITY – JRVES		ION

PLATE D-4.1 (4 of 6)

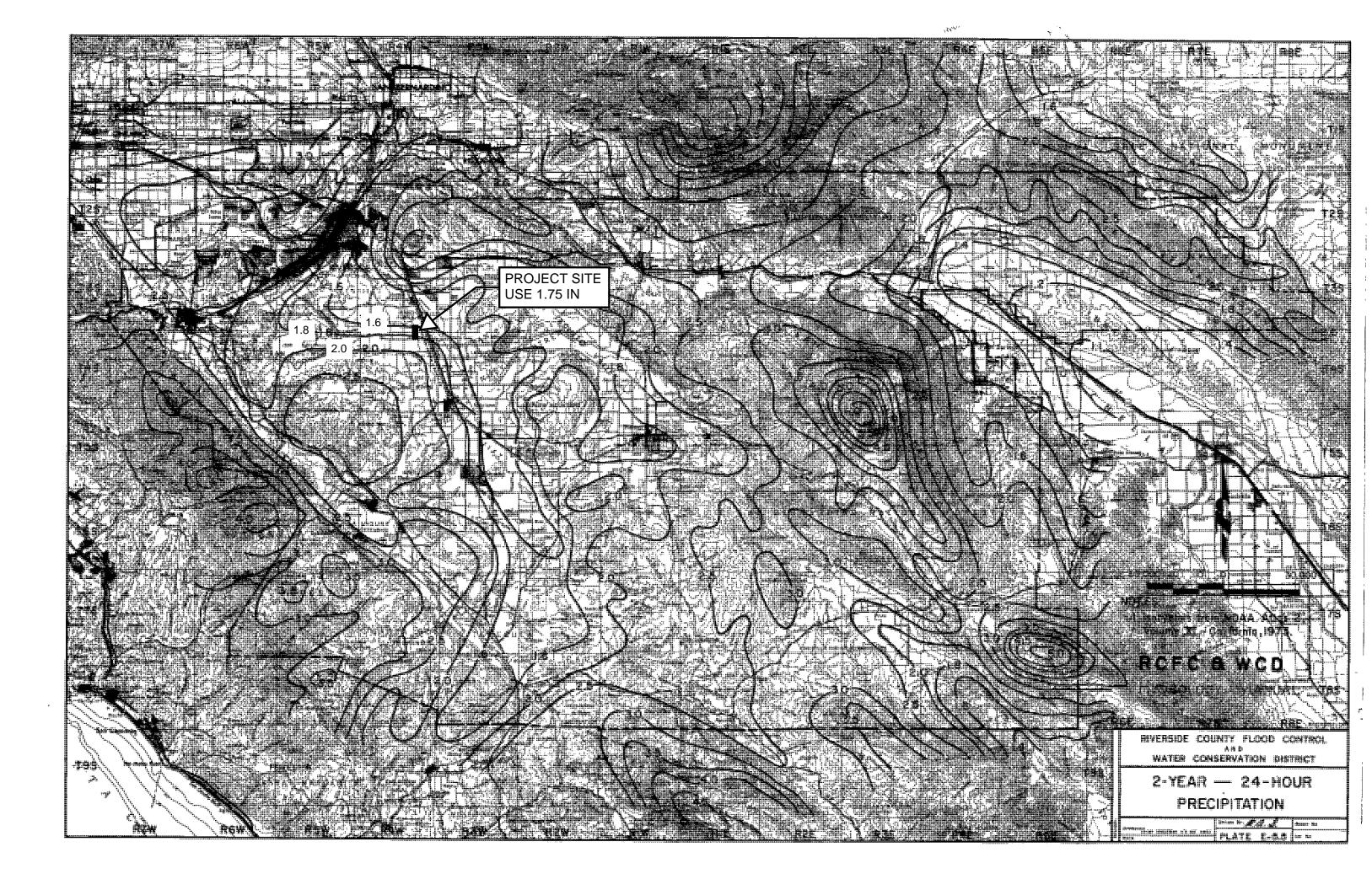
	S	MEAD VALLEY INDUSTRIAL PARK Sub-Areas - Soil Type and Land Use Parameters for Loss Rate and Hydrograph Development													
	T ara				Condition	opinen									
						Curve	Number	(CN)							
Watershed Number	Area (acres)	Local Subarea		Soil Type	Land Use		AMC								
Number	(00/00)	oubureu		Type	000	П	1	Ш							
B-8	10.8	А		С	Barren	91	80	98							
B-8	9.6	В		С	Barren	91	80	98							
B-8	10.3	С		С	Barren	91	80	98							
B-8	11.0	D		С	Barren	91	80	98							
B-8	1.9	E		С	Barren	91	80	98							
B-8	2.3	F		С	Barren	91	80	98							
B-8	4.0	G		С	Barren	91	80	98							
B-8	2.4	Н		С	Barren	91	80	98							
B-8	0.4			С	Barren	91	80	98							
B-8	3.5	J		С	Barren	91	80	98							
B-8	1.7	К		С	Commercial, Industrial	69	50	86							
B-8	2.0	L		С	Commercial, Industrial	69	50	86							
B-8	1.4	М		С	Commercial, Industrial	69	50	86							
B-8	1.6	N		С	Commercial, Industrial	69	50	86							
B-8	3.2	0		С	Commercial, Industrial	69	50	86							
B-8	0.9	Р		С	Commercial, Industrial	69	50	86							
B-8	1.8	Q		С	Commercial, Industrial	69	50	86							
B-8	0.9	R		С	Commercial, Industrial	69	50	86							
B-8	3.8	S		С	Commercial, Industrial	69	50	86							
B-8	1.1	Т		С	Commercial, Industrial	69	50	86							
B-8	0.6	U		С	Commercial, Industrial	69	50	86							
B-8	2.2	V		С	Commercial, Industrial	69	50	86							
B-8	3.7	W		C	Commercial, Industrial	69	50	86							
B-8	2.2	х		С	Turf, Good	72	53	89							
B-8	1.5	Y		С	Commercial, Industrial	69	50	86							
B-8A	31.9	Z		C	Barren	91	80	98							
B-9AA	2.0	AA		c	Commercial, Industrial	69	50	86							
B-9AA	1.7	BB		C	Turf, Good	72	53	89							
B-9AA	1.7	CC		C	Commercial, Industrial	69	50	86							
B-9AA	2.9	DD		C	Commercial, Industrial	69	50	86							
B-9AA	1.4	EE		C	Commercial, Industrial	69	50	86							
B-9AA	2.0	FF		c	Commercial, Industrial	69	50	86							
B-9AA	4.2	GG		C	Commercial, Industrial	69	50	86							
B-9AA	2.8	HH		c	Barren	91	80	98							
B-9AA	1.3			c	Commercial, Industrial	69	50	86							
B-9AA	0.5	JJ		c	Turf, Good	72	53	89							
B-9AA	0.8	KK		c	Commercial. Industrial	69	50	86							
Total Area	138.0		•												

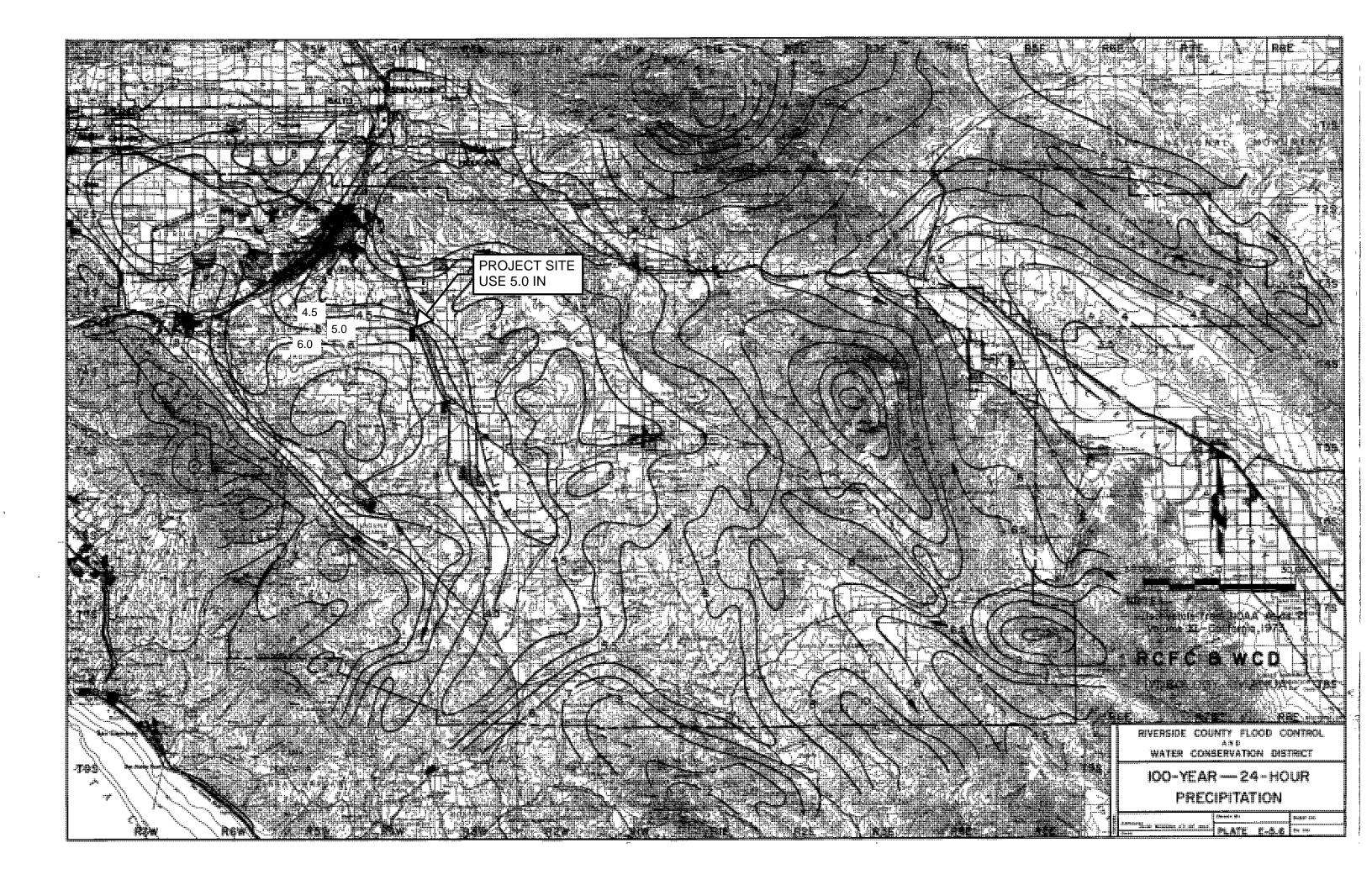
	WATER	SHED B-8	SUM	ΜΑΤΙΟ	ON OF DIFFERENT COV	ER TYF	PES	
Cover Type No.	Area	Percent of Pervious	Loss Rate Fp	Soil	Land Use	Curve	Number AMC	(CN)
INU.	(acres) (%) (in/hr) Type			Use	Ш	I	III	
1	56.2	100	0.25	С	Barren	91	80	98
2	26.4	10	0.25	С	Commercial, Industrial	69	50	86
3	2.2	85			Turf, Good	72	53	89
Total	84.8							

W	ATERS	HED B-9A	A SI	ЈММАТ	ION OF DIFFERENT CO	VER T	PES	
Cover Type No.	Area	Percent of Pervious	Loss Rate Fp	Soil	Land Use	Curve	Number AMC	(CN)
INO.	(acres)	(%)	(in/hr)	Туре	Use	Ш	I	Ш
1	2.8	100	0.25	С	Barren	91	80	98
2	16.3	10	0.25	С	Commercial, Industrial	69	50	86
3	2.2			С	Turf, Good	72	53	89
Total	21.3							

V	VATER	SHED B-8/	A SU	MMATI	ON OF DIFFERENT COV	'ER TY	PES	
Cover Type No.	Area	Percent of Pervious	Loss Rate Fp	Soil	Land Use	Curve	Number AMC	(CN)
INU.	(acres)	(%)	(in/hr)	Туре	Use	Ш	Ι	III
1	31.9	10	0.25	С	Barren	91	80	98
Total	31.9							

	RC	CFC 8	W	I C	D	SYN	THE	ETIC	CUP	TIV	HY	DR	OGI	RAP	H	MET	ГНО	DIF	Proje			0	-				Sheet	1
	ł	HYDROL						Bas	ic [Date	C	alcu	lati	on	For	m				ERS		B			TINC 6/18		- /	
		MANU	Al	-						0	0	-	_			-			hec					Date_				
L					_				L	0	S	S		R /	4	E		D	A	T	4 -							
	[0]	0o		<u>c::</u> ,																	211.0 -[24 I			
	[6]	<u>5[8]</u>	-	-																	2 [10]		(0.8	3) Ta			1.22 MIN (1 1.22 MIN (1 163 HRS	HR DAW
L	[8]	AREA SQ INCHES	210 40																	010	11	1LY)					the unit time for the	
SS RATF	[]	ADJUSTED INFILTRATION RATE-IN/HR C43(19C63)	0.116																			TORM ONL				IN./ HR.	T=	
TED LO	[9]	DECIMAL PERCENT OF AREA IMPERVIOUS (PLATE E-6.3)	0																			-HOUR S	IN./HR.		ų	Ň	ach unit time period,Use nd period,etc.	
ADJUSTED	<u> </u>	USED	NATURAL																			(24			+ (1/60)) ^{1.55} +		T = Time in minutes. To get an average value for each unit time first time period, T = $1\frac{1}{2}$ unit time for the second period, etc.	
AVERAGE	[4]	PERVIOUS AREA INFILTRATION RATE-IN/HR (PLATE E-6.2)	0,115																		L	IE CURVE	2 = 2/COJ 3	(2 CI0] - Fm)/54 =	(24 –(T		erage value fo ime for the se	
A		RI NUMBER (PLATE E-6.1)	16																			UJU KA	Rate≌ F/2 =	- [0]3) =) ^{1.55} + F _m =		To get an av d, T=1 <mark>2</mark> unit t	
		COVER TYPE	BARREN																			ADLE L	Fm = Minimum Loss Rate≅ F/2 = 2 C103/2 = 0.0575	$C = (F - F_m) / 54 =$	$F_{T} = C(24 - (T/60))^{1.55} + F_{m} = -$		ime in minutes rst time perio	
	[1]	SULC GROUP (PLATE C-1)	U																			VANIABL	Fm."	" C	- -	Where:	T=T fi	


	RCFC & Hydrol		SYNTH		HYDRC Calcul			THO		ject ATERSA	NED BYAA Exist	Sheet
_	MANU			 					By . Che	RICK	HowE Date 2/	1/19
				_ 0 .	SS	R /	AT	_	DA	ΤA	-	
	CI03 AVERAGE ADJUSTED ADJUSTED ADJUSTED ADJUSTED ADJUSTED ADJUSTED ADJUSTED	0.115								- 0.115	IO YEAR/24H	DUR STORM
	[6] [8]3	_								ΣC10	(0.8)Tc=(0.8)(1) = 0,235	7 HRS
ļ		34.7 AC							-	34.7 AC	۱۲ × ۱	the unit time for the
SS RAT	C7J JUSTED FILTTATT TE-IN/HR	0.115								Σ[8]	TORM ONL	/HR. T = <u>-</u>
2	C6J DECIMAL PERCENT PERCENT OF PAREA (PLATE E-6.3)	0									4-HOUR S IN./HR.	T - (17, 00) $+ -$ [N (24 - (T/60)) $+ -$ [N [N (24 - (T/60)) $+$ [N. T = Time in minutes. To get an average value for each unit time period, Use first time period, T = $\frac{1}{2}$ unit time for the second period, etc.
ADJUSTED	C 5 J LAND USE	NATURAL									VE (24-	(24 -(T/60)) + - lue for each unit tin the second period, e
AVERAGE	C4J PERVIOUS AREA INFLIRATION RATE-IN/HR (PLATE E-6.2)	0.115										(24 - brage value for ime for the se
AV	C3J R ¹ NUMBER (PLATE E-6.1)	16									ARIABLE LOSS RATE (Fm = Minimum Loss Rate ≅ F/2 = Σ EKOJ C = (F - Fm) / 54 = (Σ EIOJ - Fm) / 54 E = - (/24 - / 7 / 50)	u Tru - Togetanave d,T=1 <u>2</u> unit ti
	C2J COVER TYPE	BARREN									ARIABLE LOSS R Fm = Minimum Loss Rate≅ F/2 c = (F-Fm) / 54 = (Σ[10] E. = c(24 _/ 7, con ¹³⁵ , c = -	ime in minutes rst time period
	CIJ SOLL GROUP (PLATE C-1)	υ									VAR F m= c =	T=T T=T fi


PLATE E-2.1 (2 of 2)

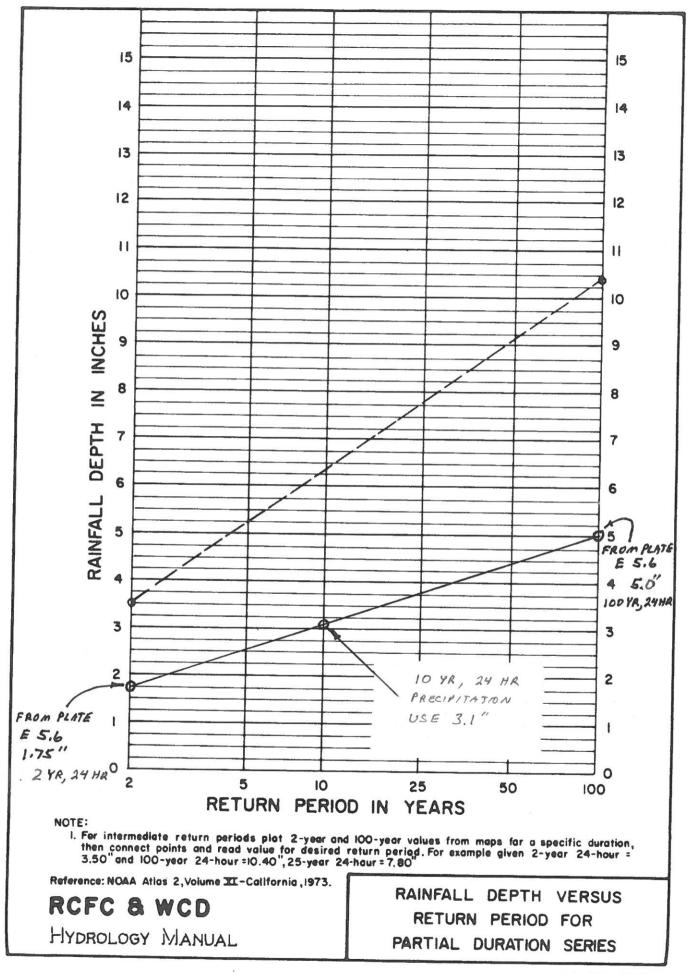
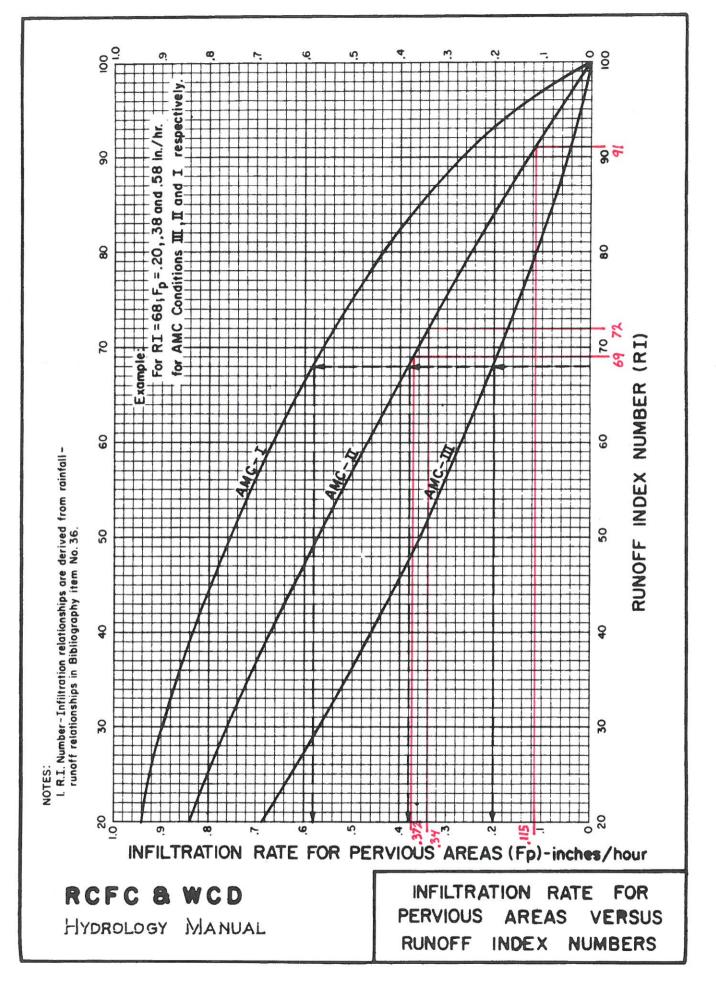

	R	CFC &	W	1 C	D	SYNT									TH		Proj			es b8	P		Sheet	/
		HYDROL MANU					B	asic	Dat	a C	alcu	latio	n Fo	n			By 🛃	Rici		HOWE	Date Date	7/1/19		
Г		MANO				L			С	S	S	F	R A	Т	5	D	Chec	T	Á	-	_Dore_		_/	
		AVERAGE ADJUSTED INFILTRATION RATE-IN/HR			0,0220	0,0088													- 0, 1067	201.0	LAG	0.8 T	CALC	
	, or		0 442	8 6	-	0.026													-C 0 I J Z	220		0,2584		
μ	2	AREA S0 INCHES	54.9 40		V 1.	2.2 10													84.8 AC	NLY)			the unit time for the	
SS RATE	5		0.115	1400	•	01340													E[8]-	TORM 0		IN./HR.	T=	
2	[6]	DECIMAL PERCENT OF AREA IMPERVIOUS (PLATE E-6.3)	0	0.40		5														-HOUR S	IN./HR.	N	T= Time in minutes. To get an average value for each unit time period, Use first time period, T= $1\frac{1}{2}$ unit time for the second period, etc.	
ADJUSTED	[5]	LAND	WATUAAL	1		Suboo new of														(2)	200	- (24 - (T/60)) ^{1.55} +	r each unit tir scond period,	
AVERAGE	[4]	PERVIOUS AREA INFILTRATION RATE-IN/HR (PLATE E-6.2)	0.115	0.372	1.240															ARIABLE LOSS RATE CURVE	$(\Sigma [10] - F_m) / 54 =$		erage value fo ime for the se	
A	[3]	RI NUMBER (PLATE E-6.1)	16	69	23	•														LOSS RA	- [0]]] =)) ^{i.35} +F _m =	s. To get an av d,T=1 <u>+</u> unit t	
	[2]	COVER TYPE	BARREN	URBAN	URBAN															VARIABLE L	= (F-F _m) / 54 =	$F_{T} = C(24 - (T/60))^{1.35} + F_{m}$	ïme in minute: irst time perio	
	[]]	SOIL GROUP (PLATE C-1)	U	ປ	U															VAR		F _T =	T=T f	

PLATE E-2.1 (2 of 2)

	F	CFC 8	h V	N C	D	SY	NTI	HET	FIC	UN	IT	HY	DR	OG	RA	PH	M	ETH	00	P	rojec	t		•				Sheet	/
		HYDRO						B	asia	D	ata	C	alcu	lat	ion	Fo	rm			B		ERSI CK	How		PA Date	Aasa	19	- /	
		MANL	JAI	L							~	0	-								ecke	_	100	And Personne statements	Date	44			
L					_			-	-	L	0	S	S		R	A	T	E	[) /	A T	A	-						
		CIOJ AVERAGE ADJUSTED INFILTRATION RATE-IN/HR		0.0151	0.0541	0.0200																2(10)-0.1042	20, 184 N			O.R	CA	0 A M 2C 3 MIN 11	HR
		[8] [8] [8] [8]		0,131	201.0	601.0																ELI03	USE			0,17			Om
Ļ		CBJ AREA SQ INCHES	0	A & AC																		21.3 AC	1 T)					$\frac{1}{2}$ the unit time for the	
SS RATF		C73 ADJUSTED INFILTRATION RATE-IN/HR C43(19663)	0 11E	2020 0																		E[8]3-	TORM ONL			ļ	IN. / HK.	$T = \frac{1}{2}$ the unit	
TED LO		LOJ DECIMAL PERCENT OF AREA IMPERVIOUS (PLATE E-6.3)	C	0.40																			-HOUR S	IN./HR.	ţ.	1		T=Time in minutes. To get an average value for each unit time period, Use T= first time period, T=1 $\frac{1}{2}$ unit time for the second period, etc.	
ADJUSTED	5	č	NATURAL	Commente	NDSCA																		VE (24-	х		(24 –(1/60)) ^{1.55} +		r each unit tin cond period,e	
AVERAGE	3	PERVIOUS AREA INFILTRATION RATE-IN/HR (PLATE E-6.2)	0.115	0.372	0.340																		TE CURVE	2 EI03/2 = 0	F _m)/54 =	(24-		erage value for me for the se	
A	[3]	-6.1)	16	69	72																		OSS RATE	Rate	= (1 [10] - Fm)/54 =) ^{1.55} +Fm =	•	To get an ave 3, T=1 <u>2</u> unit ti	
	[2]	COVER TYPE	BARREN	URBAN	URBAN																		ABLE L	Fm.= Minimum Loss Rate≅ F/2 = 2 C10]/2 = <u>0,05</u>	= (F-F _m) / 54 =	$F_{T} = C(24 - (T/60))^{1.35} + F_{m}$		ime in minutes rst time perio	
	[]]	SOIL GROUP (PLATE C-1)	c	v	U																		VAR	Fm.=	" 0	F _T =	Where:	T=T fi	



RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL-C	OVER COMPLEXE	S FOR PERV	IOUS	ARE	AS-A	MC II
Cover Type (3)		Quality of	and the owner whether the owne	and the second se	l Gr	and the owner where the party is not
		Cover (2) A	B	C	D
NATURAL COVERS -						
Barren (Rockland, eroded and graded land)			78	86	91	93
Chaparrel, Broadleaf (Manzonita, ceanothus and scrub oak	c)	Poor Fair	53 40	70 63	80 75	85 81
		Good	31	57	71	78
Chaparrel, Narrowleaf (Chamise and redshank)		Poor Fair	71 55	82 72	88 81	91 86
Grass, Annual or Perennial		Poor Fair	67 50	78 69	86 79	89 84
		Good	38	61	74	80
Meadows or Cienegas		Poor	63	77	85	88
(Areas with seasonally high water t principal vegetation is sod formin	able, g grass)	Fair Good	51 30	70 58	80 72	84 78
Open Brush (Soft wood shrubs - buckwheat, sage	etc.)	Poor Fair	62 46	76	84	88
(Dele wood billabb Dackwildat, Bage	, etc.,	Good	40	66 63	77 75	83 81
Woodland (Coniferous or broadleaf trees pred Canopy density is at least 50 perc	ominate.	Poor Fair Good	45 36 28	66 60 55	77 73 70	83 79 77
Woodland, Grass	,	Poor	57	73	82	86
(Coniferous or broadleaf trees with density from 20 to 50 percent)	canopy	Fair Good	44 33	65 58	77 72	82 79
URBAN COVERS -						
Residential o <mark>r Commercial</mark> Landscaping (Lawn, shrubs, etc.)		Good	32	56	<mark>69</mark>	75
(Irrigated and mowed grass)		Poor	58	74	83	87
(IIIIgated and mowed grass)		Fair Good	44 33	65 58	77 <mark>72</mark>	82 79
AGRICULTURAL COVERS -						
Fallow (Land plowed but not tilled or seede	ed)		76	85	90	92
	1				1	
RCFC & WCD	RUNOFF	INDEX		NUM	BEI	75
HYDROLOGY MANUAL		FOR				
	PER	VIOUS	AR	EAS		

PLATE E-6.1 (1 of 2)

	HYDRAULIC ELEMENTS - I PROGRAM PACKAGE
(C) (Copyright 1982-2013 Advanced Engineering Software (aes)
	Ver. 20.0 Release Date: 06/01/2013 License ID 1264
	Analysis prepared by:
TIME/DATE O	F STUDY: 14:20 07/05/2019
Problem Desc	-
Existing Co	ndition Lateral B-9AA
****	***************************************
>>>PIPEFLOW 1	HYDRAULIC INPUT INFORMATION<<<<
	ETER(FEET) = 2.500
PIPE SLOPI	E(FEET/FEET) = 0.0150
PIPE SLOPI	
PIPE SLOPI PIPEFLOW(0	E(FEET/FEET) = 0.0150
PIPE SLOPI PIPEFLOW(MANNINGS 1	E(FEET/FEET) = 0.0150 CFS) = 55.25
PIPE SLOP PIPEFLOW(MANNINGS)	E(FEET/FEET) = 0.0150 CFS) = 55.25 FRICTION FACTOR = 0.013000
PIPE SLOP PIPEFLOW(MANNINGS)	E(FEET/FEET) = 0.0150 CFS) = 55.25 FRICTION FACTOR = 0.013000
PIPE SLOP PIPEFLOW (MANNINGS) CRITICAL-1 CRITICAL)	E(FEET/FEET) = 0.0150 CFS) = 55.25 FRICTION FACTOR = 0.013000 ==================================
PIPE SLOP PIPEFLOW (MANNINGS) CRITICAL-1	E(FEET/FEET) = 0.0150 CFS) = 55.25 FRICTION FACTOR = 0.013000 ==================================
PIPE SLOP PIPEFLOW (MANNINGS) CRITICAL-1 CRITICAL 1 CRITICAL 1	E(FEET/FEET) = 0.0150 CFS) = 55.25 FRICTION FACTOR = 0.013000 ==================================
PIPE SLOP PIPEFLOW (MANNINGS) CRITICAL-1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1	E(FEET/FEET) = 0.0150 CFS) = 55.25 FRICTION FACTOR = 0.013000 ==================================
PIPE SLOP PIPEFLOW (MANNINGS) CRITICAL-1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1	E (FEET/FEET) = 0.0150 CFS) = 55.25 FRICTION FACTOR = 0.013000 ==================================
PIPE SLOP PIPEFLOW (MANNINGS) CRITICAL-1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1	E (FEET/FEET) = 0.0150 CFS) = 55.25 FRICTION FACTOR = 0.013000 ==================================
PIPE SLOP PIPEFLOW (MANNINGS) CRITICAL-1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1	E (FEET/FEET) = 0.0150 CFS) = 55.25 FRICTION FACTOR = 0.013000 ==================================
PIPE SLOP PIPEFLOW (MANNINGS) CRITICAL-I CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1	E (FEET/FEET) = 0.0150 CFS) = 55.25 FRICTION FACTOR = 0.013000 ==================================
PIPE SLOP PIPEFLOW (MANNINGS) CRITICAL-1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1	E (FEET/FEET) = 0.0150 CFS) = 55.25 FRICTION FACTOR = 0.013000 ==================================
PIPE SLOP PIPEFLOW (MANNINGS) CRITICAL-1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1	E (FEET/FEET) = 0.0150 CFS) = 55.25 FRICTION FACTOR = 0.013000 ==================================

<pre>************************************</pre>	**
TIME/DATE OF STUDY: 14:22 07/05/2019 Problem Descriptions: Proposed Lateral B-9AA	==
**************************************	* *
PIPE DIAMETER(FEET) = 2.500 PIPE SLOPE(FEET/FEET) = 0.0150 PIPEFLOW(CFS) = 47.15 MANNINGS FRICTION FACTOR = 0.013000	
CRITICAL-DEPTH FLOW INFORMATION:	
CRITICAL DEPTH(FEET) = 2.26 CRITICAL FLOW AREA(SQUARE FEET) = 4.668 CRITICAL FLOW TOP-WIDTH(FEET) = 1.473 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 1234.36 CRITICAL FLOW VELOCITY(FEET/SEC.) = 10.101 CRITICAL FLOW VELOCITY HEAD(FEET) = 1.58 CRITICAL FLOW VELOCITY HEAD(FEET) = 3.17 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 3.84	
NORMAL-DEPTH FLOW INFORMATION:	-=
NORMAL DEPTH (FEET) = 1.92 FLOW AREA (SQUARE FEET) = 4.05 FLOW TOP-WIDTH (FEET) = 2.106 FLOW PRESSURE + MOMENTUM (POUNDS) = 1282.31 FLOW VELOCITY (FEET/SEC.) = 11.634 FLOW VELOCITY HEAD (FEET) = 2.102 HYDRAULIC DEPTH (FEET) = 1.92 FROUDE NUMBER = 1.478 SPECIFIC ENERGY (FEET) = 4.03	

ID INITIAL SUBAREA ANALYSIS // / ID INITIAL SUBAREA ANALYSIS / TTAL SUBAREA UNIFORM IS IS IS	<pre>TOTAL AREA (ACRES) = 10.80 TOTAL RUNOFF (GFS) = 10.70 ***********************************</pre>	VILLE STATUS VILLE STATUS VI
<pre>************************************</pre>	<pre>************************************</pre>	USER SEPCIFIED FILORADIO AND ILLOADIO FORM FURNING USER SEPCIFIED FILORADIO FAURT (FERA) = 10.00 SEPCIFIED PERCENT OF RADIATING (DECRAM) TO USE FOR FRICTION SLOPE = 0.90 SEPCIFIED PERCENT OF RADIATING (DECRAM) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 1.80 10-YEAR STORM 00-MINUTE INTENSITY (INCH/HOUR) = 2.690 100-YEAR STORM 00-MINUTE INTENSITY (INCH/HOUR) = 1.120 SLOPE OF 10-YEAR INTENSITY DURATION CURVE = 0.4990883 SCORPE OF 10-YEAR INTENSITY PURATION CURVE = 0.4990883 SCORPE OF 10-YEAR INTENSITY DURATION CURVE = 0.4990883 SCORPE OF 10-YEAR INTENSITY DURATION CURVE = 0.4990883 SCORPE OF 10-YEAR INTENSITY DURATION CURVE = 0.4990883 SCORPE OF 10-YEAR INTENSITY PURATION CURVE = 0.4990234 SCORPE PRIMARIA INTENSITY PURATION CURVE = 0.4990234 SCORPE OF 10-YEAR INTENSITY PURATION CURVE = 0.4990333 SCORPE OF 10-YEAR INTENSITY PURATION CURVE = 0.4990333 SCORPE OF 10-YEAR INTENSITY PURATION CURVE = 0.4990333 SCORPE OF 10-YEAR INTENSITY PURATION CURVE = 0.499033 NOT (FT) (FT) (FT) (FT) (FT) (FT) (FT) (FT

	<pre>Retremainture light = 0.0400 CHANNEL LENGTH THRU SUBARA(FEET) = 1000.00 V" GUTTER WIDTH(FEET) = 0.400 MANNING'S N = .0300 PAVEMENT LIP(FEET) = 0.400 MANNING'S N = .0300 PAVEMENT CROSSFALL (DECIMAL NOTATION) = 0.02000 MAXIMUM DEPTH(FEET) = 2.00 IO PAVELPER RAINERSHED RNOFF COEFFICIENT = .6408 SOLL CLASSFICATION IS "C" TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 15.49 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 7.52 AVENARE FLOM DEPTH(FEET) = 1.20 FLOOD WIDTH(FEET) = 5.00 "V" GUTTER FLOM DEPTH(FEET) = 1.20 FLOOD WIDTH(FEET) = 5.00 "V" GUTTER FLOM PRAVEL TIME GMIN.) = 2.22 TC (MIN.) = 16.58 SUBAREA AREA(ACRES) = 10.10 SUBAREA RUNOFF(CFS) = 9.59 TOTAL AREA (ACRES) = 10.10 SUBAREA RUNOFF(CFS) = 9.02 TOTAL AREA (FEET) = 7.52 DEPTH*VELOCITY (FT*FT/SEC) = 9.02 LONGEST FLOWPATH FROM NODE 805.00 TO NODE 807.00 E 2000.00 FEET.</pre>	FLOW PROCESS FROM NODE 807.00 TO NODE 804.00 IS CODE = 91 >>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA<< FEPRESENTATIVE SLOPE = 0.0410 REPRESENTATIVE SLOPE = 0.0410 REPRESENTATIVE SLOPE = 0.0400 RANNEL LENGTH THRU SUBAREA (FEET) = 740.00 W." GUTTER WIDTH (FEET) = 0.0400 MANNING'S N = .0300 PAVEMENT LIP (FEET) = 0.0400 MANNING'S N = .0300 PAVEMENT COSSFALL (DECIMAL NOTATION) = 0.02000 MAXIMUM DEPTH (FEET) = 0.0400 MAXIMUM DEPTH (FEET) = 0.000 MAXIMUM DEPTH (FEET) = 2.00 IO YEAREL TIME CONFUTED UNOFF COFFICIENT = .6323 SOIL CLASSIFICATION IS "C" TRAVEL TIME CONFUTED USING ESTIMATED FLOW (FEET/SEC.) = 7.61 AVERAGE FLOW TRAVEL TIME (MIN.) = 1.62 TC(MIN.) = 1.62 TC(MIN.) = 1.60 SUBAREA BASED ON VELOCITY (FEET/SEC.) = 7.61 AVERAGE FLOW TRAVEL TIME (MIN.) = 1.62 TC(MIN.) = 1.62 TC(MIN.) = 1.62 SUBAREA AREA(ACRES) = 1.20 FLOM RATE (CFS) = 29.03 TRAVEL TIME CONFUTED USING ESTIMATED FLOW (FEET) = 2.00 "V" GUTTER FLOW TRAVEL TIME (MIN.) = 1.62 TC(MIN.) = 1.62 TC(MIN.] TRAVEL TIME ESTIMATES BASED ON NORMAL DISTILACRES) = 0.41
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6218 SOIL CLASSIFICATION IS "C" TRANEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 21.59 TRAVEL TIME THUS UBBAREA BASED ON VELOCITY (FEET/SEC.) = 7.13 AVERAGE FLOW DEPTH(FEET) = 1.20 FLOOD WIDTH(FEET) = 5.00 "V" GUTTER FLOW TRAVEL TIME (MIN.) = 2.50 TC (MIN.) = 2.0.38 SUBAREA AREA(ACRES) = 7.7.0 SUBAREA RUNOFF(CFS) = 6.41 TOTAL AREA(ACRES) = 27.0 PEAK FLOW RATE(CFS) = 6.41 NOTE: TRAVEL TIME ESTIMATES BASED ON NORMAL	DEFIN EQUAL TO LOUTERFILME * FAVEMENT LIFT END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 1.20 FLOOD WIDTH(FEET) = 5.00 FLOW VELOCITY(FEET/SEC.) = 7.13 DEPTH*VELOCITY(FT*FT/SEC) = 8.56 LONGEST FLOMPATH FROM NODE 800.00 TO NODE 803.00 = 3050.00 FEET. ************************************	<pre>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<</pre> TOTAL NUMBER OF STREAMS = 2 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(WIN.) = 21.07 RAINFALL INTENSITY(INCH/HR) = 1.32 TOTAL STREAM AREA(ACRES) = 21.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 24.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 24.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 24.80 PEAK FLOW RATE(ST) = 27.00 PEAK FLOW RATE(ST) = 27.00 PEAK FLOW RATE(ST) = 27.00 PEAK FLOW RATE(ST) = 1.32 ASSUMED INITIAL SUBAREA ANALYSIS< ASSUMED INITIAL SUBAREA ANALYSIS ASSUMED INITIAL SUBAREA ANALYSIS ASSUMED INITIAL SUBAREA ANALYSIS TC = R*((LENCH**3)/(ELEVATION CHANGE))**.2 INITIAL SUBAREA INNFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = R*((LENCH**3)/(ELEVATION CHANGE))**.2 INITIAL SUBAREA FLOW-LENCH(FEET) = 1000.00 UNSTREAM ELEVATION(FEET) = 11663.00 TC = 0.533*[(1000.00**3)/(70.00)]**.2 = 14.368 IO YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.589 Date: 06/18/201 FILE FILE FILE FILE FILE FILE FILE FILE

TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 22.22 RAINFALL INTENSITY(INCH/HR) = 1.28 TOTAL STREAM AREA(ACRES) = 58.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 52.51 ************************************	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	FLOW PROCESS FROM NODE 810.00 TO NODE 808.00 IS CODE 91 FLOW PROCESS FROM NODE 810.00 TO NODE 808.00 IS CODE 91 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 1.20 FLOOD WIDTH(FEET) = 5.00 FLOW VELOCITY(FEET/SEC.) = 7.61 DEPTH*VELOCITY(FT*FT/SEC) = 9.13 LONGEST FLOWPATH FROM NODE 805.00 TO NODE 804.00 = 2740.00 FEET. ***********************************	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 18.20 RAINFALL INTENSITY (INCH/HR) = 1.41 TOTAL STREAM AREA (ACRES) = 31.00 FEAK FLOW RATE (CRS) = 31.00 FEAK FLOW RATE (CRS) = 31.00 FEAK FLOW RATE (CRS) = 31.00 PEAK FLOW RATE (CRS) = 1.41 STREAM NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 24.80 21.07 1.317 27.00 2 29.77 18.20 1.415 31.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO	CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE * STREAM RUNOFF TC INTENSITY NUMBER (CFS) (41NL) (INCHHOUR) 1 51.20 18.20 11.415 2 52.51 21.07 1.317 CONFUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS; EEAK FLOW ANTECRES) = 52.51 TC (MIN.) = 21.07 TOTAL AREA(CRES) = 52.51 TC (MIN.) = 21.07 TOTAL AREA(CRES) = 52.51 TC (MIN.) = 21.07 TOTAL AREA(CRES) = 53.0 LONGEST FLOWRATE FROM NODE 804.00 = 301 S.0 TOTAL AREA(CRES) = 53.0 LONGEST FLOWRATE FROM NODE 804.00 = 311 S.2.51 21.07 TOTAL AREA(CRES) = 50.00 REPRESENTATION FLORE 801.00 TO NODE 801.00 = 311 S.2.51 21.07 TOTAL AREA(CRES) = 50.00 REPRESENTATION FLORE 800.00 TO NODE 801.00 = 311 STREAMED FLOW TRAVEL TIME THRU SUBAREA<

					4040.00 FEET.			Page 7
JUES<<<<	2 ARE:	AREA (ACRE) 58.00 58.00 13.00	RATIO		22.22 808.00 =	22.22		
TT STREAM FOR CONFLUENCE<<<<< CONFLUENCED STREAM VALUES<<<<<<	2 2 2 10.05PENDENT STREAM = 14.01 13.00 13.00 LUENCE = 13.99	INTENSITY (INCH/HOUR) 1.373 1.283 1.609	OF CONCENTRATION RJ 2 STREAMS.	INTENSITY (INEL/HOUR) 1.609 1.373 1.283	ES ARE AS FOLLOWS: 63.66 Tc(MIN.) = 1.0 800.00 TO NODE	71.0 TC(MIN.) = 63.66	S1 15	File name: E10_B8.RES
	EAMS = SED FOR DN (MIN.) INCH/HR) CRES) = AT CONF	** Tc (MIN.) 19.36 22.22 14.01	AND TIME (USED FOR	TABLE ** Tc (MIN.) 14.01 19.36 22.22	ESTIMAT = 7 DM NODE	MARY: MARY: FS) = TE TABLE *** TC(MIN.) 19.36 19.36 22.22	METHOD ANALYSIS	
<pre>>>>>DESIGNATE INDEPENDENT >>>>>ADD COMPUTE VARIOUS CC</pre>	NUMBER OF EENCE VALUE E CONCENTR LL INTENSI STREAM ARE LOW RATE (C	CONFLUENCE DATA REAM RUNDFF BER (CFS) 151.20 152.51 213.99	INTENSITY CE FORMULA	K FLOW RATE RUNOFF (CFS) 51.04 63.13 63.66	JTED CONFLUEN FLOW RATE (CF AREA (ACRES) ST FLOWPATH	STUDY SUMMAR STUDY SUMMAR LOW RATE(CES) AK FLOW RATE Q(CFS) TC(51.04 63.13 63.66	OF RATIONAL	Date: 06/18/2019
1<<<<	TOTAL TOTAL CONFLU TIME C RAINFA TOTAL PEAK F	** CON STREAM NUMBER 1 1 2 2	RAINFALL CONFLUEN	** PEA STREAM NUMBER 1 2 3		======================================		

Date: 06/18/2019 File name: E10_B8.RES

Page 8

<pre>ioD INITIAL SUBAREA ANALYSIS<<<</pre> ioD INITIAL SUBAREA ANALYSIS<<< irial SUBAREA UNIFORM i Is: UNDEVELOPED WITH POOR COVER)/(ELEVATION CHANGE)]**.2	<pre>PUAL ARCALACES) = 0.00 TOTAL AUMOFT(CFS) = 0.03 FLOW PROCESS FROM NODE 813.00 TO NODE 014.00 IS CODE = 91 >>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA<</pre> TELOW PROCESS FROM NODE 813.00 TO NODE 014.00 IS CODE = 91 CHANNEL LENGTH THRU SUBAREA (FEET) = 0.0100 CHANNEL LENGTH THRU SUBAREA (FEET) = 0.0100 W" GUTTER WIDTH (FEET) = 0.400 MANNING'S N = 0.300 PAVEMENT CROSSFALL (DECIMAL NOTATION) = 0.02000 PAVEMENT CROSSFALL (DECIMAL NOTATION) = 0.2000 PAVEMENT CROSSFALL NOTATION IS "C" TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 2.85 VUDEVELOPED MATERSHED NUNCF (CFS) = 2.00 ""GUTTERAVEL TIME TRAVEL TIME (MIN.) = 1.52 TC (MIN.) = 2.3.25 SUBAREA AREA (ACRES) = 5.00 SUBAREA RUNOFF (CFS) = 2.85 VUEALER TIME TRAVEL TIME (MIN.) = 1.52 TC (MIN.) = 2.3.25 SUBAREA AREA (ACRES) = 5.00 SUBAREA RUNOFF (CFS) = 3.82 SUBAREA AREA (ACRES) = 5.00 SUBAREA RUNOFF (CFS) = 3.82 SUBAREA AREA (ACRES) = 0.80 PLACON MIDTH (FEET) = 5.00 VUE (DTERT) = 1.20 FLOON MIDTH (FEET) = 5.00 VUE (DFS) = 1.20 FLOON MIDTH (FEET) = 5.00 PLOTH (FEET) = 1.20 FLOON MIDTH (FEET) = 5.00 PLOTH (FEET) = 1.20 FLOON MIDTH (FEET) = 4.94 FLOM VELOCITY (FEET) = 1.20 FLOON MIDTH (FEET) = 4.94 FLOM VELOCITY (FEET) = 1.20 FLOON MIDTH (FEET) = 4.94 FLOM VELOCITY (FEET) = 1.20 FLOON MIDTH (FEET) = 4.94 FLOM VELOCITY (FEET) = 1.20 FLOON MIDTH (FEET) = 4.94 FLOM VELOCITY (FEET) = 1.20 FLOON MIDTH (FEET) = 4.94 FLOM VELOCITY (FEET) = 1.20 FLOON MIDTH (FEET) = 4.94 FLOM VELOCITY (FEET) = 1.20 FLOON MIDTH (FEET) = 4.94 FLOM VELOCITY (FEET) = 1.20 FLOON MIDTH (FEET) = 4.94 FLOM VELOCITY (FEET) = 4.12 DEPTH*VELOCITY (FET) = 4.94 FLOM	<pre>************************************</pre>
<pre>************************************</pre>	<pre>************************************</pre>	30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0. LOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth) Y(Velocity) Constraint = 6.0 (FT*FT/S) SIZE PIPE WITH A FLOW CAPACITY GREATER THAN DR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ***********************************

TOTAL STREAM AREA(ACRES) = 15.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.35	FLUENCE DATA **	STREAM RUNDEF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 6.86 23.25 1.255 8.80 2 16.35 14.20 1.599 15.20	RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.	** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CF) (MIN.) (INCH/HOUR) 1 20.54 (M120) 1.599	19.69 23.25	COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 20.54 TC (MIN.) = 14.20 TOTAL AREA(ACRS) = 24.0 TOTAL AREA(ACRS) = 24.0 TONEEST FIONDATE FOONDATE FOONDATE FOONDATE FOONDATE		FLOW PROCESS FROM NODE 815.00 TO NODE 811.00 IS CODE = 31	L TIME THRU D PIPESIZE (REPRESENTATIVE SLOPE = 0.0066 FICM INNOTHIFERN = 6.0066	IPE IS 19.3 INCH	PIPE-FLOW VELOCITY(FEET/SEC.) = 6.75 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1	- ME (MIN.) TH FROM	·····	FLOW PROCESS FROM NODE 811.00 TO NODE 811.00 IS CODE = 1	>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<	= 2 DR INI N.) = HR) =	TUTAL STREAM AREA (ACKES) = 24.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 20.54	**************************************	>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<	ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2	Date: 03/01/2019 File name: E10_B8A.RES Page 4
**************************************	>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<	NIT MIT GE)	1296 1596 1596	DEDEVATION DIFFERENCE(FEEI) = 21.00 TC = 0.533*[(530.00**3)/(21.00)]**.2 = 12.489 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.703 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6658 SOTI.CLASSIFICATION IS "C"	SUBARRA RUNOFF(CFS) = 5.78 TOTAL AREA (ACRES) = 5.10 TOTAL RUNOFF(CFS) = 5.78	**************************************	>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA<<<<<	REPRESENTATIVE SLOPE = 0.0340	CHANNEL LENGTH THRU SUBAREA (FEET) = 710.00 "V" GUTTER WIDTH (FEET) = 5.00 GUTTER HIKE (FEET) = 0.800 PAVEMENT LIP (FEET) = 0.400 MANNING'S N = .0300	PANEMENT CKOSSFALL(DECIMAL NOTATION) = 0.UZ000 MAXIMUM DEPTH(FEET) = 2.00 10 Verr batinetett riverentertv(inch(horid) = 1.500	UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6547	SOLL CLASSIFICATION IS "C" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.07 minimum minimum minimum company (minimum check)		SUBAREA RUNOFF (CFS) = PEAK FLOW RATE (CFS)	י. דגאפטא אט מפטגם פשהאתדשפת שאדו	DEPTH EQUAL TO [GUTTER-HIKE + PAVEMENT LIP]	END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 1.20 FLOOD WIDTH(FEET) = 5.00 FLOW VELOCITY(FEET/SEC.) = 6.93 DEPTH*VELOCITY(FT*FT/SEC) = 8.32 LONGEST FLOWPATH FROM NODE 803.00 TO NODE 815.00 = 1240.00 FEET.	**************************************	>>>>DESIGNATE INDEPENDENT STRAM FOR CONFLUENCE<<<<<		- COR N.) (HR)	Date: 03/01/2019 File name: E10_B8A.RES Page 3

<pre>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<</pre> >>>>AUD COMPUTE VARIOUS CONFLUENCED STREAM VALUES<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATYON(MIN.) = 17,71 RAINFALL INTENSITY(INCH/HR) = 1.43 TOTAL STREAM AREA(ACRES) = 7.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.64	** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA STREAM RUNOFF TC (INCH/HOUR) (ACRE) 1 20.54 15.43 1.535 24.00 2 7.64 17.71 1.434 7.90 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CF5) (MIN.) (INCH/HOUR) 1 27.19 15.43 1.535 2 26.83 17.71 1.434 3 26.20 24.49 1.223 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CF5) = 27.19 TC (MIN.) = 15.43 TOTAL AREA (ACRES) = 31.9 TOTAL AREA (ACRES) = 31.9 LONGEST FLOWPATH FROM NODE 812.00 TO NODE 811.00 = 2400.00 FEET.	END OF STUDY SUMMARY: TOTAL AREA (ACRES) = 31.9 TC(MIN.) = 15.43 PEAK FLOW RATE (CFS) = 27.19 *** PEAK FLOW RATE TABLE *** 2 (CFS) TC(MIN.) 1 2(CFS) TC(MIN.) 1 2(CFS) TC(MIN.) 2 26.83 17.71 3 26.20 24.49 END OF RATIONAL METHOD ANALYSIS END OF RATIONAL METHOD ANALYSIS END OF RATIONAL METHOD ANALYSIS
<pre>INITIAL SUBAREA FLOW-LENGTH(FEET) = 730.00 UPSTREAM ELEVATION(FEET) = 1593.00 DOWNSTREAM ELEVATION(FEET) = 1572.00 ELEVATION DIFFERENCS(FEET) = 1572.00 ELEVATION DIFFERENCS(FEET) = 21.00 TC = 0.533*([730.00**3)/(21.00)]**.2 = 15.134 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.549 UNDEVELOPED WATERSHED RUNGF COFFICIENT = .6490 SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF(CFS) = 3.00 TOTAL RUNOFF(CFS) = 3.02 TOTAL AREA(ACRES) = 3.00 TOTAL RUNOFF(CFS) = 3.02</pre>	<pre>FLOW PROCESS FROM NODE 817.00 TO NODE 818.00 IS CODE = 91 >>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA<<</pre> <pre> FERESENTATIVE SLOPE = 0.260 CHANNEL LENCTH THRU SUBAREATEET) = 410.00 W" GUTTER MIDTH(FEET) = 5.00 GUTTER HIKE(FEET) = 0.800 PAVEMENT LIP(FEET) = 0.400 MANNING'S N = .0300 NAXIMUM DEPTH(FEET) = 2.00 IO YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.473 UNDEVELOPED WATERAED RUNG'S N = .02000 IO YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.473 UNDEVELOPED WATERAED RUNG'S COEFTICIENT = .6399 SOIL CLASSIFICATION IS "C" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.20 AVERAGE FLOM TRAVEL TIME NOL. 1.63 TRAVEL TIME YOUND. SUBAREA RUNOFF(CFS) = 4.62 TOTAL AREA (ACRES) = 7.9 PEAK FLOW RANEL TIME COMMAND DATA (FEET) = 7.0 NOTICLE AREA (ACRES) = 7.9 PEAK FLOW RANEL TIME COMMAND DATA (FEET) = 7.0 NOTICLE AREA (ACRES) = 7.9 PEAK FLOW RANEL TIME COMMAND DATA (FEET) = 7.0 NOTICLE AREA (ACRES) = 7.9 PEAK FLOW RANEL TIME COMMAND DATA (FEET) = 7.0 NOTICLE AREA (ACRES) = 7.9 PEAK FLOW RANEL TIME COMMAND DATA (FEET) = 7.0 NOTICLE AREA (ACRES) = 7.9 PEAK FLOW RANEL TIME COMMAND DATA (FEET) = 7.0 NOTICLE AREA (ACRES) = 7.9 PEAK FLOW RANEL TIME COMMAND DATA (FEET) = 7.0 NOTICLE AREA (ACRES) = 7.9 PEAK FLOW RANEL TIME COMMAND DATA (FEET) = 7.0 NOTICLE AREA (ACRES) = 7.9 PEAK FLOW RANEL TIME COMMAND DATA PARENT DATA NATE COMMAND NOTICLESS = 7.9 PEAK FLOW RANEL TIME COMMAND DATA NATE COMMAND DATA NATE COMMAND NOTICLESS = 7.0 NOTICLE AREA (ACRES) = 7.6 NOTICLE AREA (ACRES) = 7.0 NOTICLE (ACRES) = 7.0 NOTICLE (ACRES) = 7.0 NOTICLE (ACRES) = 7.</pre>	<pre>MULTINATE LITTLE ESTIMATES EAGED ON NORMAL DEFTH = GUTTER HIKE) END OF SUBAREA "V" GUTTER HYDRAULICS: EDGW OF SUBAREA "V" GUTTER HYDRAULICS: DEFTH (FEET) = 0.80 FLOOD WIDTH (FEET) = 5.00 FLOW VELOCITY (FEET/SEC.) = 4.20 FLOW VELOCITY (FEET/SEC.) = 3.36 LONGEST FLOWPATH FROM NODE 818.00 TO NODE 818.00 = 1140.00 FEET. ***********************************</pre>

<pre>>>>>Parional merhod initial SUBAREA ANALYSIS<<</pre> >>>>Parional merhod initial SUBAREA ANALYSIS< Assumed initial SUBAREA UNIFORM DEVELOPMENT IS: UNBEVELOPED WITH POOR COVER TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 1000.00 UPSTREAM FLEVATION(FEET) = 1691.00 DOMNSTREAM ELEVATION(FEET) = 1691.00 SUBAREAM ELEVATION IS "C SUBAREA RUNOFF (CFS) = 5.14 TOTAL AREA(ACRES) = 4.00 TOTAL RUNOFF (CFS) = 5.14 TOTAL AREA(ACRES) = 5.14 TOTAL AREA(AC	**************************************	CHANNEL LENGTH THRU SUBAREA (FEET) = 900.00 "V" GUTTER MIDTH (FEET) = 5.00 GUTTER HIKE (FEET) = 0.800 PAVEMENT LIP (FEET) = 0.400 MANNING'S N = .0300 PAVEMENT CONSTRAIL (DECIMAL NOTATION) = 0.02000 MAXINUM DETH (FEET) = 2.00 10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.477 UNDEVELOPED MATERSHED RUNOFF COFFICIENT = .6403 SOLL CLASSIFICATION 15 °C TRAVEL TIME COMPUTED USING ESTIMATED FLOM (CFS) = 7.55 TRAVEL TIME COMPUTED USING ESTIMATED FLOM (CFS) = 7.55 TRAVEL TIME COMPUTED USING ESTIMATED FLOM (CFS) = 7.55 TRAVEL TIME COMPUTED USING ESTIMATED FLOM (CFS) = 9.06 "V" GUTTER FLOM PERTH (FEET) = 0.80 FLOOD WIDTH (FEET) = 5.01 AVERAGE FLOM DEFTH (FEET) = 0.80 FLOOD WIDTH (FEET) = 5.01 AVERAGE FLOM PETH (FEET) = 0.80 FLOOD WIDTH (FEET) = 4.82 USBAREA AREA (ACRES) = 5.10 SUBAREA RUNOFF (CFS) = 4.82 TOTAL AREA (ACRES) = 5.10 SUBAREA RUNOFF (CFS) = 4.02 UNCE: TRAVEL TIME ESTIMATES BASED ON NORMAL DEFTH = GUTTER HIKE) IN A FLOMING-FULL GUTTER (NORMAL DEFTH = GUTTER HIKE) END OF SUBAREA AVE ON ODE 900.00 TO NODE 902.00 = 1900.00 FEET. ************************************	REPRESENTATIVE SLOPE0.0150CHANNEL LENGTH THRU SUBAREA(FEET)= 200.00U'' GUTTER WIDTH(FEET)= 5.00WU' GUTTER WIDTH(FEET)= 0.400PAVEMENT LIP(FEET)= 0.400PAVEMENT CROSSFALL(DECIMAL NOTATION)= 0.02000MAXIMUM DEPTH(FEET)= 2.00Date: 07/03/2019File name: E10_B9AA.RESPage 2
<pre>************************************</pre>	**************************************	TIME/DATE OF STUDY: 14:27 07/03/2019 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT (YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00 SPECIFIED PERCENT OF GRADIENTS(IDECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.800 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 0.780 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.120 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4909883 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4909883 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4909883 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4909883 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4900234 COMPUTED RAINFALL INTENSITY DURATION CURVE = 0.490033 SLOPE OF INTENSITY DURATION CURVE = 0.490033 SLOPE OF INTENSITY DURATION CURVE = 0.490033 SLOPE OF INTENSITY DURATION CURVE = 0.490033 NOT (CONFULTER RAINFERM COMPUTED PIPEFLOM AND STREETFLOM MODEL* HALF- CROWN TO STREET-CROSSFALL IN- / OTT-/PARK- HEIGHT WITCH LIP HIKE FACTOR WIDH CROSSFALL IN- / OTT-/PARK- HEIGHT WITCH LIP HIKE FACTOR NO. (FT) SIDE / SIDE/ WAY MIDH CROSSFALL IN- / OTT-/PARK- HEIGHT WITCH LIP HIKE FACTOR NO. (FT) 30.0 0.018/0.018/0.020 0.677 2.00 0.03113 0.167 0.0150 CLOBAL STREET FLOW-DEPTH = CONSTRAINTS: 1 Relative FLOW-DEPTH = CONSTRAINTS: 1 Relative FLOW-DEPTH = CONSTRAINTS: 1 RELATIVE FLOW DEPTH = 0.00 FEET 1 RELATIVE FLOW DEPTH = 0.00 FEET	<pre>2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ***********************************</pre>

UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6476 SOIL CLASSIFICATION IS "C" SOIL CLASSIFICATION IS "C" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.90 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET) = 6.27 AVERAGE FLOW DEPTH(FEET) = 0.80 FLOOD WIDTH(FEET) = 5.00 "V" GUTTER FLOW TRAVEL TIME (MIN.) = 2.37 TC(MIN.) = 15.38 SUBAREA AREA(ACRES) = 5.20 SUBAREA RUNOFF(FFS) = 5.18 FOTAL AREA(ACRES) = 8.2 PEAK FLOW RATE(CFS) = 5.18 NOTE:TRAVEL TIME ESTIMATES BASED ON NORMAL DEPTH IN A FLOWING-FULL GUTTER (NORMAL DEPTH = GUTTER HIKE)	T. END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 0.80 FLOOD WIDTH(FEET) = 5.00 FLOW VELOCITY(FEET/SEC.) = 6.27 DEPTH*VELOCITY(FT*FT/SEC) = 5.02 LONGEST FLOWPATH FROM NODE 900.00 TO NODE 903.00 = 1750.00 FEET. ***********************************		** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 20.08 17,41 1.446 20.90 2 8.49 15.38 1.537 8.20 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 26.23 15.38 1.537 2 28.07 17.41 1.446	<pre>*** COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 28.07 Tc(MIN.) = 17.41 TOTAL AREA (ACRES) = 29.1 LONGEST FLOWPATH FROM NODE 900.00 TO NODE 903.00 = 2100.00 FEET. ***********************************</pre>
FALL INTENSITY (INCH/HOUR) = 1. (TERSHED RUNOFF COEFFICIENT = .(CATION IS "C" MPUTED USING ESTIMATED FLOM(CF6 MPUTED USING ESTIMATED FLOM(CF6 IRU SUBARRA BASED ON VELOCITY (FF BETH(FEET) = 1.20 FLOOD WII M TRAVEL TIME(MIN.) = 0.72 MM TRAVEL TIME(MIN.) = 0.72 MM TRAVEL 11.00 FLOAD WI MU TRAVEL TIME(MIN.) = 0.72 MU TRAVEL 11.00 FLOAD WI MU TRAVEL TIME (MIN.) = 0.72 MU TRAVEL 11.00 FLOAD WI MU TRAVEL 11.00 FLOAD WI MU TRAVEL 11.00 FLOAD WI MU TRAVEL 11.00 FLOAD WI MU TRAVEL 11.00 FLOAD WI WI TRAVEL 11.00 FLOAD WI W W TRAVEL 11.00 FLOAD WI W	<pre>DEPTH(FEET) = 1.24 FLOOD WIDTH(FEET) = 9.14 FLOW VELOCITY(FEET/SEC.) = 4.68 DEPTH*VELOCITY(FT*FT/SEC) = 5.81 LONGEST FLOWPATH FROM NODE 900.00 TO NODE 903.00 = 2100.00 FEET. ***********************************</pre>	TUTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME DF CONCENTRARION (MIN.) = 17.41 RAINFALL INTENSITY (INCH/HR) = 1.45 TOTAL STREAM AREA (ACRES) = 20.90 PEAK FLOW RATE (CFS) AT CONFLUENCE = 20.08 ***********************************	ASSUMED INTTIAL SUBAREA UNFORM ASSUMED INTTIAL SUBAREA UNFORM DEVELOPENT IS: UNDEVELOPED WITH POOR COVER TC = K*([LENGTH**3)/(ELEVATION CHARGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 860.00 UPSTREAM ELEVATION(FEET) = 1691.00 DUNSTREAM ELEVATION(FEET) = 1610.00 ELEVATION DIFFERENCE (FEET) = 1610.00 ELEVATION DIFFERENCE (FEET) = 73.00 TC = 0.533*([860.00**3)/(73.00)]**.2 = 13.015 10 YEAR RAITELI INENSITY(INCHHOUR) = 1.668 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6622 SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF (CFS) = 3.01 TCTAL AREA (ACRES) = 3.00 TCTAL ACRES (ACRES) = 3.00 TCTAL ACRES (ACRES) = 3.00 TCTAL ACRES (ACRES	<pre>************************************</pre>

TOTAL AREA(ACRES) = 5.6 PEAK FLOW RATE(CFS) = 6.24 NOTE:TRAVEL TIME ESTIMATES BASED ON NORMAL DEPTH IN A FLOWING-FULL GUTTER(NORMAL DEPTH = GUTTER HIKE)	TER HYDRAULICS: FLOOD WIDHH (FEET) = .) = 5.58 DEPTH+VE NODE 905.00 TO NODE *************************	FLOW PROCESS FROM NODE 907.00 TO NODE 908.00 IS CODE = 1 >>>>>BESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< >>>>>DESIGNATE INDEPENDENT STREAM VALUES< TOTAL NUMBER OF STREAMS = 2 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.18 RAINFALL INTENSITY (INCH/HR) = 1.60 TOTAL STREAM AREA(ACRES) AT CONFLUENCE = 6.24	** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA STREAM RUNOFF TC INTENSITY AREA NUMBER (CTS) (MIN.) (INCH/HOUR) (ACEE) 1 26.23 15.66 1.523 29.10 2 6.24 14.18 1.600 5.60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMER (CTS) (MIN.) (INCH/HOUR) 1 29.98 11.435 3 3.3.67 17.68 1.435 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CTS) = 34.7 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE TABLE ** 1.435 CONFUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CTS) = 34.7 CONFLUENCE FORMARY: 1.435 CONFUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CTS) = 34.7 CONFLUENCE (CTS) = 34.7 CONFLUENCE FLOW RATE (CTS) = 33.67 CONFLUENCE FLOW RATE (CTS) = 33.67 COTES = 200.00 TO NODE 900.00 TO N	Date: 07/03/2019 File name: E10_B9AA.RES Page 6
<pre>D MANNING'S N = 0.013 PIPE IS 17.9 INCHES .) = 10.01 H) = 27.00 NUMBER OF PIPES = 0.27 TC(MIN.) = 17.68</pre>	<pre>LONGEST FLOWPATH FROM NODE 900.00 TO NODE 908.00 = 2260.00 FEET. ***********************************</pre>	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.68 RAINFALL INTENSITY(INCH(HR) = 1.44 TOTAL STREAM AREA(ACRES) = 29.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 28.07 ************************************	<pre>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<</pre> <pre>>>>>RASUMED INITIAL SUBAREA NUTORM BEVALORNEWN IS: UNDEWLOPED WITH POOR COVER TC = K*((LENGTH*3)/(ELEVATION CHANGE))**.2 INITIAL SUBAREA FLOM-LENGTH(FEES) = 640.00 UPSTREAM ELEVATION (FEET) = 1603.00 DOMNSTREAM ELEVATION (FEET) = 1603.00 TC = 0.533*((640.00+*3)/(50.00))**.2 = 11.758 UNEWELOPED WATERSHED RUNOFF COFFICIENT = .6708 SOIL CLASSIFICATION IS "C" SOIL TRUE SUBMERA ASON DOTAL POON PAINOFF (FEET) = 0.400 NAXINON DETHICH FEET) = 0.400 NAXINON DETHIC</pre>	SUBAREA RUNOFF (CFS) = 0_B9AA.RES

Page 8
File name: E10_B9AA.RES
Date: 07/03/2019
Page 7
File name: E10_B9AA.RES Page 7

<pre>>>>>RTIONAL METHOD INTIAL SUBAREA ANALYSIS<<</pre> <pre>>>>>RTIONAL METHOD INTIAL SUBAREA ANALYSIS</pre> <pre>ASSUMED INTIAL SUBAREA UNIFORM</pre>	(UES) - (UES)	CHANNEL LENGTH THUS BJURGET = 0.0000 CHANNEL LENGTH THUS BJURGET = 5.00 GUTTER HIKE (FEET) = 0.800 WW GUTTER WITHH (FEET) = 5.00 GUTTER HIKE (FEET) = 0.800 PANDEMENT LIF(FEET) = 0.400 MANNING'S M = 0.3000 MAXINUM DETH(FEET) = 2.00 MAXINUM DETH(FEET) = 1.20 TRAVEL TIME CONFURD USING ESTIMATED FLOW(FES) = 2.51 TRAVEL TIME CONFURD USING ESTIMATED FLOW(FES) = 2.00 WITH (FEET) = 1.21 TRAVEL TIME CONFURD USING ESTIMATED FLOW(FES) = 2.00 WITH (FEET) = 1.21 TRAVEL TIME CONFURD USING ESTIMATED FLOW(FES) = 2.00 WITH (FEET) = 1.21 TRAVEL TIME CONFURD USING ESTIMATED FLOW(FES) = 2.00 WITH (FEET) = 1.21 TRAVEL TIME CONFURD USING ESTIMATED FLOW(FES) = 2.00 WITH (FEET) = 1.21 TRAVEL TIME CONFURD USING ESTIMATED FLOW (FEST) = 2.00 TRAVEL TIME CONFURD USING ESTIMATED FLOW (FEST) = 2.00 MAXINE TRAVEL TIME (MITH) = 11.95 MARINE ARAI (AREES) = 0.00 MAXINE TRAVEL TIME THOURDE 802.00 TO NODE 802.00 = 1980.00 FEET. TLOW PROCESS FROM NODE 802.00 TO NODE 802.00 = 1980.00 FEET. TLOM PROCESS FROM NODE 802.00 TO NODE 802.00 CONCESS = 2.00 MAXINUM DETH(FEET) = 0.400 MAXINUM DETH(FEET) = 0.000 MAXINUM DETH(FEET) = 0.000
<pre>************************************</pre>	<pre>************************************</pre>	TILE ANTER: EILOL BELINT TILE ANTER: FILOL BELINT TILE ANTER: FILOL BELINT USER SPECIFIED FYORM FYORMONGY 16:33 02/28/2019 USER SPECIFIED FYORM FYORMONG 16:33 02/28/2019 USER SPECIFIED FORMENDER (DERING (DERING) = 0.00 SPECIFIED FRANKING OF STURVICKERAL) TO USE FOR FRACTION SLOPE = 0.90 DIO-TEAR STORM GO-MINUTE INTENSITY (INCH/HOUR) = 1.800 100-TEAR STORM GO-MINUTE INTENSITY (INCH/HOUR) = 1.800 100-TEAR STORM GO-MINUTE INTENSITY (INCH/HOUR) = 1.800 100-TEAR STORM GO-MINUTE INTENSITY (INCH/HOUR) = 1.120 SLOPE OF 100-TEAR INTENSITY PORATION CURVE = 0.4990583 SLOPE OF 100-TEAR INTENSITY PARA: STORM FOR TOWN = 0.01990583 SLOPE OF 100-TEAR INTENSITY PORATION CURVE = 0.4990583 SLOPE OF TIMERSITY DIRATION CURVE = 0.4990583 SLOPE OF 100-TEAR INTENSITY PORATION CURVE = 0.4890583 SLOPE OF 100-TEAR INTENSITY PORATION CURVE = 0.4890583 NOST CONSTIDER AALL CONFLUENCE STREAM COMBINATIONS NOST CONSTIDER AALL CONFLUENCE STREAM CONFLIANTIONS NOST INTERPRETEDOR FORM TORNE = 0.489058 NOST INTERPRETEDOR FORMS TORNE = 0.489058 NOST INTERPRETEDOR FORM TORNE = 0.00 0.0313 0.167 0.0150 CICARD TEAR AALLONS FOR COUPLED PIPELON AND STREETEDOR MODEL 1 30.0 20.0 0.018/0.018/0.020 0.057 0.00313 0.167 0.0150 CICARD TORNE AALLONS PORTARIN'S FILE AND PORTARIAN PIEP.* PROMITION PORTARIAN PIEP.* THE NATION PORTARIAN PIEP.* DAGE ORDAL TO THE UPSTREAM TRIDUCARY PIEP.* PAGE ORDAL TO THE UPSTREAM TRIDUCARY PIEP.* PAGE ORDAL TO THE UPSTREAM TRIDUCARY PIEP.* DAGE ORDAL TO THE UPSTREAM TRIDUCARY PIEP.* DAGE ORDAL TO THE UPSTRE

FLOW PROCESS FROM NODE 806.00 TO NODE 807.00 IS CODE = 91 >>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA<<<<<		"V" GUTTER WIDTH(FEET) = 5.00 GUTTER HIKE(FEET) = 0.800 PAVEMENT LIP(FEET) = 0.400 MANNING'S N = .0300 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000 MAXIMUM DEPTH(FEET) = 2.00		TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 23.93 TRAVEL TIME THU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 7.52 AVERAGE FLOW DEPTH(FEET) = 1.20 FLOOD WIDTH(FEET) = 5.00	2.22 IC(MIN.) - SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS)	END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 1.22 FLOOD WIDTH(FEET) = 6.95 FLOW VELOCITY(FEET/SEC.) = 7.62 DEPTH*VELOCITY(FT*FT/SEC) = 9.29 LONGEST FLOWPATH FROM NODE 805.00 TO NODE 807.00 = 2000.00 FEET.	**************************************	>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA<<<<	DFDDFCENTTYL STOP5 - 0 0110	KEPRESENTATIVE SLOPE = 0.0410 CHANNEL LENGTH THRU SUBAREA(FEET) = 740.00 "V" GUTTER MIDTH (FEET) = 5.00 GUTTER HIKE(FEET) = 0.800 PAVEMENT LIP(FEET) = 0.400 MANNING'S N = .0300 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000 MAXIMIM DEPUT/FEETU, 0 - 0.00	INTEN ED RI	SOIL CLASSIFICATION IS "C" SOIL CLASSIFICATION IS "C" TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = 38.72 TRAVEL TIME THUE THEIR FLORE STATE AND THE STATE STATE STATE		SUBAREA RUNOFF (CFS) = PEAK FLOW RATE (CFS)	END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 1.38 FLOOD WIDTH(FEET) = 23.05	EV EDE	**************************************	>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<	TOTAL NUMBER OF STREAMS = 2	Date: 02/28/2019 File name: E100_B8.RES Page 4
<pre>AAREA BASED ON VELOCITY(FEET/SEC.) = 7. TEET) = 1.28 FLOOD WIDTH(FEET) = 11. TEL TIME(MIN.) = 2.48 Tc(MIN.) = 20.</pre>	SUBAREA AREA (ACRES) = 7.70 SUBAREA RUNOFF (CFS) = 10.01 TOTAL AREA (ACRES) = 27.0 PEAK FLOW RATE (CFS) = 38.50	END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 1.34 FLOOD WIDTH(FEET) = 18.52 FLOW VELOCITY(FEET/SEC.) = 6.89 DEPTH*VELOCITY(FT*FT/SEC) = 9.20 LONGEST FLOWPATH FROM NODE 800.00 TO NODE 803.00 = 3050.00 FEET.	**************************************	>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<	REPRESENTATIVE SLOPE = 0.0090 FLOW LENGTH (FEET) = 330.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33 0 INCH DIEP TO 73 5 INCHES	Y (PETY/SEC.) = 8.9 2.5.1 INUMER OF PIPES = AMETER(INCH) = 33.00 NUMBER OF PIPES = 38.50 33.00 NUMBER OF PIPES = min.) = 0.62 Tc(MIN.) = 20.98	NUDE 800.00 TO NUDE ************************************	804.00 IS CODE		TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 20.98 RAINFALL INTENSITY(INCH,HR) = 1.87 TOTAT STREAM ADENARCEDES = 27.07	TUE	**************************************	>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<	ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER	TC = K* [(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = 1733.00	1663.00 70.00 70.001** 2 = 14 2	E C C	SOLL CLASSIFICATION LS "C" SUBARBA RUNOFF(CFS) = 16.50 TOTAL AREA (ACRES) = 10.30 TOTAL RUNOFF(CFS) = 16.50	***************************************	Date: 02/28/2019 File name: E100_B8.RES Page 3

ASSUMED INTTIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INTTIAL SUBAREA FLOW-LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION (FEET) = 1718.00 DOWNSTREAM ELEVATION (FEET) = 1610.00 ELEVATION DIFFERENCE (FEET) = 1610.00 TC = 0.533*[(1000.00**3)/(108.00)]**.2 = 13.174 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.351 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7172 SUBAREA RUNOF (FCS) = 10.96 MONTAPES LOPED RUNOFF (CFS) = 10.96 MONTAPES LOPED RUNOFF (CFS) = 10.96	VODE 810.00 TO NODE 808.00 IS CC SUTTER FLOW TRAVEL TIME THRU SUBAREA< DFE = 0.0680 WU SUBAREA (FEET) = 340.00	"V" GUTTER WIDTH (FEET) = 5.00 GUTTER HIKE (FEET) = 0.800 PAVEMENT LIP (FEET) = 0.400 MANNING'S N = .0300 PAVEMENT CROSSFLL (DECIMAL NOTATION) = 0.02000 MAXIMUM DEPTH (FEET) = 2.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.302 UNDEVELOPED WATERSIED RINNEF COEFTICIENT = .1142 SOIL CLASSIFICATION IS "C" TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = 16.30 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = 0.80 AVEAGE FLOW DEPTH (FEET) = 1.20 RAVEL TIME THRU SUBARRA BASED ON VELOCITY (FEET/SEC.) = 9.80 AVEAGE FLOW DEPTH (FEET) = 1.20 "V" GITTER FLOW TRAVEL TIME (MIN) = 0.8, m DATH (FEET) = 5.00 "V" GITTER FLOW TRAVEL TIME (THOR (MIN) = 0.8, m DATH (FEET) = 1.00	SUBAREA RUNOFFICTS) = PEAK FLOW RATE (CFS) = SED ON NORMAL PAVEMENT LIP] : ET) = 5.00 DEPTH*VELOCITY (FT*FT/5 TO NODE 808.00 =	**************************************	TOTAL NUMBER OF STREAMS = 2 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.75 RAINFALL INTENSITY(INCH/HR) = 2.30 TOTAL STREAM AREA(ACRES) = 13.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 21.64 ** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 18.24 RAINFALL INTENSITY(INCH/HR) = 2.01 TOTAL STREAM AREA(ACRES) = 31.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 46.09 ** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 38.50 20.98 1.872 27.00 2 46.09 18.24 2.005 31.00	CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 79.55 18.24 2.005 2 81.54 20.98 1.872	COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 81.54 Tc(MIN.) = 20.98 TOTAL AREA(ACRES) = 58.0 LONGEST FLOWPATH FROM NODE 800.00 TO NODE 804.00 = 3380.00 FEET. ************************************	REPRESENTATIVE SLOPE = 0.0090 FLOW LENGTH (FEET) = 660.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 31.2 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 10.65 ESTIMATED PIPE DIAMETER (INCH) = 42.00 NUMBER OF PIPES = 1 PIPE TRAVEL TIME (MIN.) = 1.03 TC (MIN.) = 22.01 LONGEST FLOWPATH FROM NODE 800.00 TO NODE 808.00 = 4040.00 FEET. ***********************************	<pre>>>>>besignate independent stream for confluence<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:</pre>	TIME OF CONCENTRATION (MIN.) = 22.01 RAINFALL INTENSITY (INCH/HR) = 1.83 TOTAL STREAM AREA (ACRES) = 58.00 PEAK FLOW RATE (CFS) AT CONFLUENCE = 81.54 ************************************

END OF RATIONAL METHOD ANALYSIS											Date: 02/28/2019 File name: E100_B8.RES Page 8
			0 = 4040.00 FEET.	**************************************	FLOW) <<<<	PIPES = 1 22 20 = 4740.00 FEET.	:*************************************	FLOW) <<<<	PIPES = 1 3 00 = 5230.00 FEET.	23.13	Page 7
(ACRE) 58.00 58.00 13.00	RATIO		22.01 808.00	*********	EA<<<< RESSURE		********* 811.00 IS	EA<<<< RESSURE	013 013 0F		
(INCH/HOUR) 1.952 1.829 2.302	OF CONCENTRATION RATIO 2 STREAMS.	INTENSITY (INCH/HOUR) 2.302 1.952 1.829	ESTIMATES ARE AS FOLLOWS: = 98.73 Tc(MIN.) = 71.0 M NODE 800.00 TO NODE	**************************************	>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<>>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE	TANNING'S 1 2 IS 24.9 18.96 36.00 TC(MIN 00.00 TO NU	**************************************	U SUBAR (NON-P	MANNING'S N = PE IS 26.7 INC = 16.30 = 39.00 NUM 0 Tc(MIN.) = 800.00 TO NODE	71.0 TC(MIN.) 98.73	File name: E100_B8.RES
(MIN.) 19.27 22.01 13.75		TABLE ** Tc (MIN.) 13.75 19.27 22.01	ESTIMATE = 9 M NODE	******* DE 80	OW TRAVE ESTIMATE	= 0.0360 700.0360 0 INCH PI EET/SEC.) 98.73 98.73 .) = 0.65	******* DE 81	OW TRAVE ESTIMATE	= 0.024 490.00 .0 INCH F EET/SEC.) FER(INCH) 98.73 .) = 0. M NODE	BLE *** N.) · 93 · 13	
(CFS) 79.55 81.54 21.64	INTENSITY JE FORMULA	** PEAK FLOW RATE TAI STREAM RUNOFF NUNBER (CFS) 1 78.41 2 97.91 3 98.73	COMPUTED CONFLUENCE ESTIMA: PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = ' LONGEST FLOWPATH FROM NODE'	**************************************	PUTE PIPE-FLA		**************************************	PUTE PIPE-FLA NG COMPUTER-I	REPRESENTATIVE SLOPE = 0.0240 FLOW LENGTH (FEET) = 490.00 h DEPTH OF FLOW IN 39.0 INCH PIPP PIPE-FLOW VELOCITY (FEET/SEC.) = ESTIMATED PIPE DIAMETER(INCH) = PIPE-FLOW (CFS) = 98.73 PIPE TRAVEL TIME (MIN.) = 0.50 LONGEST FLOMPATH FROM NODE 8(END OF STUDY SUMMARY: TOTAL AREA(ACRES) = PEAK FLOW RATE(CFS) = *** PEAK FLOW RATE TABLE 0 (CFS) TC(MIN.) 1 78.41 14.93 2 97.91 20.40 3 98.73 23.13	Date: 02/28/2019
NUMBER 1 2	RAINFALL CONFLUENC	** PEAK STREAM NUMBER 1 2 3	COMPUTED PEAK FLO TOTAL AR LONGEST	********* FLOW PRO	ISU<<<<<	REPRESENTATIVE FLOW LENGTH (FE DEPTH OF FLOW FI PIPE-FLOW VELOO ESTIMATED PIPE PIPE-FLOW(CFS) PIPE TRAVEL TIN PIPE TRAVEL TIN	********* FLOW PRO	ISU<<<<<	REPRESEN FLOW LEN DEPTH OF PIPE-FLO ESTIMATE PIPE-FLO PIPE TRA LONGEST	END OF S TOTAL AR PEAK FLO *** PEAK 1 2 2 3	

OD INITIAL SUBARBA ANALYSISSTIAL SUBARBA UNIFORMTIAL SUBARBA UNIFORMTIS: UNDEVELOPED WITH POOR COVER0// LELEVATION CHANGE)] ** 20// LELEVATION CHANGE)] ** 21566.000// LELEVATION CHANGE)] ** 2157900// LELEVATION CHANGE)] ** 2167900// LENDRIPT (INCH/HOUR) = 1.8400// LENDRIPT COEFFICIENT = .67900// LENDRIPT COEFFICIENT = .6790	TOTAL AREA (ACRES) = 3.80 TOTAL RUNOFF (CFS) = 4.75 ************************************	
<pre>************************************</pre>	<pre>************************************</pre>	USER SPECTFIED STORM EVENT(FEAR) = 100.00 SPECTFIED MINIMUM FIPE SIZE(INCH) = 6.00 SPECTFIED MINIMUM PIPE SIZE(INCH) = 0.00 SPECTFIED PERCENT OF READIRATIN(UNCH) = 0.780 10-TEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.800 10-TEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.780 100-TEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.490803 SLOPE OF 10-TEAR INTENSITY (INCH/HOUR) = 1.120 SLOPE OF 10-TEAR INTENSITY DURATION CURVE = 0.4990803 SLOPE OF 10-TEAR INTENSITY DURATION CURVE = 0.4990803 SLOPE OF 10-TEAR INTENSITY DURATION CURVE = 0.4990234 COMPUTED RAINFALL INTENSITY DURATION CURVE = 0.49902 RECKWO HYDRY OF ALL DOWN TO CURVE = 0.48902 RECKWO HYDRY OF ALL DOWN TO CURVE = 0.48902 RECKWO HYDRY DURATION CURVE = 0.48902 RECKWO HYDRY OF ALL DOWNSTREAM ANALYSES NOTH CONSISTER ALL CONFLUENCE STREAM COMPLIANTIONS RECKWO HYDRY = 100.00 1-HOUR THAN AND STREFFLOM AND STREFFLOM MODEL* HALF- CROWN TO STREAT-CONSTRALLI CURB GUTTER-GEOMETRIES: MANNING NUTH CONSTRALM ANALYSES RECKWO HYDRY = 100.00 1018/0.018/0.02 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREEF FLOW-DEFTH CONSTRALINTS 1 30.0 20.0 0.018/0.018/0.018/0.02 0.67 2.00 0.0313 0.167 0.0150 CLOBAL STREEF FLOW-DEFTH CONSTRALINTS 1 RelATIVE FLOW TENET 1 30.0 20.0 0.018/0.018/0.018/0.02 0.67 2.00 0.0313 0.167 0.0150 2 (DePU)*(VPCIOCITY GREATER THAN R R QUAL TO THE UFSTRALINTY RELATION FLOW FROME R PLAN R R QUAL TO THE UFSTREAM TRIDUTAN PIPE.* DOM PROCESS FROM ONDE 812.00 TO NODE 813.00 IS CODE = 21 DAGE 0301/2019 FLOM TRIDUTAN PIPE.

TOTAL STREAM AREA(ACRES) = 15.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 25.17	** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA	(CFS) (MIN.) (INCH/HOUR) 10.82 22.78 1.798 25.17 14.20 2.266	RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.	** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 31.91 14.20 2.266	30.79 22.78	COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 31.91 Tc(MIN.) = 14.20 TOTAL AREA(ACRES) = 24.0 INNERER FLOMADETH FDOM NOTE 812.00 TO NOTE 815.00 = 1900.00 FFFT		FLOW PROCESS FROM NODE 815.00 TO NODE 811.00 IS CODE = 31	8	REPRESENTATIVE SLOPE = 0.0066 F.O.O.D. F.O.O.D. F.O.O.O.E. F.O.O.TENZTH/FEPTY = 6.0.006	IPE IS 22.0 INCH	FIFE-FLOW VEDCLII(FELI/SEC.) = /.33 ESTIMATED FIFE DIAMETER(INCH) = 33.00 NUMBER OF FIFES = 1 PTPR-PT/OW(CFS) 31.01	ME (MIN.) FH FROM	***************	FLOW PROCESS FROM NODE 811.00 TO NODE 811.00 IS CODE = 1	>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.29 RAINFALL INTENSITY(INCH/HR) = 2.19	TOTAL STREAM AKEA(ACKES) = 24.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 31.91	**************************************	>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<	ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2	Date: 03/01/2019 File name: E100_B8A.RES
**************************************	>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<	ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 TATTATAT STEDADEA PLOAULERDEM _ 5.0 00	1596.00 1575.00 1575.00	ELEVATION DIFFERENCE(FEET) = 21:00 TC = 0.533*[(530.00**3)/(21.00)]**.2 = 12.489 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.413 UNDEVELOPED WATERSHED RUNOFF COFFFICIENT = .7210 SOIL CLASSIFCATION IS "0"	SUBAREA RUNOFF (CFS) = 8.87 TOTAL AREA (ACRES) = 5.10 TOTAL RUNOFF (CFS) = 8.87	**************************************	TRAVEL TIME THRU SUBAREA<<	REPRESENTATIVE SLOPE = 0.0340	CHANNEL LENGTH THRU SUBAREA(FEET) = 710.00 "V" GUTTER WIDTH(FEET) = 5.00 GUTTER HIKE(FEET) = 0.800 PAVEMENT LIP(FEET) = 0.400 WANNING'S N = .0300	FAVERENT CROSSFALL(DECIPAL NOTATION) = U.UZUUU MAXIMUM DETH(FEET) = 2.00 100 yrar batnrali, intrnstiv/inth/honry) = 2.266	UNDEVELOPED WATERSHED KINOFF COEFFICIENT = .7119	JOID CLARASSIFICATION IS "C" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 17.02 TRAVEL TIME THARI SIMARED ASED ON VELOCITY (FRET/SFC.) = 6.93		SUBAREA AREA (ACRES) = 10.10 SUBAREA RUNOFF(CFS) = 16.29 TOTAL AREA (ACRES) = 15.2 PEAK FLOW RATE(CFS) = 25.17	NOTE-TRAVEL TIME ESTIMATES BASED ON NORMAL	DEPTH EQUAL TO [GUTTER-HIKE + PAVEMENT LIP]	END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 1.20 FLOOD WIDTH(FEET) = 5.00 FLOW VELOCITY(FEET/SEC.) = 6.93 DEPTH*VELOCITY(FT*FT/SEC) = 8.32 LONGEST FLOWPATH FROM NODE 803.00 TO NODE 815.00 = 1240.00 FEET.	**************************************	>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<		TOTAL NUMBER OF STRAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.20 RAINFALL INTENSITY(INCH/HR) = 2.27	Date: 03/01/2019 File name: E100_B8A.RES Page 3

					2400.00 FEET.							Page 6
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>ADD COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 17.61 RAINFALL INTENSITY(INCH/HR) = 2.04 TOTAL STREAM AREA(ACRES) = 7.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.82	** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 31.91 15.29 2.185 24.00 1 30.79 23.92 1.756 24.00 1 30.79 2.3.92 1.756 24.00 7.00 7.00	LL INTENSITY AND TIME OF CONCENTRATION RAY ENCE FORMULA USED FOR 2 STREAMS. K FLOW RATE TABLE ** RUNOFF TC INTENSITY	NUMBER (CFS) (MIN.) (INCH/HOUR) 1 42.17 15.29 2.185 2 41.60 17.61 2.040 3 40.97 23.92 1.756	COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 42.17 Tc(MIN.) = 15.29 TCTAL AREA(ACRES) = 31.9 LONGEST FLOWPATH FROM NODE 812.00 TO NODE 811.00 =	END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 31.9 TC(MIN.) = 15.29 DEAK FIOM PARP/CFR) = 42.17	TABLE *** MIN.) 15.29 17.61 23.92	END OF DATIONAL WERE CONTRACTED	PND OF VALLONAL RELIGIO PRALICITY OF			Date: 03/01/2019 File name: E100_B8A.RES
H (FE	DOWNSTREAM ELEVATION (FEET) = 15/2.00 ELEVATION DIFFERENCE (FEET) = 15.00 TC = 0.533*[(730.007.93)/(21.00)]**.2 = 15.134 100 YEAR RAINPALL INTENSITY (INCH/HOUR) = 2.197 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7072 SUDALASSIFICATION IS "C" = 4.66 TOTAL ARSAFICERS) = 4.66	TER FLOW TRAVEL TIME THRU SUBAREA<<<	요 ㅇ	8.31	TRAVEL TIME THEU SUBAREA BASED ON VELOCITY (FEFT/SEC.) = 4.20 AVERAGE FLOW DEPTH(FEFT) = 0.80 FLOOD WIDTH(FEET) = 5.00 "V" GUTTER FLOW TRAVEL TIME (MIN.) = 1.6.3 TC(MIN.) = 1.6.76 SUBAREA AREA (ACRES) = 4.90 SUBAREA RUNDFF(CFS) = 7.16 TOTAL AREA (ACRES) = 7.9 PEAK FLOW RATE(CFS) = 11.82	NOTE:TRAVEL TIME ESTIMATES BASED ON NORMAL DEPTH EQUAL TO [GUTTER-HIKE + PAVEMENT LIP]	END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 1.20 FLOOD WIDTH(FEET) = 5.00 FLOW VELOCITY(FEET/SEC.) = 6.06 DEPTH*VELOCITY(FT*FT/SEC) = 7.27 LONGEST FLOWPATH FROM NODE 804.00 TO NODE 818.00 = 1140.00 FEET.	**************************************	CRAVEL TIME THRU MATED PIPESIZE	REPRESENTATIVE SLOPE = 0.0240 FLOW LENGTH(FEET) = 490.00 MANNING'S N = 0.013 DEFTH OF FLOW IN 18.0 INCH FIPE IS 11.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.63 ESTIMATED FIPE DIAMETER(INCH) = 18.00 NUMBER OF FIPES = 1 PIPE-FLOW (CFS) = 11.82 PIPE TRAVEL TIME(MIN.) = 0.85 TC(MIN.) = 17.61 LONGEST FLOWPATH FROM NODE 804.00 TO NODE 811.00 = 1630.00 FEET.	**************************************	Date: 03/01/2019 File name: E100_B8A.RES Page 5

<pre>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<</pre> >>>>Partional muttal subarea uniform Assumed initial subarea uniform Assumed initial subarea uniform Development is: undeveloped mith poor cover TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 1000.00 UDSTREAM ELEVATION (FEET) = 1691.00 UDSTREAM ELEVATION (FEET) = 1691.00 UDSTREAM ELEVATION (FEET) = 1602.00 ELEVATION DIFFERENCE (FEET) = 1602.00 ELEVATION DIFFERENCE (FEET) = 89.00 ELEVATION DIFFERENCE (FEET) = 89.00 TC = 0.533*[(1000.00**3)/(89.00)]**.2 = 13.694 100 YEAR RAINEALL INTENSITY (INCH/HOUR) = 2.307 UNDEVELOPED WATERSHED RUNOFF COFFICIENT = .7145 SOLL CLASSIFICATION IS "C SUBAREA RUNOFF (CFS) = 7.91 TOTAL AREA(ACRES) = 4.400 TOTAL RUNOFF (CFS) = 7.91	************************************	<pre>AVERENT LIP (FEET) = 0.400 MANNING'S N = .0300 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000 MAXIMO DEFTH FEET) = 0.400 MANNING'S N = .0300 MAXIMO DEFTH FEET) = 2.00 100 YEAR RAINFALL INTENSIFY (INCH/HOUR) = 2.153 UNDEVELOPED WATERSENED RUNGE FORMTED FLOW (FES) = 11.78 TAJVEL TIME OFFUTOR 15 "C OLL CLASSIFICATION 15 "C TANEL TIME OFFUTOR 11.20 FLOW (FES) = 11.78 TAAVEL TIME TRUN SUBAREA BASED ON VELOCITY (FEET/SEC.) = 7.23 TARAVEL TIME OFFUTOR 11.20 FLOM MITH (FEET) = 1.50 TARAVEL TIME (ACRES) = 9.9 PEAK FLOM RATE (CFS) = 7.73 UDDEVIDER RLOW DEFTH(FEET) = 1.20 FLOM NATE (FES) = 7.73 TOTAL AREA (ACRES) = 9.9 PEAK FLOM RATE (CFS) = 7.73 UDDEVIDER AREA (ACRES) = 9.9 PEAK FLOM RATE (CFS) = 7.73 DEPTH EQUAL TO (GUTTER HIRE HIRE RANDE ILP) TERMINEL DEFTH (FEET) = 5.00 TATA AREA (ACRES) = 9.9 DEPTH VELOCITY (FFFT/SEC) = 8.68 DEFTH (FEET) = 1.20 FLOM VELOCITY (FFFT) = 5.00 TATA AREA (ACRES) = 9.9 DOLO TO NODE 902.00 = 1900.00 FEET TELOW VELOCITY (FEET) = 5.00 TATA VELOCITY (FEET) = 7.23 DEPTH VELOCITY (FFFT/SEC) = 8.68 TATAWEAT TIME THE POLAL TO (GUTTER HIRE THE ATAWATE (CFS) = 1.73 TATA THE CONTENT TIME THE POLAL TO (GUTTER HIRE THE PAVEMENT LIP) TELOW VELOCITY (FEET) = 1.20 FLOM NODE 902.00 TO NODE 902.00 E 1900.00 FEET TATA THE TAY THE PAVEMENT LIP) TATA THE TAY THE THE TAY THAT THAT SUBAREA THE TAY THAT THAT THAT THAT THAT THAT THAT</pre>
<pre>************************************</pre>	**************************************	USER SPECIFIED HYDROLOCY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVERTY(TEAR) = 100.00 SPECIFIED STORM UNINUM FIFE SIZE(INCH) = 6.00 SPECIFIED STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.80 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.80 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.690 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.120 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4890234 SCORFUTED RAINEALI INTENSITY DATA STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.120 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4890833 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4890833 SLOPE OF 100-00 1-HOUR INTENSITY(INCH/HOUR) = 1.120 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4890833 SLOPE OF 100-YEAR INTENSITY DATA STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.120 SLOPE OF 100-YEAR INTENSITY DATA STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.120 SLOPE OF 100-YEAR INTENSITY DATA STORM EVENT = 100.00 1-HOUR INTENSITY (INCH/HOUR) = 1.120 SLOPE OF 100-YEAR INTENSITY DATA STORM EVENT = 100.00 1-HOUR INTENSITY (INCH/HOUR) = 1.120 SLOPE OF 100-YEAR INTENSITY DATA SLOPE OF 100-YEAR INTENSITY OR THEN NO. (FT) 2.00 0.0120 0.167 (FT) 7.00 1-HOUR INTENSITY NO. (FT) 2.00 0.0121 0.167 0.0150 GLOBAL STREET-EROM-DEFTH CONSTRAIN MAINING NO. (FT) 2.00 0.0121 0.167 0.0150 CLOBAL STREET FLOW-DEFTH CONSTRAINTSES NO. (FT) 2.00 0.0131 0.167 0.0150 CLOBAL STREET FLOW-DEFTH CONSTRAINTSES NO. (FT) 2.00 0.0131 0.167 0.0150 CLOBAL STREET FLOW-DEFTH CONSTRAINTSES NO. (FT) 2.00 0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 SLOPE OF 0014 TO THE UPERRAM TRIDUARY FLEM NELON TO THE UPERRAM TRIDUARY FLEM SLOBAL TO THE UPERRAM TRIDUARY FLEM SLOBAL TO THE PROPADED STREET FLOW DEPTH) - (TOP-OF-CULD) SLOBAL STREET FLOW DEPTH = 0.00 FEFT SLOBAL STREET FLOW DEPTH = 0.00 FEFT SLOBAL TO THE UPERRAM TRIDUARY STREATE

<pre>SOIL CLASSIFICATION IS "C" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.09 TRAVEL TIME THOU SUBARRA BASED ON VELOCITY (FEBT/SEC.) = 6.27 AVERAGE FLOW TRAVEL TIME (MIN.) = 2.37 TC (MIN.) = 15.38 AVERAGE FLOW TRAVEL TIME (MIN.) = 2.37 TC (MIN.) = 15.38 SUBARRA ARRA(ACRES) = 8.2 SUBARRA RUNOFF(CFS) = 8.00 "V" GUTTER FLOW RARES) = 5.20 SUBARRA RUNOFF(CFS) = 8.00 TOTAL AREA(ACRES) = 8.2 PEAK FLOW RATE(CFS) = 8.00 TOTAL AREA(ACRES) = 8.2 PEAK FLOW RATE(CFS) = 0.13.09 TOTAL AREA(ACRES) = 8.2 PEAK FLOW RATE(CFS) = 0.13.09 TOTAL AREA(ACRES) = 8.2 PEAK FLOW RATE(CFS) = 10.00 TOTAL AREA(ACRES) = 9.05 DEPTH+VELOCITY(FT*FT/SEC) = 10.86 LONGEST FLOWPATH FROM NODE 900.00 TO NODE 903.00 = 1750.00 FEDT.</pre>	<pre>************************************</pre>	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 15.38 RAINFALL INTENSITY(INCH/HR) = 2.18 TOTAL STREAM AREA (ACRES) = 8.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.09	** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUEN) (ACEE) 1 31.87 16.51 2.105 20.90 2 13.09 15.38 2.179 8.20 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORWULA USED FOR 2 STREAMS. ** PEAK FLOM RATE TABLE * STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 42.79 15.38 2.179 2 44.52 16.51 2.105 2 44.52 16.51 2.105 2 44.52 16.51 2.105 2 44.52 16.51 2.105 2 100 00 TO NODE 903.00 = 2100.00 FEET. FEAK TLOM RATE FROM RATE ARE AS FOLLOWS: FEAK TLOM RATE (CFS) = 44.52 TC (MIN.) = 16.51 TOTAL AREA (ACES) = 44.52 TC (MIN.) = 16.51 TOTAL AREA (ACES) = 2.9.1 1 2.005 TC NODE 903.00 TO NODE 903.00 = 2100.00 FEET. ************************************
<pre>UNOFF COEFFICIENT = .7006 "C" ING ESTIMATED FLOW(CFS) = 23.75 ING ESTIMATED FLOW(CFS) = 23.75 A BASED ON VELOCITY(FEET/SEC.) = 4) = 1.32 FLOOD NITH(FEET) = 1 TINE(MIN.) = 0.74 TC(MIN.) = 1 11.00 SUBAREA RUNOFF(CFS) = 1 11.00 SUBAREA RUNOFF(CFS) = 20.9 PEAK FLOW RATE(CFS) = 20.9 PEAK FLOW RATE(CFS) = 20.9 PEAK FLOW RATE(CFS) = 4.08 DEPTH+VELOCITY(FT*FT/SE ODE 900.00 TO NODE 903.00 = ***********************************</pre>	FLOW FROCESS FROM NUE 903.00 10 NOUE 903.00 15 OUDE 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONFINENCEN(MIN.) = 16.51	RAINFALL INTENSITY (INCH.HR) = 2.11 TOTAL STREAM AREA (ACRES) = 20.90 PEAK FLOW RATE (CFS) AT CONFLUENCE = 31.87 ************************************	<pre>>>>>RarUNAL METHOD INTILL SUBAREA ANALYSIS<</pre> <pre>>>>>RasUNED INTILL SUBAREA UNITERM</pre>

NOTE: TRAVEL TIME ESTIMATES BASED ON NORMAL DEPTH IN A FLOWING-FULL GUTTER (NORMAL DEPTH = GUTTER HIKE) END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH (FEET) = 0.80 FLOOD WIDTH (FEET) = 5.00 FLOW VELOCITY (FEET/SEC.) = 5.58 DEPTH *VELOCITY (FT*FT/SEC) = 4.47 LONGEST FLOWPATH FROM NODE 905.00 TO NODE 907.00 = 1450.00 FEET.	**************************************	TOTAL NUMBER OF STREAMS = 2 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.18 RAINFALL INTENSITY(INCH/HR) = 2.27 TOTAL STREAM AREA(ACRES) = 5.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.59	** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 42.79 15.62 2.163 29.10 1 44.52 16.75 2.090 29.10 2 9.59 14.18 2.268 5.60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS	TABLE ** Tc (MIN.) (14.18 15.62 16.75	COMPUTED CONFLUENCE EXTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 53.35 Tc(MIN.) = 16.75 TOTAL AREA(ACRES) = 34.7 LONGEST FLOWPATH FROM NODE 900.00 TO NODE 908.00 = 2260.00 FEET.	END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 34.7 TC(MIN.) = 16.75 PEAK FLOW RATE(CFS) = 53.35 *** PEAK FLOW RATE TABLE ** 0(CFS) TC(MIN.) 1 48.41 14.18 2 51.93 15.62 3 53.35 16.75	OD ANALYSIS File name: E100894A.RES	Date: 07/03/2019 File name: E100B9AA.RES Page 6
<pre>PIPE-FLOW VELOCITY(FEET/SEC.) = 11.03 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 44.52 PIPE TRAVEL TIME(MIN.) = 0.24 TC(MIN.) = 16.75 LONGEST FLOWPATH FROM NODE 900.00 TO NODE 908.00 = 2260.00 FEET. ***********************************</pre>	STRE	<pre>RAINFALL INTENSITY(INCH/HR) = 2.09 TOTAL STRRAM AREA(ACBES) = 29.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 44.52 ************************************</pre>	ASSUMED INITIAL SUBAREA UNIFORM ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 640.00 UDSTREAM ELEVATION (FEET) = 1653.00 DOWNSTREAM ELEVATION (FEET) = 1603.00 ELEVATION DIFFERENCE (FEET) = 50.00 TC = 0.533*((640.00*33)/(50.001)**.2 = 11.758	((INCH/HOUR) = 2.4 * COEFFICIENT = .72 * 23 * 23 * TOTAL RUNOFF(C * * * * * * * * * * * * * * * * * * *	R FLOW TRAVEL TIME THRU SUBAREA<<<< 0.0460 AREA FEET) = 810.00	TTTER HIKE (FEET) = 0.1 (G'S N = .0300 = 0.02000 UR) = 2.268 UR) = 2.268 TENT = .7120 TENT = .7120 TENT = .7120 TENT = .7.4	= 5.000 = 14.16 $ = 14.16 $ $ = 4. $ $ (CFS) = 4.$	Date: 07/03/2019 File name: E100B9AA.RES Page 5

<pre>>>>>RATIONAL METHOD INTTIAL SUBAREA ANALYSIS<<</pre> <pre>>>>>RATIONAL METHOD INTTIAL SUBAREA ANALYSIS</pre> <pre>ASSUMED INITIAL SUBAREA UNIFORM</pre>	VCLU) =	CERRESENTMATURE SLORE = 0.0390 CERRESENTMATURE SLORE = 0.0300 W* GUTER MIDIA(FEET) = 0.400 MANNING'S N = 02000 PANDENET LENGTH THRU SUBAREA (FEET) = 0.400 MANNING'S N = 02000 PANJING DERTH(FEET) = 0.400 MANNING'S N = 03000 PANJING DERTH(FEET) = 0.400 MANNING'S N = 03000 MANING DERTH(FEET) = 0.400 MANNING'S N = 0.800 MANING DERTH(FEET) = 1.00 FLOOD MIDIA(FEET) = 5.00 W* GUTTER FLOW TRAVEL TIME (MIN.) = 2.76 TC(MIN.) = 18.27 MANAL TIME THRU SUBAREA BASED ON NORMAL MANALEATINE THRU SUBAREA BASED ON NORMAL MANALEATINE THRU SUBAREA BASED ON NORMAL MANALEATINE THRU SUBAREA AND THRU (FEET) = 0.91 UCTEL PARSTACHES) = 20.4 PERK FLOM MATE(CES) = 19.27 UCTEL AREA (ACRES) = 20.4 PERK FLOM MATE(CES) = 0.91 LUCTEL AREA (ACRES) = 20.4 PERK FLOM MATE(CES) = 0.91 LUCTEL AREA (ACRES) = 7.42 DEPTH(FE + AVENENT LIP) MATEUR TRAVEL TIME ESTIMATES BASED ON NORMAL DEPTH (FEET) = 1.20 FLOM MIDH(FEET) = 5.00 TO PLOM WALKACKES) = 7.42 DEPTH(FE + AVENENT LIP) ELOW VECCTF (FEET/SEC.) = 7.42 DEPTH(FEET) = 5.00 TLOM VECCTF (FEET/SEC.) = 7.42 DEPTH(FEET) = 5.00 TLOM VECCTF (FEET/SEC.) = 7.42 DEPTH(FEET) = 0.01 TLOM VECCTF (FEET/SEC.) = 7.42 DEPTH(FEET) = 0.01 TLOM VECCTF (FEET/SEC.) = 7.42 DEPTH(FEET) = 0.01 TLOM VECCTF FLOM TRAVEL TIME THRU SUBAREA ***********************************
<pre>************************************</pre>	<pre>************************************</pre>	TILE NAME: F10.B8MT TIME/PARE OF STUDY: 111:18 07/03/2019 UUSR SPECIFIED HYDROLOCY AND HYDRAULIC MODE. INFORMATION: USR SPECIFIED STORM EVANT(YEAR) = 10.00 SPECIFIED PERCENT OF CRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 USR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.800 10-YEAR STORM 00-MINUTE INTENSITY(INCH/HOUR) = 0.780 10-YEAR STORM 00-MINUTE INTENSITY(INCH/HOUR) = 0.780 10-YEAR STORM 00-MINUTE INTENSITY(INCH/HOUR) = 0.780 10-YEAR STORM 00-MINUTE INTENSITY(INCH/HOUR) = 0.4909234 COMPETING 000-YEAR INTENSITY-DURATION CURVE = 0.4909833 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4999234 COMPETING STORM 10-MINUTE INTENSITY(INCH/HOUR) = 0.788 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4999234 COMPETING STORM 00-MINITS INTENSITY(INCH/HOUR) = 0.798 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4999234 COMPETING STORM FVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 0.798 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4999234 COMPETING STORM FVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 0.798 SLOPE OF INTENSITY DURATION CURVE = 0.4999234 COMPETING STREFT = 0.00 1-HOUR INTENSITY (INCH/HOUR) = 0.798 SLOPE OF INTENSITY DURATION CURVE = 0.4999234 COMPETING STREFT = 0.00 1-HOUR INTENSITY (INCH/HOUR) = 0.798 SLOPE OF INTENSITY DURATION CURVE = 0.4999234 COMPETING STREFT = 0.00 1-HOUR INTENSITY (INCH/HOUR) = 0.798 SLOPE OF INTENSITY DURATION CURVE = 0.4999234 COMPETING STREFT STORM ANALYSES *UCRPETERD STREFT-SCOTORS FOR COMPLIAN INTENSITY (INCH/HOUR) = 0.798 SLOPE OF INTENSITY DURATION CURVE = 0.4999234 COMPETING STREFT STORM ANALYSES *UCRPETERD STREFT-SCOTORS FOR COMPLIAN AND STREEFFLOM AND STREEFFL

END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH(FEET) = 1.20 FLOOD WIDTH(FEET) = 5.00 FLOW VELOCITY(FEET/SEC.) = 7.52 DEPTH*VELOCITY(FT*FT/SEC) = 9.02 LONGEST FLOWPATH FROM NODE 804.00 TO NODE 806.00 = 1850.00 FEET. ************************************	<pre>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<</pre> >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <pre>KEPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013 DEPTH OF FLOW NL 24.00 NUMBER OF PIPES = 1 DEPTHOW CFS) = 10.46 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.46 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 21.28 PIPE-FLOW (CFS) = 21.28 PIPE FLOW (CFS) = 0.19 TC(MIN.) = 16.44 LONGEST FLOWPATH FROM NODE 804.00 TO NODE 803.00 = 1970.00 FEET. ***********************************</pre>	<pre>PEAK FLOW RATE (CFS) AT CONFLUENCE = 21.28 ** CONFLUENCE DATA ** STREAM FUNCFT Tr STREAM FUNCFT Tr STREAM FUNCFT Tr STREAM FUNCFT TR 1 19.27 18.77 1.394 20.40 2 2.1.28 16.44 1.487 21.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORWULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 38.16 16.44 1.487 2 39.20 18.77 1.394 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: 2 39.20 18.77 1.394 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: 2 39.20 18.77 1.394 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE INF. ** FLOW RATE TREE ** *** PEAK PROM BALE ** *** PEAK PROM PARTE ARE AS FOLLOWS: PEAK FLOW RATE CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE TREE ARE AS FOLLOWS: PEAK FLOW RATE CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE TREE ARE AS FOLLOWS: PEAK FLOW RATE CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE TREE ARE AS FOLLOWS: PEAK FLOW RATE CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE TREE ARE ARE ARE AS FOLLOWS: PEAK FLOW RATE TREE ARE ARE ARE ARE ARE ARE ARE ARE ARE</pre>
<pre>PIPE TRAVEL TIME(MIN.) = 0.50 Tc(MIN.) = 18.77 LONGEST FLOWPATH FROM NODE 800.00 TO NODE 803.00 = 2510.00 FEET. ***********************************</pre>	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 18.77 RAINFALL INTENTY (INCH'HR) = 1.39 TOTAL STREAM AREA(ACRES) = 20.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.27 ************************************	<pre>SUBAREA KUNOFF (CFS) = 10.70 TCTAL AREA (ACRES) = 10.30 TOTAL RUNOFF (CFS) = 10.70 TCTAL AREA (ACRES) = 10.30 TOTAL RUNOFF (CFS) = 10.70 ***********************************</pre>

	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 11.13 RAINFALL INTENSITY (INCH(HR.) = 1.80 TOTAL STREAM AREA (ACRES) = 1.90 PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.37	A ** TC INTENSITY F (MIN.) (INCHHOUR) (7	I 38.16 11.13 1.458 41.70 1 39.20 19.45 1.370 41.70 2 2.37 11.13 1.801 1.90 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.	TABLE ** Tc IN (MIN.) (IN 11.13 17.13	3 41.00 19.45 1.370 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 41.00 Tc(MIN.) = 19.45 TOTAL AREA(ACRES) = 43.6 LONGEST FLOWPATH FROM NODE 800.00 TO NODE 807.00 = 3000.00 FEET.	**************************************	>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<	1'S N = 0.013 2.7 INCHES	IIN.) = 19.8 NODE 810	000.00 TO NODE 810.00 IS CODE =	>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<	= = 1 () INL ()	TOTAL STREAM AREA (ACRES) = 43.60 Date: 07/03/2019 File name: P10_B8.RES
REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) = 490.00 MANNING'S N = 0.013		**************************************	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 19.45 RAINFALL INTENSITY(INCH/HR) = 1.37 TOTAL STREAM AREA (ACRES) = 41.70 PEAK FLOW RATE(CFS) AT CONFLIENCE = 39.20	* * * * * NODE	AREA AREA CVEL CVEL I (FE	DOWNSIREAM ELEVATION (FEEI) = 1048.00 ELEVATION DIFFERENCE (FEET) = 56.00 TC = 0.33*[(50.00**3)/(56.00)]**.2 = 10.722 10 VEED EAINEATT INVERTEVITUALIOND	۱ <u> </u>	CUTAL AREA (ACRES) = 2.17 TOTAL AREA (ACRES) = 1.90 TOTAL RUNOFF (CFS) = 2.37 ************************************	>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<	REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) = 150.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.0 INCHES DIPE-PT OW VETOCITY/PEPTRES 6.0 E 0.6	DIAMETER (INCH) = [<pre>2.3/ = 0.41 TC(MIN.) = 11.13 = 0.48.00 TC NDE 807.00 = 72 ************************************</pre>	FLOW PROCESS FROM NODE 807.00 TO NODE 807.00 IS CODE = 1 Date: 07/03/2019 File name: P10_B8.RES Page 5

CONFLUENCE FORMULA USED FOR 2 STREAMS.	** PEAK FLOW RATE TABLE ** STREAM RUNDFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 29.72 11.61 1.764 2 30.61 1.703	17.56 17.56 19.88 25 ESTIMATES ARE 5) = 43.13 = 45.9 EROM NODE 800	**************************************	======================================	<pre>PIPE-FLOW(CFS) = 43.13 PIPE TRAVEL TIME(MIN.) = 0.56 Tc(MIN.) = 20.44 LONGEST FLOWPATH FROM NODE 800.00 TO NODE 813.00 = 3560.00 FEET. ***********************************</pre>	**************************************	ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = K* (LENGTH**3) / (ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 1190.00 UPSTREAM ELEVATION(FEET) = 1605.00 DOWNSTREAM ELEVATION(FEET) = 1605.00 ELEVATION DIFFERENCE (FEET) = 86.00 TC = 0.333*((1190.00**3)/(86.00)]**.2 = 15.305 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.541 UNDEVELOPE WATERENED RUNOFF COFFICIENT = .6480 SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF (CFS) = 3.99 TOTAL AREA (ACRES) = 4.00 TOTAL RUNOFF (CFS) = 3.99	**************************************	Date: 07/03/2019 File name: P10_B8.RES Page 8
PEAK FLOW RATE(CFS) AT CONFLUENCE = 41.00	**************************************	2A UNIFORM 5.LOPED WITH POOR C. DN CHANGE) 1**.2 7.EET) = 720.00 1718.00 169.00 69.00	TC = 0.533*[(720.00F*3)/(69.00)]**.2 = 11.831 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.748 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6703 SOIL CLASSIFICATION IS "0" SUBAREA RUNOFF(CFS) = 2.70 TOTAL AREA (ACRES) = 2.30 TOTAL RUNOFF (CFS) = 2.70	<pre>************************************</pre>	REPRESENTATIVE SLOPE = 0.0200FLOM LENGTH (FEET) = 150.00MANNING'S N = 0.013DEFTH OF FLOM N11 12.0 INCH PIPE IS 6.4 INCHESPIPE-FLOM VELOCITY (FEET/SEC.) = 6.27ESTIMATED PIPE DIAMETER(INCH) = 12.00NUMBER OF PIPES = 1PIPE-FLOM (CFS) = 2.70PIPE TRAVEL TIME (MIN.) = 0.40TC MEDER DIFE TOM NODEBIPE TRAVEL TIME (MIN.) = 0.40TC MODEBIPE TLOWEATH FROM NODEBILONCEST FLOWEATH FROM NODE	**************************************	REAMS 2 REAMS 2 UUSED FOR INDEPENDENT STREAM 2 IUO (MIN.) 12.23 (IUN(MIN.) 1.72 (ACRES) 2.30 S) AT CONFLUENCE 2.70 A ** TC (MIN.) (INCH HOUR) 11.61 1.764 17.56 1.440	1 41.00 19.88 1.355 43.60 2 2.70 12.23 1.720 2.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO	Date: 07/03/2019 File name: P10_B8.RES Page 7

**************************************	>>>>besignate independent stream for confluence<<<<< >>>>>and compute various confluenced stream values<<<<<	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.09 RAINFALL INTENSITY(INCH/HR) = 1.99 TOTAL STREAM AREA(ACRES) = 2.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.38	** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (TNCH/HOUR) (ACRE)	3.99 16.95 1.466 3.38 9.09 1.990 LL INTENSITY AND TIME OF CONCENTRATION R ENCE FORMULA USED FOR 2 STREAMS.	K FLOW RATE TABLE ** RUNOFF TC	NUMBER (LES) (MIN.) (INCH/HOUK) 1 5.53 9.09 1.990 2 6.49 16.95 1.466	COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 6.49 TC(MIN.) = 16.95 TOTAL AREA(ACRES) = 6.4 LONGEST FLOWPATH FROM NODE 814.00 TO NODE 816.00 = 1860.00 FEET.	**************************************	>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<	REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) = 380.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.7 INCHES PIPP-FLOW VARIACTIV(FERTSEC) = 7 75	-	DE 814.00 TO NODE	FLOW PROCESS FROM NODE 819.00 TO NODE 819.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USBD FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.76 RAINFALL INTENSITY(INCH/HR) = 1.43 TOTAL STREAM AREA(ACRES) = 6.40	Date: 07/03/2019 File name: P10_B8.RES Page 10
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<	i ž	DEPTH OF FLOW IN 12.0 LNCH PIPE IS 8.4 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 6.81 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOM(CFS) = 3.99 PIPE TRAVEL TIME (MIN.) = 1.64 TC(MIN.) = 16.95 LONGEST FLOWPATH FROM NODE 814.00 TO NODE 816.00 = 1860.00 FEET.	**************************************	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.95 RAINFALL INTENSITY(INCH/HR) = 1.47	TOTAL STREAM AREA (ACRES) = 4.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.99	<pre>ELOW PROCESS FROM NODE 817.00 TO NODE 818.00 IS CODE = 21 >>>>PATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<</pre>	ASSUMED INITIAL SUBAREA UNIFORM ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = K*[(LENCTH**3)/(ELEVATION CHANDED)]**.2 INITIAL SUBJADEA PTOMAT (PROMI)	50	DELEVATION DIFFERENCE(FEET) = 02.00 TC = 0.533 F(460.00**3) /(82.00)]**.2 = 8.736 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.029 PUDPETRIFTORD DIADELED DIADELTATION = 2.020	UNDERFLORED WAIEACHED RUNGEF UDEFFLUENI = .0949 SOIL CLASSIFICATION IS "C" SUBAREA RUNGFF(CFS) = 3.38 SUBAREA RUNGFF(CFS) = 2.40 TOTAL RUNGFF(CFS) = 3.38	**************************************	>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<	REPRESENTATIVE SLOPE = 0.0200 FLOW LENCTH(FEET) = 140.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH FIPE IS 7.5 INCHES	PIPE-FLOW VELOCITY (FEET/SEC.) = 6.60 ESTIMATED PIPE DIAMETER (INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.38 PIPE TRAVEL TIME (MIN.) = 0.35 Tc(MIN.) = 9.09 LONGEST FLOWPATH FROM NODE 817.00 TO NODE 816.00 = 600.00 FEET.	Date: 07/03/2019 File name: P10_B8.RES Page 9

A USED FOR 2 S' TABLE ** TC II (MIN.) (II)	1 3.87 5.54 2.537 2 6.12 9.93 1.905 3 6.93 17.76 1.432 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFE) = 6.93 Tc(MIN.) = 17.76 TCTAL AREA(ACRES) = 6.8 LONGEST FLOWPATH FROM NODE 814.00 TO NODE 819.00 = 2240.00 FEET.	<pre>************************************</pre>	0.0200 L50.00 MANNING'S N = 0. INCH PIPE IS 10.1 INCHES T/SEC.) = 7.85 R(INCH) = 15.00 NUMBER 6.93	PIPE TRAVEL TIME (MIN.) = 0.32 Tc (MIN.) = 18.08 LONGEST FLOWPATH FROM NODE 814.00 TO NODE 822.00 = 2390.00 FEET. ***********************************	>>>>>besidente independent stream for confluence<<<< Total number of streams = 2 Confluence values used for independent stream 1 are: TIME OF CONFURATION MIX.) = 18.08		UITIAL SUBAREA ANALYSIS<<<<> UNDEVELOPED WITH POOR COVER UNDEVELOPED WITH POOR COVER LEVATION CHANGE) **.2	INITIAL SUBAREA FLOW-LENCTH (FEET) = 410.00 UPSTREAM ELEVATION (FEET) = 1641.00 DOWNSTREAM ELEVATION (FEET) = 1644.00 ELEVATION DIFFERENCE (FEET) = 1644.00 ELEVATION DIFFERENCE (FEET) = 47.00 TC = 0.533*[(410.00**3)/(47.00)]**.2 = 9.113 10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.987 UNDEVLEDED WATERSHED RUNOFF COEFFICIENT = .6916 SOLL CLASSUFTCATION T* """	SUBAREA RUNOFF (CFS) = 4.81 Date: 07/03/2019 File name: P10_B8.RES Page 12
<pre>PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.49 ************************************</pre>	SUB? ZA UN ZA UN CILOPE DN CF TEET) 1690 1600	ELEVATION DIFFERENCE (FEET) = 46.00 TC = 0.533*(1 100.00**3)/(46.00))**.2 = 3.925 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.669 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7350 SOIL CLASSFICATION IS "C" SUBAREA RUNOFF (CFS) = 0.78	TOTAL AREA(ACRES) = 0.40 TOTAL RUNOFF(CFS) = 0.78 ************************************	>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<< REPRESENTATUE SLOPE = 0.0200 FLOW LENGH(FUEET) = 150.00 MANNING'S N = 0.013 DETH OF FLOW IN 9.0 INCH PIPE IS 3.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.61	50	**************************************	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 5.54 RAINFALL INTENSITY(INCH/HR) = 2.54 TOTAL STREAM AREA (ACRES) = 0.40 PEAK FLOW RATE (CFS) AT CONFLUENCE = 0.78	** CONFLUENCE DATA ** SFREAM RUNOFF TC INTENSITY AREA NUMBER (CF5) (MIN.) (INCH/HOUR) (ACRE) 1 5.53 9.93 1.905 6.40 1 6.49 17.76 1.432 6.40 2 0.78 5.54 2.537 0.40	RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO Date: 07/03/2019 File name: P10_B8.RES Page 11

>>>>USING COMPUTER-ESTIMATED FIPESIZE (NON-PRESSURE FLOW)<<<<<	REPRESENTATIVE SLOPE = 0.0200 FLOM LENCTH(REET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOM IN 18.0 INCH PIPE IS 11.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.78 ESTIMATED PIPE DIAMFTER(INCH) = 18.00 DIDEPERION CCC) - 10.71	28 * 4	>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<	N STRE R	(10.47) (11.11.) (11.11.11.11.11.11.11.11.11.11.11.11.11.	5 10.75 10.45 1.858 10.30 4 10.44 18.27 1.412 10.30 LONGEST FLOWPATH FROM NODE 814.00 TO NODE 813.00 = 2490.00 FEET.	MORY BANK # 1 CONFLUENCE DATA ** M RUNOFF TC INTENSITY R (CFS) (MIN.) (INCH/HOUR) (1 29.72 12.22 1.721 45.90 2 30.61 12.84 1.680 45.90 3 42.33 18.12 1.418 45.90 4 43.13 20.44 1.337 45.90	FLOWPATH FROM NODE 800.00 TO NODE	K FLOW RATE TABLE ** RUNOFF TC	(MIN.) (INCH 6.12 9.69	39.16 10.43 1 39.68 12.22 1 40.32 12.84 1 52.59 18.12 1 52.59 18.27 1	53.00 20.44 1.337 TED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PROM DAMP/CPC1 - 53 AD MONAY 1 -	PEAK FLUW KAIE(CES) = 53.UU IC(MIN.) = 2U.44 TOTAL AREA(ACRES) = 56.2	**************************************	>>>>CLEAR MEMORY BANK # 1 <<<<	***************************************	Date: 07/03/2019 File name: P10_B8.RES
TOTAL AREA (ACRES) = 3.50 TOTAL RUNOFF (CFS) = 4.81	<pre>************************************</pre>	ET) = SLOPE =	PIPE-FLOW(CFS) = 4.81 PIPE TRAVEL TIME(MIN.) = 0.39 Tc(MIN.) = 9.50 LONGEST FLOWPATH FROM NODE 814.00 TO NODE 822.00 = 580.00 FEET.	**************************************	>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<	Z INDEPE	IIME OF CONVENTATION (MIN.) = 9.50 RAINFALL INTENSITY(INCH/HR) = 1.95 TOTAL STREAM AREA(ACRES) = 3.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.81	** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MTN.) (INCH HOUTR) (ACRE)	3.87 5.91 2.458 6.12 10.26 1.875	1 6.93 18.08 1.420 6.80 2 4.81 9.50 1.947 3.50	RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.	AK FLOW RATE TABLE ** M RUNOFF TC IN R (CFS) (MIN.) (IN 6.86 5.91	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CE ESTIM? S) = _	TOTAL AREA (ACRES) = 10.3 LONGEST FLOMPATH FROM NODE 814.00 TO NODE 822.00 = 2390.00 FEET.	**************************************	TRAVEL TIME THRU SUBAREA<<<<	Date: 07/03/2019 File name: P10_B8.RES Page 13

<pre>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<</pre> TOTAL NUMBER OF STREAMS = 2 TOTAL NUMBER OF STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.07 RAINFALL INTENSITY(INCH/HR) = 2.25 TOTAL STREAM AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.01 ************************************	ASOUDD INITIAL SUBARA NURFORM DEVICIORMENT IS COMMERCIAL TE DEVICIORMENT IS COMMERCIAL TETTAL SUBARA INDUCTERED = 1605.00 DOWNTERM ILLANTION(REET) = 100.001+2 = 0.00 TELEVILIA DEVELOPMENT BUNDE COFFICIENT = .081.3 DOL TARA ANIALI, ITERNETT (INCLUDE) = 2.00 TOTAL AREA (ACCES) = 2.00 TOTAL RUNCE (CES) = 4.01 DOWNTE REED DATA = 0.01 DOWNTE REED AREA PRODUCE STREAM 2 ARE NUMBER (CES) = 2.00 DOWNTE REED AREA PRODUCE STREAM 2 ARE NUMBER (CES) = 2.00 DOWNTE REED AREA PRODUCE STREAM 2 ARE NUMBER (CES) = 2.00 DOWNTE REED AREA PRODUCE STREAM 2 ARE NUMBER (CES) AT CONFLUENCE = 4.01 DOWNTE REED AREA PRODUCE STREAM 2 ARE NUMBER (CES) AT CONFLUENCE = 4.01 DOWNTE REED AREA PRODUCE STREAM 2 ARE NUMBER (CES) AT CONFLUENCE = 4.01 DOWNTE REED AREA PRODUCE STREAM 2 ARE NUMBER (CES) AT CONFLUENCE = 4.01 DOWNTE REED AREA (ACRES) = 2.00 DOWNTE REED AREA CONCENTRATION (AREA = 0.01 DOWNTE REED AREA (AREA = 0.01 DOWNTE REED AREA (AREA = 4.01 DOWNTE REED AREA (AREA = 0.01 DOWNTE REED AREA (AREA = 0.0
FLOW PROCESS FROM NODE 813.00 TO NODE 824.00 IS CODE = 31	<pre>ELOW FROCESS FROM NODE 224.00 TO NODE 814.00 IS CODE = 10</pre>
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<< >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) SEPRESENTATIVE SLOPE = 0.0400 REPRESENTATIVE SLOPE = 0.0400 FLOM LENCTH (FEET) = 510.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.1 INCHES PIPE-FLOW VELOCITY (FEET/SEC. = 16.73 BETIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 53.00 PIPE TRAVEL TIME (MIN.) = 0.51 TC (MIN.) = 20.95 LONGEST FLOWPATH FROM NODE 800.00 TO NODE 824.00 = 4070.00 FEET.	>>>>>A <pre> SELOW FROCESS FROM NODE 224.00 TO NODE 825.00 IS CODE = 21 </pre> <pre> TO PROFER A FLOW TO PROPER DATA FLOW THAT ALL SUBARED, ANALYSIS</pre> <pre> SELOW FROCESS FROM NODE 825.00 TO NODE 825.00 IS CODE = 21 </pre> <pre> SASUGED INITIAL SUBARED, ANALYSIS</pre> <pre> SASUGED INITIAL SUBARED, ANALYSIS </pre> <pre> SASUGED INITIAL SUBARED, ANALYSIS</pre> <pre> SASUGED INITIAL SUBARED, ANALYSIS </pre> <pre> SASUGED INITIAL SUBARED, ANANANANES </pre> <pre> SASUGED INITIAL SUBARED, ANANA</pre>

RAINFALL INTENSITY(INCH/HR) = 2.13 TOTAL STREAM AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.63 ** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 7.93 7.11 2.244 3.70 1 7.98 7.27 2.224 3.70 2 2.63 7.89 2.134 1.40	<pre>RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 10.30 7.11 2.244 2 10.40 7.27 2.220 3 10.30 7.89 2.134 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 10.40 Tc(MIN.) = 7.27 TOTAL AREA (ACRES) = 5.1 LONGEST FLOWPATH FROM NODE 825.00 TO NODE 829.00 = 1050.00 FEET.</pre>	<u>*</u>	DEPTH OF FLOW IN LOUDINCH FIPE IS 11.5 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 8.72 ESTIMATED FIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.08 TC (MIN.) = 7.35 LONGEST FLOWPATH FROM NODE 825.00 TO NODE 824.00 = 1090.00 FEET. ************************************	<pre>S = 2 EOR INDEPENDENT STREAM 1 ARE: MIN.) = 7.35 H/HR) = 2.21 S) = 5.10 CONFLUENCE = 10.40</pre>	FLOW PROCESS FROM NODE 830.00 TO NODE 831.00 IS CODE = 21 >>>>PATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<< Date: 07/03/2019 File name: P10_B8.RES Page 18
M NODE M NODE ******** DE 827 OD TRAVEL ON TRAVEL ESTIMATED ==0.0201	FLOW LENGTH (FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 11.3 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 8.01 ESTIMATED PIPE DIAMETER (INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW (FES) = 7.98 PIPE TRAVEL TIME (MIN.) = 0.21 TC (MIN.) = 7.27 LONGEST FLOWPATH FROM NODE 825.00 TO NODE 829.00 = 1050.00 FEET. ***********************************	= 2.3.3. LUENCE ****** 30.00	ASSUMED INITIAL SUBAREA UNFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INTTIAL SUBAREA FLOW-LENGTH(FEET) = 640.00 UPSTREAM ELEVATION(FEET) = 1614.00 DOWNSTREAM ELEVATION(FEET) = 1592.00 ELEVATION DIFFERENCE(FEET) = 22.00 TC = 0.303*(1 640.00**3)/(22.00)]**.2 = 7.885 10 YEAR PAINFALL INTENSITY(INCH/HOUR) = 2.134 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8803	2.63 .40 TOTAL RUNOFF ***********************************	TOTAL NUMBER OF STREAMS = 2 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 7.89 Date: 07/03/2019 File name: P10_B8.RES Page 17

3 13.29 7.96 2.124 4 13.29 7.99 2.120 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 13.29 7.96 CONTAL AREA (ACRES) = 13.29 7.96 7.96 TOTAL AREA (ACRES) = 0.7 0.70 10.90.00 LONGEST FLOWPATH FROM NODE 825.00 TO NODE 824.00 1090.00 FLOW PROCESS FROM NODE 824.00 TO NODE 824.00 1090.00 EET. ************************************	<pre>IN STREAM CONFLUENCE DATA ** M RUNDFF TC INTENSITY R (CES) (MIN.) (INCH/HOUR) (13.01 7.19 2.232 13.17 7.35 2.208 13.29 7.96 2.124 13.29 7.96 2.124 13.29 7.99 2.120 ST FLOWPATH FROM NODE 825.00 TO NODE MORY BANK # 1 CONFLUENCE DATA ** M RUNDFF TC INTENSITY M</pre>	40.32 13 52.68 18 52.59 18 53.00 20 33.00 20 AK FLOWPATH FROM N M RUNGFF TABLE R (CFS) (M 33.96 36.89	7.35 7.96 10.26 11.01 12.77 13.38 13.38 18.63 18.63 20.95	COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:PEAK FLOW RATE (CFS) = 61.44 Tc(MIN.) = 18.63TOTAL AREA (ACRES) = 62.9***********************************
ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*([LENCTH**3)/[ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 640.00 UPSTREAM ELEVATION(FEET) = 1614.00 DOWNSTREAM ELEVATION(FEET) = 1592.00 ELEVATION DIFFERENCE(FEET) = 22.00 TC = 0.33*[(640.00**3)/(22.00)]**.2 = 7.885 10 YEAR PAINFALL INTENSITY(INEHOUR) = 2.134 COMMERCIAL DEVELOPMENT RUNOFF (COEFFICIENT = .8803 SOLL CLASSIFICATION IS "C" SUBAREA RUNOFF (CFS) = 3.01 TCTAL AREA(ACRES) = 1.60 TOTAL RUNOFF(CFS) = 3.01	<pre>************************************</pre>	FLOW PROCESS FROM NODE 824.00 TO NODE 824.00 IS CODE = 1 >>>>>BEIGNATE INDEPENDART STREAM FOR CONFILUENCE< >>>>>DESIGNATE INDEPENDART STREAM FOR CONFILUENCE >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 10.30 7.19 2.232 5.10 1 10.40 7.35 2.208 5.10 2 3.01 7.99 2.124 5.10 2 3.01 7.99 2.120 1.60 BAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.	Lile n

**************************************	>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<	3 = =	FALIFALL INTENSITI(INCHARK) = 1.02 TOTAL STREAM AREA(ACRES) = 3.20 FEAK FLOW RATE(CFS) AT CONFLUENCE = 5.80	**************************************	>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<	ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL [(LENGTH**3)/(ELEVATION CHANGE)	팔주	DUMASTRAMY DIFATION (FELT) = IG1/.00 ELEVATION DIFFERENCE(FEET) = 5.00 TC = 0.303*[(470.00**3)/(500)]**.2 = 8.812 IO YEAR RAINFALL INTENITY(INCH/HOUR) = 2.020 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8794	SOIL CLASSIFICATION IS "C" SUBARFA RUNOFF(CFS) = 1.60	0	**************************************	>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<	3 INDEPE	RAINE OF CONCENTRATION(MIN.) = 0.81 RAINFALL INTENSITY(INCH/HR) = 2.02 TOTAL STREAM AREA(ACRES) = 0.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.60	**************************************	>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<	ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K* (LENGTH**3) (ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH (FEET) = 350.00 UPERTRAM ELEVATION (FEET) = 1620.00 DOWNSTRRAM ELEVATION (FEET) = 1615.00 ELEVATION DIFFERENCE (FEET) = 5.00 TC = 0.303*[(350.00**3)/(5.00)]**.2 = 7.383 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.204	Date: 07/03/2019 File name: P10_B8.RES Page 22
>>>>>CLEAR MEMORY BANK # 1 <<<<	**************************************	TRAVEL TIME THRU SUBAREA<<<<< TIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<	9.61	DITY(FEET/SEC.) = 13.4 DIAMETER(INCH) = 33.0 - 21.44	FIFE-FLOW(LES) = 01.44 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 18.74 LONGEST FLOWPATH FROM NODE 800.00 TO NODE 832.00 = 4160.00 FEET.	**************************************	>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<	**************************************	>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<	ASSUMED INITIAL SUBAREA UNIFORM Development is commercial	TC = K* [(EENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 440.00	1622. = 161	ELEVATION DIFFERENCE (FEET) = 5.00 TC = 0.303*[(440.00**3)/(5.00)]**.2 = 8.470 10 YEAR RAINFALL INTENSITY (INCHHOUR) = 2.060	COMMERCIAL DEVELOPTENT KUNNEF CUEFFICIENT = .8/9/ SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF(CFS) = 5.80 TOTAL AREA (ACRES) = 3.20 TOTAL RUNOFF(CFS) = 5.80	**************************************	>>>>COMPUTE FIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED FIPESIZE (NON-PRESSIGRE FLOW)<<<<<		Date: 07/03/2019 File name: P10_B8.RES Page 21

EL TIME THRU SUBAREA< ED PIPESIZE (NON-PRES 200 0 MANNING'S N = 0. PIPE IS 11.5 INCHES .) = 8.72 H) = 18.00 NUMBER 0.13 Tc(MIN.) =	ODE 833.00 TO NODE ************************************	<pre>FLOW PROCESS FROM NODE 839.00 TO NODE 838.00 IS CODE = 21 >>>>PATTIONAL METHOD INITIAL SUBAREA ANALYSIS<<</pre> AssumeD INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEXATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH (FEET) = 710.00 UPSTREAM ELEVATION (FEET) = 1597.00 DOMNSTREAM ELEVATION (FEET) = 1597.00 DOMNSTREAM ELEVATION (FEET) = 31.00 COMMENCIAL INTERNING (FEET) = 31.00 CC = 0.303*[(710.00**3)/(31.00)]**.2 = 7.836 10 YEAR RAINFALL INTENSITY(INCH HOUR) = 2.140 COMMENCIAL DEVELORMER (INCH HOUR) = 2.140 COMMENCIAL DEVELORMER RUNOFF COEFTICIENT = .8803 SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF(CFS) = 1.70 TOTAL AREA (ACRES) = 0.90 TOTAL RUNOFF (CFS) = 1.70	************************************
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8808 SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF(CFS) = 3.49 TOTAL AREA(ACRES) = 1.80 TOTAL RUNOFF(CFS) = 3.49 ************************************	REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH (FEET) = 400.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.1 INCHES PIPE-FLOW VELOCITY(FEET/SEL) = 5.16 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE TRAVEL TIME (MIN.) = 1.29 TC (MIN.) = 8.68 LONGEST FLOWPATH FROM NODE 836.00 TO NODE 835.00 = 750.00 FEET. ***********************************	TOTAL NUMBER OF STREAMS = 3 TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 8.68 RAINFALL INTENSITY(INCH/HR) = 2.04 TOTAL STREAM AREA(ACRES) = 1.80 FEAK FLOW RATE(CFS) AT CONFLUENCE = 3.49 ** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 5.80 10.90 1.820 3.20 2 1.60 8.81 2.026 1.80 3 3.49 8.68 2.036 1.80 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS.	** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 9.66 8.86 2.036 2 9.75 8.81 2.036 3 10.36 10.90 1.820 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 10.36 TC (MIN.) = 10.90 TOTAL AREA (ACRES) = 5.9 LONGEST FLOWPATH FROM NODE 833.00 TO NODE 835.00 = 1270.00 FEET. ************************************

<pre>SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF(CFS) = 6.47 TOTAL AREA (ACRES) = 3.80 TOTAL RUNOFF(CFS) = 6.47 TOTAL AREA (ACRES) = 3.80 TOTAL RUNOFF(CFS) = 6.47 ************************************</pre>	FLOW PROCESS FROM NODE 842.00 TO NODE 842.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<< TOTAL NUMBER OF STREAMS = 2 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONFUNCTION(MIN.) = 10.05 RAINFALL NTENSTY(INCH/HR) = 1.09 TOTAL STREAM AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.47 ************************************	<pre>TC = K*((LENGTH*3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 730.00 UPSTREAM ELEVATION(FEET) = 1635.00 DONNSTREAM ELEVATION(FEET) = 1636.00 ELEVATION DIFFERENCE (FEET) = 17.00 FLEVATION DIFFERENCE (FEET) = 17.00 TC = 0.303*(1 730.00%3)/(1 77.00)]**.2 = 0.984 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.001 COMMERCIAL DEVELOPMENT RUNGFF COEFFICIENT = .0793 SOLIL CLASSIFICATION IS "C" SUBAREA RUNGFT (CFS) = 1.94 TOTAL AREA (ACRES) = 1.10 TOTAL AREA (CCS) = 1.10 TOTAL AREA (CCS) = 1.10 TOTAL AREA (ACRES) = 0.00 TOTAL AREA (ACRES) = 0.00 SUBAREA RUNGFT (FEET) = 120.00 TOTAL AREA (ACRES) = 1.20.00 TOTAL AREA (ACRES) = 1.20.00 TOTAL AREA (ACRES) = 0.013 TOTAL AREA (FEET) = 120.00 TOTAL AREA (FEET) = 120.00 MANNING'S N = 0.013 TOTAL INTERVENTION (FEET) = 120.00 MANNING'S N = 0.013</pre>
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACEE) 1 9.75 8.95 2.020 5.90 1 9.75 8.95 2.005 5.90 1 10.36 11.04 1.805 5.90 2 1.70 7.84 2.140 0.90 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 10.31 7.84 2.140 1 10.31 7.84 2.140 3 11.34 8.95 2.020 3 11.34 8.95 2.020 4 11.04 1.809 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 11.80 TC (MIN.) = 11.04	TOTAL AREA (ACRES) = 6.8 LONGEST FLOWPATH FROM NODE 833.00 TO NODE 838.00 = 1340.00 FEET. ***********************************	<pre>FLOW PROCESS FROM NODE 840.00 TO NODE 840.00 IS CODE = 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<</pre> <pre>>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<</pre> <pre>>>>>Paction Process FROM NODE 834.00 TO NODE 841.00 IS CODE = 21 >>>>Pactional METHOD INITIAL SUBAREA ANALYSIS<<</pre> <pre>>>>Pactional METHOD INITIAL SUBAREA ANALYSIS<</pre> <pre>>>>Pactional METHOD INITIAL SUBAREA ANALYSIS</pre> <pre>>>>Pactional METHOD INITIAL SUBAREA UNFORM DeVELOPMENT IS COMMERCIAL TC = K*[(LENCTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA PLOW-LENCTH(FEET) = 400.00 UPSTREAM ELEVATION (FEET) = 1617.00 DOWNSTREAM ELEVATION (FEET) = 1615.00 DOWNSTREAM ELEVATION (FEET) = 1617.00 DOWNSTREAM ELEVATION (FEET) = 1617.00 DOMNSTREAM ELEVATION (FEET) = 1617.00 DOWNSTREAM ELEVATION (FEET) = 1617.00</pre>

<pre>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<</pre> TOTAL NUMBER OF STREAMS = 2 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.63 RAINFALL INTENSITY(INCH/HR) = 1.84 TIME OF CONCENTRATION(MIN.) = 0.63 RAINFALL INTENSITY(INCH/HR) = 1.84 TIME OF CONCENTRATION(MIN.) = 0.63 RAINFALL INTENSITY(INCH/HR) = 1.84 TIME OF DOTAL STREAM AREA(ACRES) = 4.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.33 ***********************************	<pre>>>>>>runtional meriod initial Subarba Analysis<<<pre>>>>>purial subarba UNIFIAL SUBARBA ANALYSIS<<<pre>AssumeD initial subarba UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH*3)/(ELEVATION CHANGE)]**.2 INITIAL SUBARBA FLOW-LENGTH(FEET) = 240.00 UPSTREAM ELEVATION (FEET) = 1650.00 DOWNSTREAM ELEVATION (FEET) = 1650.00 DOWNSTREAM ELEVATION (FEET) = 1650.00 DOWNSTREAM ELEVATION (FEET) = 1650.00 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YPAR PAINFALL INTENSITY(INCH/HOUR) = 2.669 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YPAR PAINFALL INTENSITY(INCH/HOUR) = 2.669 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YPAR PAINFALL INTENSITY(INCH/HOUR) = 2.669 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YPAR PAINFALL INTENSITY(INCH/HOUR) = 2.669 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YPAR PAINFALL INTENSITY(INCH/HOUR) = 2.669 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YPAR PAINFALL INTENSITY(INCH/HOUR) = 2.669 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YPAR PAINFALL INTENSITY(INCH/HOUR) = 2.669 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YPAR PAINFALL INTENSITY(INCH/HOUR) = 2.669 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YPAR PAINFALL INTENSITY(INCH/HOUR) = 2.669 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YPAR PAINFALL INTENSITY(INCH/HOUR) = 2.669 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YPAR PAINFALL INTENSITY(INCH/HOUR) = 2.669 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YPAR PAINFALL INTENSITY(INCH/HOUR) = 2.669 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YPAR PAINFALL INTENSITY(INCH/HOUR) = 2.669 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YPAR PAINFALL INTENSITY(INCH/HOUR) = 2.669 COMPUTED FORCENTER PAINFALL INTENSITY(INCH/HOUR) = 2.669 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YPAR PAINFALL INTENSITY(INCH/HOUR) = 2.669 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YPAR PAINFALL INTENSITY(INCH/HOUR) = 2.669 COMPUTED TIME OF CONCENTRATION INCR</pre></pre></pre>	<pre>FLOW PROCESS FROM NODE 847.00 TO NODE 845.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<< >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)</pre> REPRESENTATIVE SLOPE = 0.0200 REDMILENGTH(FEET) = 260.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.2 INCHES PIEP-FLOW VELOCITY(FEET) = 5.31 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 1.41 PIEE TRAVEL TIME (MIN.) = 0.82 TC(MIN.) = 5.82 LONGEST FLOWPATH FROM NODE 846.00 TO NODE 845.00 = 500.00 FEET.	FLOW PROCESS FROM NODE 845.00 TO NODE 845.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< <pre>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES</pre> >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONFUTENTY(INCH/HR) = 2.48 TOTAL STREAM AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.41 ** CONFLUENCE DATA ** Date: 07/03/2019 File name: PI0_B8.RES PAGE PAGE PAGE PAGE PAGE PAGE PAGE PAGE
DEPTH OF FLOW IN 9.0 INCH FIPE IS 6.5 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 5.65 ESTIMATED FIPE DIAMETER(INCH) = 9.00 NUMBER OF FIPES = 1 FIPE TRAVEL TIME (MIN.) = 0.35 Tc (MIN.) = 9.34 LONGEST FLOWPATH FROM NODE 843.00 TO NODE 842.00 = 850.00 FEET. ************************************	TOTAL NUMBER OF STREAMS = 2 CONFUTUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.34 RAINFALL INTENSITY(INCH/HR) = 1.96 TOTAL STREAM AREA(ACRES) = 1.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.94 ** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 6.47 10.05 1.994 3.80 2 1.94 9.34 1.964 1.10 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.	<pre>FLOW THE FLOW TALL FILL TALL FLOW THE NUMBER OF THE NUMBER NUMBER (CFS) (MIN.) (INCH HOUR) 1 7.94 9.34 1.964 2 8.33 10.05 1.894 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 8.33 Tc (MIN.) = 10.05 TOTAL AREA (ACRES) = 4.9 LONGEST FLOWPATH FROM NODE 843.00 TO NODE 842.00 = 850.00 FEET. ************************************</pre>	

<pre>EET) = 1609.00 EET) = 6.00 *3)/(6.00)]**.2 = 7.712 ENSITY(INCH/HOUR) = 2.157 ENNOFF COEFFICIENT = .8804 "C" 4.18 2.20 TOTAL RUNOFF(CFS) = 4.18</pre>	<pre>rend Encoded From And Order of the of t</pre>	TRAVEL TIME THRU SUBAREA<<<< TIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<>>0.0100 0.0100 330.00 MANNING'S N = 0.013 310.00 MANNING'S N = 0.013 T/SEC.) = 7.02 R(INCH) = 21.00 NUMBER OF PIPES = 12.92 Fle name: P10_B8.RES
RUNOFF TC (CES) (MIN.) 7.94 9.92 8.33 10.63 1.41 5.82 LL INTENSITY AND TIME OF ENCE FORUULA USED FOR 2 X FLOW RATE TABLE **		<pre>************************************</pre>

** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 12.85 6.91 2.277 2 15.37 8.52 2.054 3 18.22 10.92 1.819 4 18.45 11.40 1.781 5 18.65 11.62 1.764 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 18.65 TC(MIN.) = 11.62 TOTAL AREA (ACRES) = 11.4 LONGEST FLOW NODE 843.00 TO NODE 850.00 = 1480.00 FEET.	<pre>************************************</pre>	
PIPE TRAVEL TIME (MIN.) = 0.78 TC (MIN.) = 11.62LONGEST FLOMPATH FROM NODE843.00 TO NODEELON PROCESS FROM NODE843.00 TO NODE***********************************	<pre>####################################</pre>	DENT STREAM FOR CONFLUENCE<<< <pre>DENT STREAM FOR CONFLUENCE<<<<</pre> <pre>US CONFLUENCED STREAM VALUES<<<</pre> <pre>S = 2 S = 2 S = 2 S = 1.40 MIN.) = 11.40 MIN.) = 11.40 MIN.) = 1.78 AIRA AIRA AIRA AIRA AIRA AIRA AIRA AIR</pre>

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<	REPRESENTATIVE SLOPE 0.0200 REPRESENTATIVE SLOPE 0.0200 FLOW LENCTH(FEET) 50.00 PLOPT LOF FLOW 24.01 NCH 24.01 RIFE-FLOW VELOCITY(FEET/SEC.) ESTIMATED FIPE DIAMETER(INCH) 24.00 NUMBER OF PIPES 10.65 ESTIMATED FIPE DIAMETER(INCH) 24.00 PIPE-FLOW(CFS) 23.32 PIPE TRAVEL, TIMER(MNL) 0.08 TERE, TARVEL, TIMER(MNL) 0.08	NODE 843.00 TO NODE ************************************	>>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<<<<	** MAIN STREAM CONFLUENCE DATA ** Stream rinnep to tintensity area	(CFS) (MIN.) (INCH/HOUR) (CFS) (MIN.) (INCH/HOUR) (17.63 7.12 2.243 20.03 8.72 2.031 22.87 11.11 1.803 23.12 11.59 11.766 23.12 11.59 11.749 23.12 11.56 1.749 22.77 12.65 1.697	ST FLOWPATH FROM NODE 843.00 TO NODE	** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 10.31 10.56 1.849	11.28 11.49 1.774 11.34 11.62 1.764 11.80 13.69 1.628 sr Frombart From Mode 833 00 TO Mode	K FLOW RATE TABLE **	STREAM RUNOFF TC INTENSTY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 244.63 7.12 2.243 2 28.60 8.72 2.243 3 32.04 10.56 1.449 4 33.79 11.11 1.803 5 34.18 11.49 1.774 6 34.43 11.59 1.766 7 34.57 11.803 3.3457 8 34.57 11.82 1.764 9 33.457 11.82 1.749 8 34.57 11.82 1.749 9 34.57 11.82 1.749	13.69 13.69 CE ESTIMATES ARE A 34.57	TUTAL AKEA (ACKES) = Z1.9 ************************************
1	TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INTTIAL SUBAREA FLOW-LENGTH(FEET) = 1070.00 UPSTREAM ELEVATION(FEET) = 1597.00 DOMNSTREAM ELEVATION(FEET) = 1587.00 ELEVATION DIFFERENCE (FEET) = 10.00 TC = 0.303*[(1070.00**3)/(10.00)]**.2 = 12.567 IO YEAR RAINFALL INTENSITY(INCH-HOUR) = 1.697 COMMERCIAI, DEVELOPMENT RUNCH CORFILE	DFE ***		>>>>>DELIGIONATE INDEFENDENT STREAM FOR CONFIDENCE<		** CONFLUENCE DATA ** STREAM RUNGFF TC INTENSITY AREA	(CFS) (MIN.) (INCH/HOUR) (7 16.38 7.04 2.256 18.49 8.64 2.040 20.91 11.03 1.809	21.07 11.51 21.24 11.74 2.23 12.57	RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.	** FEAK FLOW RATE TABLE ** STREAM RUNOFF TC STREAM RUNOFF TC INUMBER (CFS) (MIN.) I 17.63 7.04 2 20.03 8.64 2.040 3 22.87 11.03 1.809 4 23.12 11.51 1.772 5 23.32 11.74 1.755 6 22.77 12.57 1.697	COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 23.32 Tc(MIN.) = 11.74 TOTAL AREA(ACRES) = 15.1 LONGEST FLOWPATH FROM NODE 843.00 TO NODE 851.00 = 1550.00 FEET.	<pre>************************************</pre>

** FEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY STREAM RUNOFF TC INTENSITY STREAM RUNOFF TC INTENSITY STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 57.04 6.88 2.282 2 61.97 7.32 2.210 3 61.50 7.34 2.210 4 61.97 7.48 2.1007 6 65.61 8.09 2.1007 7 68.04 8.33 2.1007 7 68.04 8.33 2.007 8 76.79 10.38 1.865 9 78.00 10.76 1.832 11 80.57 11.31 1.775 12 80.57 11.33 1.775 13 80.57 11.32 1.775 16 83.49 12.02 1.775	<pre>18.89 21.06 21.06 21.06 8 = 84.8 4 NODE 832.00 TC 7 BANK # 1 <<<</pre> 7 BANK # 1 <<< 7 NODE 832.00 TC 7 BANK # 1 <<< 7 NODE 832.00 TC 7 BANK # 1 <<< 7 NODE 832.00 TC 7 DOU 00 MANN 30 DOT PIEPES 100 00 00 00 MANN 30 DOT PIEPES 100 00 00 00 MANN 30 DOT PIEPES 100 00 00 00 00 MANN 30 DOT PIEPES 100 00 00 00 00 00 00 00 00 00 00 00 00	EMD OF STUDY SUMMARY: TOTAL AREA(ACRES) = 84.8 TC(MIN.) = 19.38 PEAK FLOW RATE (CFS) = 90.53 *** PEAK FLOW RATE TABLE *** 0(CFS) TC(MIN.) 1 57.04 7.58 2 61.45 8.01 Date: 07/03/2019 File name: P10_B8.RES Page 36
FLOW PROCESS FROM NODE 840.00 TO NODE 840.00 IS CODE = 12 >>>>>CLEAR MEMORY BANK # 2 <<<< r> <pre></pre>	<pre>>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY</pre> ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNDER TC INTENSITY AREA NUNBER (CFS) (MIN.) (INCH/HOUR) (ACEB) 1 24.63 7.34 2.210 21.90 2 28.66 8.93 2.007 21.90 4 33.79 11.79 1.781 21.90 6 34.43 11.79 1.775 21.90 7 34.43 11.79 1.775 21.90 6 34.43 11.79 1.775 21.90 7 34.43 11.79 1.775 21.90 8 34.57 12.02 1.735 21.90 8 34.57 12.02 1.735 21.90 8 34.57 12.02 1.735 21.90 9 33.67 12.89 1.779 21.90 10 33.70 13.89 1.676 21.90 10 33.70 13.89 1.616 21.90 10 33.70 13.89 1.616 21.90 10 33.70 13.89 1.616 21.90 10 33.70 13.89 1.616 21.90 10 33.70 13.89 1.616 21.90 10 33.70 13.89 1.616 21.90 11 33.96 6.88 2.213 62.90 2 36.89 7.32 2.213 62.90 2 36.89 7.32 2.213 62.90 4 39.73 8.01 0.38 1.865 62.90 4 4 39.73 8.01 0.38 1.865 62.90 7 47.52 11.13 1.802 62.90 7 47.52 11.13 1.865 62.90 7 47.52 11.13 1.865 62.90 7 47.52 11.13 1.865 62.90 7 47.52 11.13 1.865 62.90 7 47.52 11.13 1.865 62.90 7 47.52 11.13 1.865 62.90 7 47.52 11.13 1.865 62.90 7 47.52 11.13 1.865 62.90 7 7 47.52 11.13 1.865 62.90 7 47.52 11.13 1.865 62.90 7 47.52 11.13 1.865 62.90 7 47.52 11.13 1.865 62.90 7 47.52 11.13 1.865 62.90 7 47.52 11.13 1.865 62.90 7 47.52 11.13 1.865 62.90 7 47.52 11.13 1.865 62.90 7 47.52 11.13 1.865 62.90 7 47.52 11.13 1.865 62.90 7 47.52 11.13 1.865 62.90 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Date: 07/03/2019 File name: P10_B8.RES

8.03	8.17	8.77	8.80	9.62	11.03	11.41	11.77	11.96	12.33	12.44	12.47	12.67	13.49	13.53	14.15	14.53	19.38	19.53	21.70		RATIONAL METHOD ANALYSIS
61.50	61.97	65.61	65.78	68.04	76.79	78.00	80.74	80.92	80.57	80.61	80.57	81.40	83.73	83.84	83.49	83.63	90.53	90.30	88.75		OF RATIONAL M
с	4	ы	9	L	ω	6	10	11	12	13	14	15	16	17	18	19	20	21	22		END 0

Date: 07/03/2019 File name: P10_B8.RES

Page 38

Page 37

<pre>D INTTIAL SUBAREA ANALYSIS<<<</pre> Call SUBAREA UNIFORM Tel SUBAREA UNIFORM (S COMERCIAL (ELEUVATION CHANGE)]**.2 (ELEUVATION CHANGE)]**.2 (ELEUVATION CHANGE)]**.2 (ELEUVATION CHANGE)]**.2 (FELET) = 1567.00 (FEET) = 1567.	IUTAL KUNDEF (LES) = 3. ************************************	TOTAL REA(ACRES) = 3.7 TOTAL RUNOFF(CFS) = 5.30 TC(MIN.) = 10.87 ************************************	REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH (FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.3 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 6.63 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.30 PIPE TRAVEL TIME(MIN.) = 0.25 TC(MIN.) = 11.12 LONGEST FLOMPATH FROM NODE 900.00 TO NODE 902.00 = 1240.00 FEET.	Y COPIED ONTO MEMORY BANK # 1 << **********************************	ASSUMED INTTAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 Date: 07/03/2019 File name: P10_B9AA.RES Page 2
<pre>x************************************</pre>	<pre>************************************</pre>	USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.880 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.780 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.690 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 2.690 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 2.690		30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0. JOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) 312E PIPE WITH A FLOW CAPACITY GREATER THAN	UK EUUAL TO THE UFSTRLAM IKIBUTAKY FIFE.* ***********************************

905.(4T STRE CONFLU CONFLU CONFLU CONFLU CONFLU CONFLU CONFLU CONFLU	STREAM AREA (ACRES) = 2.9 FLOW RATE (CFS) AT CONFLUENCE MELUENCE DATA ** M RUNDFF TC IN R (CFS) (MIN.) (IN 3.37 8.53	5.05 9.17 1.981 ALL INTENSITY AND TIME OF CONCENTRATION RATI UENCE FORMULA USED FOR 2 STREAMS. AK FLOW RATE TABLE ** M RUNOFF TC INTENSITY R (CFS) (MIN.) (INCH/HOUR) 8.07 8.53 2.053	2 8.31 9.17 1.981 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.31 Tc(MIN.) = 9.17 TOTAL AREA(ACRES) = 4.6 LONGEST FLOWPATH FROM NODE 903.00 TO NODE 905.00 = 560.00 FEET.	****** ODE = 	REPRESENTATIVE SLOPE0.0100REPRESENTATIVE SLOPE0.0100FLOW LENGTH (FEET)= 160.00MANNING'S N= 0.013DEPTH OF FLOW NLOCITY (FEET/SEC.)= 6.31ESTIMATED PIEE DIAMETER (INCH)= 18.00NUMBER OF PIEES= 8.31PIEF-FLOW (CFS)= 8.31PIEF TRAVEL TIME (MIN.)= 0.42TC (MIN.)= 9.59LONGEST FLOWPATH FROM NODE903.00LONGEST FLOWPATH FROM NODE903.00	<pre>************************************</pre>		Date: 07/03/2019 File name: P10_B9AA.RES Page 4
<pre>LOW-LENGTH (FEET) = 190.00 (FEET) = 1598.00 CON (FEET) = 1599.00 COE (FEET) = 1599.00 COE (FEET) = 1.00 .00**3)/(1.00)]**.2 = 7.061 LINTENSITY (INCH/HOUR) = 2.253 DN IS "C" DN IS "C" S) = 3.37</pre>	TOTAL AREA(ACRES) = 1.70 TOTAL RUNOFF(CFS) = 3.37 ***********************************	REPRESENTATIVE SLOPE = 0.0060 RLOW LENGTH(FEET) = 370.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.20 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.37 PIPE TRAVEL TIME(MIN.) = 1.47 Tc(MIN.) = 8.53 LONGEST FLOWPATH FROM NODE 903.00 TO NODE 905.00 = 560.00 FEET.	**************************************	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.53 RAINFALL INTENSITY(INCH/HR) = 2.05 TOTAL STREAM AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.37	<pre>************************************</pre>	<pre>INITIAL SUBAREA FLOW-LENCTH (FEET) = 370.00 UPSTREAM ELEVATION (FEET) = 1597.00 DOWNSTREAM ELEVATION (FEET) = 1595.00 ELEVATION DIFFERNCE (FEET) = 1.595.00 TC = 0.303*[(370.00**3)/(2.00)]**.2 = 9.169</pre>	(INCH/HOUR) = 1.981 FF COEFFICIENT = .8791 5.05 90 TOTAL RUNOFF(CFS) = 5.05	Date: 07/03/2019 File name: P10_B9AA.RES Page 3

** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 10.49 8.96 2.005 2 10.45 9.17 1.981 3 10.73 9.59 1.938 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 10.73 TC (MIN.) = 9.59 TOTAL AREAACTES) = 6.0 LONGEST FLOWPATH FROM NODE 907.00 TO NODE 906.00 = 1130.00 FEET. ************************************	<pre>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<</pre> >>>>USING COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOM) REPRESENTATIVE SLOPE = 0.0100 REPRESENTATIVE SLOPE = 0.0100 PILENCH (FEET) = 50.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.1 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 6.79 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.1 INCHES PIPE-FLOW (CFS) = 10.73 PIPE-FLOW (CFS) = 10.73 PIPE-FLOW (CFS) = 0.12 TC (MIN.) = 9.71 LONGEST FLOWPATH FROM NODE 907.00 TO NODE 909.00 = 1180.00 FEET. **********************************	TUTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEFENDENT STREAM 1 ÅRE: TIME OF CONCENTRARION(MIN.) = 9.71 RAINFALL INTESTY(INH(HR) = 1.93 TOTAL STREAM AREA(ACRES) = 6.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.73 ************************************	ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K* (LENGTH**3) / (ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH (FEET) = 250.00 UPSTRAM ELEVATION (FEET) = 159.00 DOWNSTREAM ELEVATION (FEET) = 159.00 DOWNSTREAM ELEVATION (FEET) = 159.00 ELEVATION DIFFERENCE (FEET) = 1591.00 ELEVATION DIFFERENCE (FEET) = 1597.00 DOWNSTREAM ELEVATION (FEET) = 1597.00 DOWNSTREAM ELEVATION (FEET) = 1597.00 DOWNSTREAM ELEVATION (FEET) = 1597.00 ELEVATION DIFFERENCE (FEET) = 1597.00 ELEVATION DIFFERENCE (FEET) = 1597.00 DOWNSTREAM ELEVATION (FEET) = 1597.00 TC = 0.003*[(250.00*3)/((6.00)]**.2 = 5.817 TC = 0.033*[(250.00*3)/((6.00)]**.2 = 5.817 TO TAL AREA (ACRES) = 2.00 TOTAL RUNOFF (CFS) = 4.37 TOTAL AREA (ACRES) = 2.00 TOTAL RUNOFF (CFS) = 4.37 Date: 07/03/2019 File name: P10_B9AA.RES PAGE FILE
	2,010 .8793 .8793 	U.2.7 JC(MINU) E 907.00 TO NODE ************************************	RAINFALL INTENSITY (INCH/HR) = 1.98 TOTAL STRRAM AREA (ACEES) = 1.40 PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.47 ** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 8.07 8.96 2.005 4.60 1 8.31 9.59 1.938 4.60 2 2.47 9.17 1.981 1.40 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. Date: 07/03/2019 File name: P10_B9AA.RES Page 5

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 10.72 RAINFALL INTENSITY(INCH/HR) = 1.83 TOTAL STREAM AREA (ACRES) = 1.03 PEAK FLOW RATE(CFS) = 14.13	<pre>ELON PROCESS FEON NODE 911.00 TS OODE 21. TS PARTY TONL METHOD INITIAL STRAMEA ANALYSIS ANALYSIS</pre>
**************************************	CONTA MOMERA UP STREAM 2 ARE: CONTA MOMERA UP STREAM UP STREAM 2 ARE: TIPE OF CONCERTENTION (MIN.) = 2.43 THE OF CONCENTENTION (MIN.) = 2.43 CARLEL TITRESTEY (MONERLE) = 2.43 CARLENT TRESTEY (MONERLE) = 2.43 THE OF CONCENTENT (MONERLE) = 2.43 THE OF CONCENTENT (MONERLE) = 2.43 THE OF CONCENTENT AND THE OF CONCENTENTION ACTED TO 0.13 9.01 1.995 6.00 1 0.045 9.03 0.1991 6.00 1 0.045 9.03 0.1996 6.00 2 0.017 9.01 1.995 6.00 2 0.012 9.01 1.995 7.477 2 0.013 9.01 1.995 7.477 2 0.010 9.00 1.991 3 11.010 9.00 1.996 2 0.010 1.910 15 0.00E 991.00 = 1180.00 FEET. FLAM FIGURES FLAMMENT FIRM STREAMS FLAMMENT FIRM STREAMS FLAMMENT FLAM FLAMMENT FIRM STREAMS FLAMMENT FLAMMENT FIRM STREAMS FLAMMENT FLAM FLAMMENT FIRM STREAMS FLAMMENT FLAMMENT FLAMMENT FIRM STREAMS FLAMMENT FLAMMENT FIRM STREAMS FLAMMENT FLAMMENT FLAMMENT FIRM STREAMS FLAMMENT FLAMMENT FIRM STREAMS FLAMMENT FLAMME

FLOW PROCESS FROM NODE 902.00 TO NODE 913.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOM)<<<<	REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH(FEET) = 130.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.6 INCHES DIPDE_PTOMA VEDATIV/EDEMACEON		- 0.10 TOUTONDE NODE 907.00 TO NODE ************************************	>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<	**************************************	>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<	ASSUMED INTTAL, SUBARRA INTERNA	DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = K*[(LENCTH**3)/(ELEVATION CHANGE)]**.2 INTTIAL SUBARA FLOW-LENCTH(REET) = 640.00 UPSTREAM ELEVATION(FEET) = 1654.00 DOWNSTREAM ELEVATION(FEET) = 1654.00 ELEVATION DIFFERENCE(FEET) = 1603.00 ELEVATION DIFFERENCE (FEET) = 51.00 TC = 0.533*[(640.00*3)/(51.00)]**.2 = 11.711 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.757 UNDEVELOPED WATTERSHED RUNOFF COFFICIENT = .6712 SOIT CTASCIPTCATION OF COFFICIENT = .6712	SUBARA RUNDERCES = 3.30 TOTAL AREA (ACRES) = 2.80 TOTAL RUNOFF(CFS) = 3.30	**************************************	>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOM)<<<<<	REPRESENTATIVE SLOPE = 0.0500 FLOW LENGTH(FEET) = 640.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.03 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.30 PIPE TRAVEL TIME (MIN.) = 1.18 TC(MIN.) = 12.89 IONNOF FLOW(CFS) = 0.14 OD MONDT 016.00 - 1200.00 EDEM	914.00 IO NUDE 910.00 = ***********************************	>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<	Date: 07/03/2019 File name: P10_B9AA.RES Page 10
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 19.63 TC(MIN.) = 10.72 TOTAL AREA(ACRES) = 12.2 LONGEST FLOWPATH FROM NODE 907.00 TO NODE 911.00 = 1610.00 FEET.	911.00 TO NODE 902.00 IS CODE =	>>>>>CCOMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<) MANNING'S N = 0.013 LPE IS 15.9 INCHES = 10.03	CH) = 21.00 NUMBER OF FIFES = 3 0.22 Tc(MIN.) = 10.94 0.22 0.00 0.00 0.00 0.00	NUDE 90/.00 TO NUDE 902.00 = 1	FLOW PROCESS FROM NODE 902.00 TO NODE 912.00 IS CODE = 11		** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 14.62 7.09 2.248 12.20 2 19.18 10.30 1.871 12.20 3 19.22 10.52 1.852 12.20 4 19.63 10.94 1.817 12.20 5 19.52 12.52 1.700 0.000 12.20	THE ADDRESS AND AND ANTO TO MODE ANTO A	STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 5.30 11.12 1.802 3.70 LONGEST FLOWPATH FROM NODE 900.00 TO NODE 902.00 = 1240.00 FEET.	** PEAK FLOW RATE TABLE ** sudeam dingred to timpaging	24.52 (NII.) (18.00 7.09 24.09 10.30 24.23 10.52 24.84 10.94 24.77 11.12 24.55 12.52	COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 24.84 TC(MIN.) = 10.94 TOTAL AREA(ACRES) = 15.9	*************************	Date: 07/03/2019 File name: P10_B9AA.RES Page 9

>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<	TOTAL NUMBER OF STREAMS = 2 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.61 RAINFALL INTENSITY(INCH/HR) = 2.04 TOTAL STREAM AREA(ASES) = 1.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.11	ENSITY H/HOUR 676	TABLE ** 1.070 8.61 2.043 8.61 2.043 1 USED FOR 2 STREAMS. TABLE ** INTENSITY TC INTENSITY (MIN.) (INCH/HOUR) 8.61 2.043 12.89 1.676	DE ESTIMATES ARE (1) = 5.85 = 4.6 FROM NODE 914	**************************************	<pre>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<< >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH(FEET) = 130.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.0 INCHES </pre>	PIPE-FLOW VELOCITY (FEFT/SEC.) = 6.76 ESTIMATED PIPE DIAMETER (INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.85 PIPE TRAVEL TIME (MIN.) = 0.32 TC (MIN.) = 13.21 LONGEST FLOWPATH FROM NODE 914.00 TO NODE 913.00 = 1410.00 FEET.	**************************************	VFLUENCE DATA ** TC INTENSITY P (MIN.) (INCH/HOUR) (P 8 04 2 006	1 0.022 0.034 2.000 4.00 2 5.85 13.21 1.656 4.60 LONGEST FLOWPATH FROM NODE 914.00 TO NODE 913.00 = 1410.00 FEET.	** MEMORY BANK # 2 CONFLUENCE DATA ** Date: 07/03/2019 File name: P10_B9AA.RES Page 12
	TOTAL NUMBER OF STREAMS = 2 CONFUTENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 12.89 RAINFALL INTENSITY (INCH-R) = 1.68 TOTAL STREAM AREA(ACRES) = 2.80 FEAK FLOW RATE(CFS) AT CONFLUENCE = 3.30	**************************************	ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 840.00 UPSTREAM ELEVATION(FEET) = 1606.00 DOWNSTREAM ELEVATION(FEET) = 1567.00 ELEVATION DIFFERENCE(FEET) = 39.00 TC = 0.303*[(840.00**3)/(39.00)]**.2 = 8.278 10 YEAR RAINFALL NITENSITY(INCHHOUR) = 2.083 COMMERCIAL DEVELOPMENT RUNGF COFFICIENT = 8799		910.00 IO NOUS 910.00 IS COUP - EA TO MAINLINE PEAK FLOW<<<<	10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.083 UNDEVELOPED MATERSHED RUNOFF COEFFICIENT = .6990 SOIL CLASSIFICATION IS "C" SUBAREA AREA (ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 0.73 TOTAL AREA (ACRES) = 1.8 TOTAL RUNOFF(CFS) = 3.11 TC(MIN.) = 8.28	<pre>************************************</pre>			**************************************	>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< Date: 07/03/2019 File name: P10_B9AA.RES Page 11

ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(ENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 900.00 UPSTREAM ELEVATION(FEET) = 155.00 DOWNSTREAM ELEVATION(FEET) = 152.00 ELEVATION DIFFERENCE(FEET) = 33.00 TC = 0.333*[(900.00**3)/(33.00)]**.2 = 8.921 10 YEAR RAINFALL INTENSTTY(INCH(HOUR) = 2.008 COMMERCIAL DEVELOPMENT RUNFF COEFFICIENT = 8793 SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF (CFS) = 1.41 TOTAL AREA (ACRES) = 0.80 TOTAL RUNOFF(CFS) = 1.41 ************************************	NODE FLOW TR. FLOW TR. R-ESTIMM PE = 0 = 50 = 50 (FEET/SI (FEET/SI METER(II) 1.		<pre>* TC INTENSITY AREA TC INTENSITY AREA 7.64 2.167 20.50 9.24 1.974 20.50 10.81 1.827 20.50 11.45 1.777 20.50 11.45 1.777 20.50 11.45 1.777 20.50 11.45 1.777 20.50 13.03 1.668 20.50 13.49 1.668 20.50 13.49 1.668 20.50 13.68 1.668 20.50 13.49 1.668 20.50 13.49 1.639 20.50 13.49 1.637 20.50 13.49 1.638 20.50 13.49 1.638 20.50 13.49 1.638 20.50 13.49 2.0.50 1.91 0.80</pre>	Date: 07/03/2019 File name: P10_B9AA.RES Page 14
STREAM RUNGFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 18.00 7.34 2.210 15.90 2 24.09 10.53 1.851 15.90 4 24.84 11.17 1.799 15.90 5 24.77 11.35 1.799 15.90 6 24.57 11.35 1.785 15.90 10.0GEST FLOWPATH FROM NODE 907.00 TO NODE 913.00 = 1870.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 7 25.36 7.34 2.010 7 00 10 10 10 10 10 11 10 10 10 10 10 10	10.53 10.75 11.17 11.17 11.35 11.35 12.75 13.21 ACE ESTIMATES ARE A 30.17 ************************************	TRAVEL TIME THRU SUBAREA<<<<> TIMATED FIPESIZE (NON-PRESSURE FLOW) <<<>> 0.0150 170.00 MANNING'S N = 0.013 170.00 MANNING'S N = 0.013 T/SEC.) = 10.13 X/SEC.) = 10.13 NUCH PIPE IS 18.9 INCHES 10.17 0.17 0.17 0.17 0.28 NODE 907.00 TO NODE 919.00 = 204 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	DE 913.00 TO NODE 913.00 IS CODE = ENDENT STREAM FOR CONFLUENCE<<<>> AMS = 2 AMS = 2 AMS = 2 AMS = 13.03 N(MIN.) = 13.03 NGH/HR) = 1.67 RES) = 20.50 AT CONFLUENCE = 30.17 RES) = 20.00 TO NODE 921.00 IS CODE = INITIAL SUBAREA ANALYSIS<<<<>>	Date: 07/03/2019 File name: P10_B9AA.RES Page 13

	2040.00 FEET.		
	13.03 919.00 =	13.03	
INTENSITY (INCH/HOUR) 2.167 1.991 1.974 1.827 1.827 1.777 1.668 1.668 1.668 1.639 2.639 2.8 ARF AS FOLLOWS.	. 00	21.3 TC(MIN.) = 31.35	S15
IABLE C IN IT I I I I I I I I I I I I I I I I I I	0	MARY:) = () = FES) = TE(MIN) + 7.64 9.08 9.08 9.24 10.81 11.45 11.63 11.6	THOD ANALYSIS
-LUW KATE RUNDFF 21.555 26.73 27.16 30.29 31.05 31.05 31.05 31.05 31.11 31.05 31.11	7 RATE (CF 1A (ACRES) 7LOWPATH	END OF STUDY SUMMARY TOTAL AREA (ACRES) PEAK FLOW RATE T *** PEAK FLOW RATE T Q(CFS) TC(M 23.55 2 6.73 3 2.7.16 4 30.29 1 2 5 31.05 1 7 6 31.05 1 1 7 31.05 1 1 8 31.11 1 1	RATIONAL METHOD
*** PEAK F STREAM NUMBER 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PEAK FLO TOTAL AR LONGEST	END OF S' TOTAL AR PEAK FLO PEAK FLO *** PEAK 1 1 1 2 2 3 3 3 3 3 3 8 8 9 8 8 9 8	END OF R

Date: 07/03/2019 File name: P10_B9AA.RES

Page 15

File name: P10_B9AA.RES

Date: 07/03/2019

<pre>ioD INITIAL SUBAREA ANALYSIS<<<</pre> TTAL SUBAREA UNIFORM TS IS: UNDEVELOPED WITH POOR COVER)/(ELEVATION CHANGE)]**.2 OW-LENGTH (FEET) = 980.00 ((FEET) = 1715.00 ON (FEET) = 1670.00 ((FEET) = 45.00) on (FEET) = 2.171 SHED RUNOFF COEFICIENT = .7053 N IS "C") = 16.54	TOTAL AREA (ACRES) = 10.80 TOTAL RUNOFF (CFS) = 16.54 ************************************	<pre>0.0 MANNING'S N = .0300 TAPL NOTATION) = 0.02000 2.00 2.00 2.00 2.00 2.00 2.00 2</pre>
<pre>xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</pre>	<pre>************************************</pre>	USER SEPECIFIED HYDROLOGY AND HYDRAULIC MODEL INPORMATION: USER SEPECIFIED STORM EVENT(TEAR) = 100.00 SPECIFIED MINIUMU PIE SIZE (MICH) = 6.00 SPECIFIED FROM 10-MINUTE INTERSITY (INCH/HOUS) = 1.800 10-YEAR STORM 10-MINUTE INTERSITY (INCH/HOUS) = 1.800 10-YEAR STORM 06-MINUTE INTERSITY (INCH/HOUR) = 1.120 10-YEAR STORM 60-MINUTE INTERSITY (INCH/HOUR) = 1.120 100-YEAR STORM 60-MINUTE INTERSITY (INCH/HOUR) = 1.120 SIDEPE OF 100-YEAR INTERSITY (INCH/HOUR) = 1.120 SIDEPE OF 100-YEAR INTERSITY (INCH/HOUR) = 1.120 SIDEPE OF 100-YEAR INTERSITY OCUVE = 0.4990233 SLOEPE OF 100-YEAR INTERSITY DATA: STORM HYPEN = 100.00 L+HORIN INTERSITY (INCH/HOUR) = 1.120 SIDEPE OF 100-YEAR INTERSITY DATA: STORM HYPEN = 100.00 L+HORIN INTERSITY (INCH/HOUR) = 1.120 SLOEPE OF INDEXICAT MANULUE CC-VALUES USED FOR RATIONAL METHOD NOTE: CONSULTED STREEM ANNLYYES WIDTH CORSCENTL: CUTWE UNTERSITY (INCH/HOUR) = 1.120 SLOEPE OF INDEXICATION CURVE = 0.4990233 (CORDED OF INTERSITY DATA: STREET FLOW OF INTERSITY OF OND I HID HID HID HIF HIE FRACTOR NOT: CONSTELLIN - / OUT-/PARCH HEIGHT MIDTH LIP HIE HIE RACTOR NOT: CONSTELLIN - / OUT-/PARCH HEIGHT MIDTH LIP HIE HIE RACTOR NOT: (FT) (FT) (FT) (FT) (CT) (CT) (CT) (CT) 1 30.0 20.0 0.018/0.020 0.67 2.000 0.0313 0.167 0.0150 GLOBAL STREET FLOM-DEPTH CONSTRALLY CORPENDENTERS: MANUNCA NDTH ROSSFRILLIN - / OUT-/PARCH HEIGHT MIDTH LIP HIE HIE RACTOR NDT = 00001018/0.020 0.67 2.000 0.0313 0.167 0.0150 SLIEPE MITH A FLOW CARACITY GRANTER THAN OR EQUAL TO THE UPSTREAM TRIDUTAL = 6.0 (FTFT/S) *SIZE FLE WITH A FLOW CARACITY GRANTER THAN NR EQUAL TO THE UPSTREAM TRIDUTAL = 6.0 (FTFT7/S) *SIZE PLE WITH A FLOW CARACITY GRANTER THAN NR EQUAL TO THE UPSTREAM TRIDUTAL = 6.0 (FTFT7/S) SLIEPE FROM NODE 800.00 TO NODE 801.00 IS CODE = 21 DAGE 97/03/2019 FLE MATER A TRIDUZERES FROM DATE PAGE AFTOR PAGE AF

FLOW PROCESS FROM NODE 806.00 TO NODE 803.00 IS CODE = 31	>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOM)<<<<<	2200 2200 APIPE IS 18.1 INCHES 2.1 = 11.59 2.1 = 27.00 NUMBER OF PIPES = 3 0.17 TC(MIN.) = 16.42	LONGEST FLOWPATH FROM NODE 804.00 TO NODE 803.00 = 1970.00 FEET. ***********************************	>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.42 RAINFALL INTENSITY(INCH/HR) = 2.11 TOTAL STREAM AREA(ACRES) = 21.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 32.88	** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 29.86 18.72 1.980 20.40 2 32.88 16.42 2.110 21.30	RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.	** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 59.08 16.42 2.110 2 60.70 18.72 1.980	COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 60.70 Tc(MIN.) = 18.72 TOTAL AREA(ACRES) = 41.7 LONGEST FLOWPATH FROM NODE 800.00 TO NODE 803.00 = 2510.00 FEET.	**************************************	>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<	REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) = 490.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 23.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.42 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1	Date: 07/03/2019 File name: P100_B8.RES Page 4
**************************************	DENT STREAM FOR CONFLUENCE<<<<		**************************************		TC = K* (LEMOTH**3)/(ELEVATION CHANGE)]**.2 INTIAL SUBAREA FLOW-LENGTH(FEET) = 1000.00 UPSTREAM ELEVATION(FEET) = 1733.00 DOWNSTREAM ELEVATION(FEET) = 1663.00 ELEVATION DIFFERENCE(FEET) = 70.00 TC = 0.533*[(1000.00**3)/(70.00)]**.2 = 14.368 INDOTATION DIFFERENCE(FEET) = 2.253	UNDEVELOTED WAIRSARD AUNOFF COFFICIENT	FLOW TRAVEL TIME THRU SUBAREA<<<	REPRESENTATIVE SLOPE = 0.0400 CHANNEL LENCTH THRU SUBAREA (FEET) = 850.00 "V" GUTTER WIDTH (FEET) = 5.00 GUTTER HIKE (FEET) = 0.800 PAVEMENT LIP (FEET) = 0.400 MANNING'S N = .0300 PAVEMENT CROSSFALL (DECIMAL NOTATION) = 0.02000	. 65	TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEETY/SEC.) = 7.52 AVERAGE FLOW DEPTH(FEET) = 1.20 FLOOD WIDTH(FEET) = 5.00 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.88 SUBARFA ARFA/ACFRS) = 11.00 SUFAAFFA ARFA/ACFRS) = 11.00	21.3 PEAK FLOW RATE (CFS) =	DEPTH(FEET) = 1.24 FLOOM NIDTH(FEET) = 9.30 DEPTH(FEET) = 1.24 FLOOD NIDTH(FEET) = 9.30 FLOW VELOCITY(FEET/SEC) = 7.33 DEPTH*VELOCITY(FT*FT/SEC) = 9.49 LONGEST FLOWPATH FROM NODE 804.00 TO NODE 806.00 = 1850.00 FEET.	Date: 07/03/2019 File name: P100_B8.RES Page 3

TIME OF CONCENTRATION(MIN.) = 11.10 RAINFALL INTENSITY(INCH/HR) = 2.56 TOTAL STREAM AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.61 ** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 59.08 17.04 2.073 41.70 1 59.08 17.04 2.073 41.70 1 60.70 19.33 1.949 41.70 2 3.61 11.10 2.557 1.90 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE PORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE **	CCES) (MJ RUNOFF (MJ (CFS) (MJ 42.09 11. 62.00 17. 63.45 19 63.45 19 63.45 19 7 CONFLUENCE ESTI M RATE(CFS) = FLOWPATH FROM N	FLOW PROCESS FROM NODE 807.00 TO NODE 810.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<< >>>>USING COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<>>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)> REPRESENTATIVE SLOPE = 0.0100 FLOW IN 39.0 INCH PIPE IS 26.6 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 10.51 ESTIMATED FILE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 63.45 PIPE FLOW OF DIAMETER(INCH) = 0.38 TC(MIN.) = 19.71 LONGEST FLOWPANH PRONNOF ROD ON NOTE A10.00 PIPET	800.00 IO NOUE 810.00 = ***********************************	ONFLUE ***** 811. 811. TIAL S
PIPE-FLOW(CFS) =60.70PIPE TRAVEL TIME (MIN.) =0.61Tc(MIN.) =PIPE TRAVEL TIME (MIN.) =0.61Tc(MIN.) =LONGEST FLOWPATH FROM NODE807.00 =3000.00 FEET.***********************************	<pre>************************************</pre>	TC = 0.533*[(570.00**3)/(56.00)]**.2 = 10.722 100 YEAR RAINFALL INFUNSTITY (INCH/HOUR) = 2.600 UNDEVELOPED WATERSHED RUNDEF COEFFICIENT = .7315 SOLL CLASSIFICATION IS "C" SUBAREA RUNDEF (CFS) = 3.61 TOTAL AREA (ACRES) = 1.90 TOTAL RUNDFF (CFS) = 3.61 ************************************	REPRESENTATIVE SLOPE = 0.0200FLOW LENGTH(FEET) = 150.00FLOW LENGTH(FEET) = 150.00MANNING'S N = 0.013DEPTH OF FLOW N 12.0 INCH PIPE IS 7.8 INCHESPIPE-FLOW VELOCITY(FEET/SEC.) = 6.69ESTIMATED PIPE DIAMETER(INCH) = 12.00NUMBER OF PIPES = 1PIPE-FLOW(CFS) = 3.61PIPE TRAVEL TIME (MIN.) = 0.37TC(MIN.) = 11.10LONGEST FLOWPATH FROM NODE807.00 = 720.00 FEET.***********************************	DENT STREAM FOR CONFLUENCE<<< JS CONFLUENCED STREAM VALUES<<< S = 2 FOR INDEPENDENT STREAM 2 ARE: FILE name: P100_B8.RES

2 47.52 12.20 2.441 3 65.47 17.43 2.050	66.72 19.71 FED CONFLUENCE ESTIMATES ARE FLOW RATE(CFS) = 66.72 AREA(ACRES) = 45.9 ST FLOWPATH FROM NODE 800 ***********************************	FLOW PROCESS FROM NODE 810.00 TO NODE 813.00 IS CODE = 31	SLOPE = SLOPE = IN 39.(CITY(FEH DIAMETH	<pre>PIPP-FLOW(CE'S) = 66.//2 PIPP-FLOW(CE'S) = 66.//2 PIPE_TRAVEL TIME(MIN.) = 0.50 Tc(MIN.) = 20.21 LONGEST FLOWPATH FROM NODE 800.00 TO NODE 813.00 = 3560.00 FEET. ***********************************</pre>	**************************************	EA UNIFORM SLOPED WITH POOR CC N CHANGE)]**.2 NN CHANGE)]**.2 FEET) = 1190.00 1691.00 1695.00 86.00	TC = U.3351(1 L190.00**2)/(86.00)]**.2 = 15.305 100 YEAR RAINPALL INTENSITY(INCH/HOUR) = 2.185 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7063 SOLL CLASSIFICATION IS "C" SUBAREA RUNOFF (CFS) = 6.17 TOTAL AREA (ACRES) = 4.00 TOTAL RUNOFF (CFS) = 6.17	911.00 10 NOUE 010.00 IS COUE - TRAVEL TIME THRU SUBAREA<<<<<< TIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<	REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) = 670.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.4 INCHES	Date: 07/03/2019 File name: P100_B8.RES Page 8
ASSUMED INTTIAL SUBAREA UNIFORM	DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOM-LENGTH(FEET) = 720.00 UPSTREAM ELEVATION(FEET) = 1718.00 DOWNSTREAM ELEVATION(FEET) = 1649.00 ELEVATION DIFFERENCE (FEET) = 690.00 TC = 0.533*[(720.00**3)/(69.00])**.2 = 11.831 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.478	I III	**************************************	REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH (FEET) = 150.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE 8.6 INCHES PIPE-FLOW VELOCITY (FEET'SEC) = 6.85 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 4.13 PIPE TRAVEL TIME (MIN.) = 0.37 TC(MIN.) = 12.20 LONGEST FLOWPATH FROM NODE 811.00 TO NODE 810.00 = 870.00 FEET.	<pre>************************************</pre>	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 12.20 RAINFALL INTENSITY (INCH/HR) = 2.44 TOTAL STREAM AREA(ACRES) = 2.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.13	** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH HOUR) (ACEE) 1 42.09 11.52 2.510 43.60 1 62.00 17.43 2.050 43.60 1 63.45 19.71 1.930 43.60 2 4.13 12.20 2.441 2.30	RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** DEAR PLOW DAME WADED **	(M)	Date: 07/03/2019 File name: P100_B8.RES Page 7

TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.05 RAINFALL INTENSITY (INCH/HR) = 2.82 TOTAL STREAM AREA(ACRES) = 2.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.14 ** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) I 6.17 16.76 2.090 4.00	5.14 9.05 2.824 ALL INTENSITY AND TIME OF CONCENTRATION RATI UENCE FORMULA USED FOR 2 STREAMS. AK FLOW RATE TABLE ** M RUNOFF TC INTENSITY R (CFS) (MIN.) (INCH/HOUR) 8.47 9.05 2.824 9.97 16.76 2.090	COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 9.97 Tc(MIN.) = 16.76 TOTAL AREA(ACRES) = 6.4 LONGEST FLOWPATH FROM NODE 814.00 TO NODE 816.00 = 1860.00 FEET. ************************************	<pre>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESURE FLOW) <<<</pre> REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH (FEET) = 380.00 MANNING'S N = 0.013 DEPTH OF FLOM IN 18.0 INCH PIPE IS 11.2 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 8.65 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOM(CFS) = 9.97 PIPE FLOM(CFS) = 0.73 Tc(MIN.) = 17.49 LONGEST FLOWPATH FROM NODE 814.00 TO NODE 819.00 = 2240.00 FEET.	<pre>************************************</pre>	ONFLUEN ******* 820.c TIAL SU
<pre>PIPE-FLOW VELOCITY(FEET/SEC.) = 7.67 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.17 PIPE TRAVEL TIME(MIN.) = 1.46 TC(MIN.) = 16.76 LONGEST FLOWPATH FROM NODE 814.00 TO NODE 816.00 = 1860.00 FEET. ***********************************</pre>	"STREAMS = 2 HES USED FOR INDEPENDENT RATION(MIN.) = 16.76 SITY(INCH/HR) = 2.09 EA(ACRES) = 4.00 (CFS) AT CONFLUENCE = (CFS) AT CONFLUENCE = ************************************	<pre>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<</pre> <pre>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<</pre> <pre>AssumeD INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = K*[(LENCTH**3)/(ELEUATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 460.00 UPSTREAM ELEVATION(FEET) = 1702.00 DOWNSTREAM ELEVATION(FEET) = 1620.00 ELEVATION IFFERENCE (FEET) = 82.00 CONTRACTION DOWNSTREAM ELEVATION (FEET) = 82.00 CONTRACTION DOWNSTREAM ELEVATION (FEET) = 82.00 CONTACTION DIFFERENCE (FEET) = 97.00 CONTACTION DIFFERENCE (FEET) = 92.00 CON</pre>	YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.8 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.8 ELOEDED WATERHED RUNGFF COEFFICIENT = .74. CLASSIFICATION IS "C" 5.14 EA RUNGFF(CFS) = 5.14 AREA (ACRES) = 2.40 TOTAL RUNGFF(C ***********************************		<pre>************************************</pre>

2 9.35 9.84 2.711 3 10.64 17.49 2.046 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 10.64 Tc(MIN.) = 17.49 TOTAL AREA(ACRES) = 6.8 LONGEST FLOWPATH FROM NODE 814.00 TO NODE 819.00 = 2240.00 FEET. ************************************	<pre>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<</pre> >>>>USING COMPUTER_ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <pre>>>>>USING COMPUTER_ESTIMATED PIPESIZE (NON-PRESSURE FLOW)</pre> REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) = 150.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.76 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.64 PIPE TRAVEL TIME(MIN.) = 0.29 TC(MIN.) = 17.78 PIPE TRAVEL TIME(MIN.) = 0.29 TC(MIN.) = 0.200 DO ENDT PIPE TRAVEL TIME(MIN.) = 0.29 TC(MIN.) = 0.200 DO ENDT PIPE TRAVEL TIME(MIN.) = 0.29 TC(MIN.) = 0.200 DO ENDT PIPE TRAVEL TIME(MIN.) = 0.29 TC(MIN.) = 0.200 DO ENDT PIPE TRAVEL TIME(MIN.) = 0.200 DO ENDT PIPE T	814.00 TO NODE 822.00 = ************************************	***** NODE A ANA A ANA ORM WITH GE)]*	INTILL SUBARCA FLOW-LENGTH (FEL) = 410.00 UPSTREAM ELEVATION (FEET) = 1691.00 DOWNSTREAM ELEVATION (FEET) = 1694.00 ELEVATION DIFFERNCE (FEET) = 1644.00 ELEVATION DIFFERNCE (FEET) = 47.00 TC = 0.533*[(410.00*3)/(47.00)]**.2 = 9.113 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.815 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7421 SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF (CFS) = 7.31 TCTAL AREA (ACRES) = 3.50 TOTAL RUNOFF (CFS) = 7.31	<pre>************************************</pre>
ASSUMED INITIAL SUBAREA UNIFORM ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED MITH POOR COVER TC = K*((LENGTH*3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION (FEET) = 1690.00 DOMNSTREAM ELEVATION (FEET) = 1640.00 ELEVATION DIFFERENCE (FEET) = 46.00 TC = 0.533*[(100.00**3)/(46.00)]**.2 = 3.925 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.	100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.775 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7768 SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF(CFS) = 1.17 TOTAL AREA (ACRES) = 0.40 TOTAL RUNOFF(CFS) = 1.17 ***********************************	REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH (FEET) = 150.00 MANNING'S N = 0.013 DEPTH OF FLOW N 9.0 INCH PIPE IS 4.7 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 5.09 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOM(CFS) = 1.17 PIPE TRAVEL TIME (MIN.) = 0.49 TC (MIN.) = 5.49 LONGEST FLOMPATH FROM NODE 820.00 TO NODE 819.00 = 250.00 FEET. ***********************************	<pre>>>>>besignate independent stream for confluence<<< >>>>>and compute various confluenced stream values<<<</pre> Total number of streams = 2 Confluence values used for independent stream 2 are: TIME of concentration(min) = 5.49 Rainfall intensity(incH/HR) = 3.61 TOTAL Stream Area(Acres) = 0.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.17	<pre>** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CF5) (MIN.) (INCH/HOUR) (ACRE) 1 8.47 9.84 2.711 6.40 1 9.97 17.49 2.046 6.40 2 1.17 5.49 3.606 0.40 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.</pre>	<pre>** PEAK FLOW RATE TABLE ** STRRAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 5.90 5.49 3.606 Date: 07/03/2019 File name: P100_B8.RES Page 11</pre>

ESTIMATED FIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 16.43 PIPE TRAVEL TIME(MIN.) = 0.17 TC(MIN.) = 10.30 LONGEST FLOWPATH FROM NODE 814.00 TO NODE 813.00 = 2490.00 FEET. ************************************	** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 10.39 6.01 3.450 10.30 2 16.05 9.64 2.738 10.30 3 16.43 10.30 2.651 10.30	16.01 17.95 2.021 ST FLOWPATH FROM NODE 814.00 TO NODE MORY BANK # 1 CONFLUENCE DATA ** M RUNDFF TC INTENSITY R (CFS) (MIN.) (INTENSITY	K FLOW RATE TABLE **	z cc		COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 81.83 Tc(MIN.) = 20.21 TOTAL AREA(ACRES) = 56.2 ************************************	>>>>CLEAR MEMORY BANK # 1 <<<<	**************************************	<pre>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<</pre>	Date: 07/03/2019 File name: P100_B8.RES Page 14
<pre>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<</pre> <pre> REPRESENTATIVE SLOPE = 0.0200 FLOM LENGTH (FEET) = 170.00 MANNING'S N = 0.013 DEPTH OF FLOM N 15.0 INCH PIPE IS 10.6 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 7.92 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 7.31 PIPE FLOW COFS) = 7.31 PIPE TRAVEL TIME (MIN.) = 0.36 TC (MIN.) = 9.47 LONGEST FLOWPATH FROM NODE 814.00 TO NODE 822.00 = 580.00 FEET.</pre>	**************************************	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.47 RAINFALL INTENSITY(INCH/HR) = 2.76 TOTAL STREAM AREA(ACRES) = 3.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.31	** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 5.90 5.82 3.505 6.80 1 9.35 10.13 2.673 6.80 1 10.64 17.78 2.030 6.80	1.31 9.47 2.763 ALL INTENSITY AND TIME OF CONCENTRATION RATI UENCE FORMULA USED FOR 2 STREAMS.	NI)	TED CON FLOW R ² AREA (² ST FLOW	**************************************	>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<	REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) = 0.0000 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH FIPE IS 13.9 INCHES FIPE-FLOW VELOCITY(FEET/SEC.) = 9.76	Date: 07/03/2019 File name: P100_B8.RES Page 13

TOTAL STREAM AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.70 ************************************	ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2	<pre>INITIAL SUBAREA FLOW-LENGTH (FEET) = 480.00 UPSTREAM ELEVATION(FEET) = 1605.00 DOWNSTREAM ELEVATION(FEET) = 1587.00 ELEVATION DIFFERENCE(FEET) = 1587.00 ELEVATION DIFFERENCE(FEET) = 18.00 TC = 0.303*[(480.00**3)/(18.00)]**.2 = 6.907 100 YEAR RANFALL INTENSTY(INCH/HORR) = 3.224 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8859</pre>	SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF(CFS) = 5.71 TOTAL AREA(ACRES) = 2.00 TOTAL RUNOFF(CFS) = 5.71 ************************************	NDEPENDENT STREAM FOR VARIOUS CONFLUENCED	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.91 RAINFALL INTENSITY(INCH/HR) = 3.22 TOTAL STREAM AREA(ACRES) = 2.00 PFAK FLOM PAUPT(FES) are CONFLINENC = 5.71	J.'' ENSITY AF H/HOUR) (AC .216	(AND A USE TABI (5.210 TES ARE AS FOLLOWS: 11.40 Tc(MIN.) = 6.94 3.7	LONGEST FLOMPATH FROM NODE 825.00 TO NODE 827.00 = 950.00 FEET. ***********************************	Date: 07/03/2019 File name: P100_B8.RES Page 16
FLOW LENGTH (FEET) = 510.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.6 INCHES PIPEFTCOW VELOCITY (FEET/SEC.) = 18.83 ESTIMATED PIPE DIAMETER (INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 81.83 PIPE-FLOW (CFS) = 81.83 PIPE-FLOW (CFS) = 0.45 TC (MIN.) = 20.66 LONGEST FLOW PATH FROM NODE 800.00 TO NODE 824.00 = 4070.00 FEET.	* * * 도	<pre>>>>>MENDER MANUAL COPIED ONTO MEMORY BANK # 1 <<<< >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>		DUWNSTREAM ELEVATION (FEET) = 1598.00 ELEVATION DIFFERENCE (FEET) = 24.00 TC = 0.303*(290.00**3) / (24.00)]**.2 = 4.819	COMFUTED TIME OF CONFENTENTION INCREASED TO 5 MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.775 COMMERCIAL DEVELOPMENT RUNGFF COEFFICIENT = .8877 SOIL CLASSIFICATION IS "C" SUBAREA RUNGFF(CFS) = 5.70 TOTAL AREA (ACRES) = 1.70 TOTAL RUNGFF(CFS) = 5.70	<pre>************************************</pre>	REPRESENTATIVE SLOPE0.0100FLOW LENGTH (FEET)= 60.00MANNING'S N= 0.013DEPTH OF FLOW IN 15.0 INCH PIPE IS 11.4 INCHESPIPE_FLOW VELOCITY (FEET/SEC.)= 5.7ESTIMATED PIPE DIAMETER(INCH)= 15.00NUMBER OF PIPES= 1.94TC EVENU (CFS)= 5.70PIPE TRANEL TIME (MIN.)= 1.94TONGEST FLOWPATH FROM NODE825.00 TO NODEB27.00= 950.00 FEET.	**************************************	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 6.94 RAINFALL INTENSITY (INCH/HR) = 3.22	na

R (CFS) (MIN.) (INCH/HOUR) (AC 11.38 7.09 3.182	A USE TABI	COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOR RATE(CFS) = 14.78 Tc(MIN.) = 7.13 TOTAL AREA(ACRES) = 5.1 LOGEST FLOWPATH FROM NODE 825.00 TO NODE 829.00 = 1050.00 FEET. ************************************	FLOW PROCESS FROM NODE 829.00 TO NODE 824.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOM TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOM)<<<<	REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH (FEET) = 40.00 MANNING'S N = 0.013 DEPTH OF FLOM IN 21.0 INCH PIPE IS 12.9 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 9.55 ESTIMATED FIPE DIAMETER (INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 14.78 FIPE TRAVEL TIME (MIN.) = 0.07 TC (MIN.) = 7.20 LONGEST FLOWRATH FROM NODE 825.00 TO NODE 824.00 = 1090.00 FEET.	**************************************	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.20 RAINFALL INTENSITY(INCH/HR) = 3.16 TOTAL STREAM AREA(ACRES) = 3.16 PEAK FLOW RAFE(ACRES) = 5.10 PEAK FLOW RAFE(CRES) ar CONFLUENCE = 14.78	* * * * * NODE	ASSUMED INITIAL SUBAREA UNIFORM ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENCTH*3)/(ELEYATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENCTH(FEET) = 640.00 UPSTREAM ELEVATION(FEET) = 1592.00 DOWNSTREAM ELEVATION(FEET) = 1592.00	Date: 07/03/2019 File name: P100_B8.RES Page 18
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<	REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH (FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.3 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 8.88 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOM(CPS) = 11.40 PIPE-TROM(CPS) = 11.40 PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN.) = 7.13 LONGEST FLOWPATH FROM NODE 825.00 TO NODE 829.00 = 1050.00 FEET.	<pre>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ÅRE: TIME OF CONCENTRATION (MIN.) = 7.13 RATHFALL, INTENSITY (INCH/HR) = 3.17</pre>	TOTAL STREAM AREA (ACRES) = 3.70 TOTAL STREAM AREA (ACRES) = 3.70 PEAK FLOW RATE (CFS) AT CONFLUENCE = 11.40 ************************************	<pre>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<</pre> >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<< assumed initial subarea uniform bevelopment is commercial TC = K*[(LENGTH*3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 640.00 UPSTREAM ELEVATION(FEET) = 1592.00 DOWNSTREAM ELEVATION(FEET) = 1592.00	ELEMATION DIFFERENCS(FEET) = 22.00 TC = 0.303*[(640.00**3)/(22.00)]**.2 = 7.885 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.021 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8851 SOIL CLASSIFICATION IS "C"	SUBAREA RUNOFF(CFS) = 3.74 TOTAL AREA(ACRES) = 1.40 TOTAL RUNOFF(CFS) = 3.74 ************************************	TEN TEN	TIME OF CONCENTRATION (MIN.) = 7.89 RAINFALL INTENSITY (INCH/HR) = 3.02 TOTAL STREAM AREA (ACRES) = 1.40 PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.74 ** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA	Date: 07/03/2019 File name: P100_B8.RES Page 17

LONGEST FLOWPATH FROM NODE 825.00 TO NODE 824.00 = 1090.00 FEET. ***********************************	IN STREAM CONFLUENCE DATA ** M RUNOFF TC INTENSITY A R (CES) (MIN.) (INCH/HOUR) (A 18.59 7.16 3.166 18.64 7.20 3.159	7.96 3.008 7.98 3.003 FROM NODE 825.00 TO NODE 1 CONFLUENCE DATA ** TC INTENSITY (MIN.) (INCH/HOUR) (6.57 3.302 10.15 2.670	5.6 1.19 12.56 61.19 12.56 62.32 13.23 81.47 18.38 81.45 18.40 81.83 20.66 81.83 20.66 81.83 20.66	FLOW RATE TABLE ** RUNOFF TC INTENSITY (CFS) (MIN.) (INCH/HOUR) 50.35 6.57 3.302 55.84 7.16 3.166	3 30.00 7.20 3.139 4 60.22 7.96 3.008 5 60.32 7.96 3.003 6 69.53 10.15 2.670 7 71.92 10.81 2.590 8 76.29 12.56 2.406 9 77.04 13.23 2.346 10 94.00 18.38 1.997 11 93.98 18.40 1.996	93.66 TED CONFLUENCE ES FLOW RATE(CFS) = AREA(ACRES) =	**************************************	FLOW PROCESS FROM NODE 824.00 TO NODE 832.00 IS CODE = 31 Date: 07/03/2019 File name: P100_B8.RES Page 20
ELEVATION DIFFERENCE (FEET) = 22.00 TC = 0.303*[(640.00**3)/(22.00)]**.2 = 7.885 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.021 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8851 SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF (CFS) = 4.28 TOTAL AREA (ACRES) = 1.60 TOTAL RUNOFF (CFS) = 4.28	<pre>#LOW PROCESS FROM NODE 831.00 TO NODE 824.00 IS CODE = 31 PLOW PROCESS FROM NODE 831.00 TO NODE 824.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<>>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<>>>>>UTIME PIPE-FLOW TRAVEL TIME TO SUBAREA<</pre>	REPRESENTATIVE SLOPE = 0.0200 REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH (FEET) = 40.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.9 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 6.88 ESTIMATED PIPE DIAMETER (INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.28 PIPE TRAVEL TIME (MIN.) = 0.10 TC (MIN.) = 7.98 LONGEST FLOWPATH FROM NODE 830.00 TO NODE 824.00 = 680.00 FEET.	<pre>************************************</pre>	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.98 RAINFALL INTENSITY(INCH/HR) = 3.00 TOTAL STREAM AREA (ACRES) = 1.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.28	** CONFLUENCE DATA ** STREAM RUNGFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 14.75 7.16 3.166 5.10 1 14.78 7.20 3.159 5.10 1 14.59 7.96 3.008 5.10 2 4.28 7.98 3.003 1.60	LL INTENSITY AND TIME OF ENCE FORMULA USED FOR 2 K FLOW RATE TABLE ** RUNOFF TC	NUMBER (CFS) (MIN.) (INCH/HOUR) 1 18.59 7.16 3.166 2 18.64 7.20 3.159 3 18.86 7.96 3.008 4 18.85 7.98 3.003	COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 18.86 Tc(MIN.) = 7.96 TOTAL AREA(ACRES) = 6.7 Date: 07/03/2019 File name: P100_B8.RES Page 19

TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 10.66 RAINFALL INTENSITY(INCH/HR) = 2.61 TOTAL STREAM AREA(ACRES) = 3.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.26 ************************************	<pre>>>>>A>>>P>>>P>>>P>>>P>>>P>>>P>>>>>>>>></pre>	**************************************
AVEL TIME THRU SUBAREA- AVED PIPESIZE (NON-PRE 0.0200 .000 MANNING'S N = 0 .11 PIPE IS 27.6 INCHE 5C.) = 14.98 ACH) = 39.00 NUMBEI 00	<pre>DIRE TRANEL TIME (MIN.) = 0.10 TO (MDE B32.00 = 4160.00 FEET. DIMERST FLOWEATH FROM NODE B32.00 TO NODE B32.00 = 4160.00 FEET. FLOW FROCESS FROM NODE B32.00 TO NODE B32.00 IS CODE = 10 >>>>MANDELH-STREAM MEMORY COFIED ONTO MEMORY BANK # 1 <<</pre> TELOW FROCESS FROM NODE B32.00 TO NODE B33.00 IS CODE = 10 >>>>MANDELH-STREAM MEMORY COFIED ONTO MEMORY BANK # 1 << TELOW FROCESS FROM NODE B33.00 TO NODE B33.00 IS CODE = 21 >>>>MANDELH-STREAM MEMORY COFIED ONTO MEMORY BANK # 1 < TELOW FROCESS FROM NODE B33.00 TO NODE B33.00 IS CODE = 21 >>>>MANDELH-STREAM MEMORY COFIED ONTO MEMORY BANK # 1 < TELOW FROCESS FROM NODE B33.00 TO NODE B33.00 IS CODE = 21 >>>>MANDELH METHOD INITIAL SUBAREA MILITYSES TE ANDATIONAL METHOD NITIAL SUBAREA MILITYSES TE ANDATION NETHOR MEMORY AND A 2 918 ATO 0 TO COMMARCIAL DEVELOPMENT = 8047 0 TO COMMARCIAL DEVELOPMENT IS COMMENDAL = 1617.00 TO COMMARCIAL DEVELOPMENT IS COMMENDAL = 1617.00 TO COMMANCIAL DEVELOPMENT IS COMMENDAL = 2.918 COMMANDIN =	Date: 07/03/2019 File name: P100_B8.RES Page 21

C.) = 9.55 CH) = 21.00 NUMBER OF PIPES = 1 0.12 TC(MIN.) = 10.79	LONGEST FLOWPATH FROM NODE 833.00 TO NODE 838.00 = 1340.00 FEET. ***********************************	TOTAL NUMBER OF STREAMS = 2 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.79 RAINFALL INTENSITY(INCH/HR) = 2.59 FORMIT STREAM ADFALACENT = 6.60	ONFLUEN ****** 839.0	NITIAL SUBAREA ANALYSIS<<<<	ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL	7ATI(1111) 	UPETREAM ELEVATION (FEET) = 1528.00 DOWNSTREAM ELEVATION (FEET) = 1597.00 ELEVATION DIFFERENCE (FEET) = 31.00 TC = 0.303*[(710.00**3)/(31.00)]**.2 = 7.836 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.031 COMMERCIAL DEVELOPMENT RUNGFF COEFFICIENT = .8851	SOLL CLASSIFICATION IS "C" SUBAREA RUNOFF(CFS) = 2.41 TOTAL AREA(ACRES) = 0.90 TOTAL RUNOFF(CFS) = 2.41	<pre>************************************</pre>	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCURTRATION(MIN.) = 7.84 RAINFALL INTENSITY(INCH/HR) = 3.03 TOTAL STREAM AREA(ACRES) = 0.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.41	FLUENCE DATA **	M RUNOFF TC IN R (CFS) (MIN.) (IN 13.84 8.71 14.01 8.94	10.79 2.592 7.84 3.031	Date: 07/03/2019 File name: P100_B8.RES Page 24
FLOW PROCESS FROM NODE 837.00 TO NODE 835.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<>>>>USING COMPUTE PIPER-FSTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<	REPRESENTATIVE SLOPE = 0.0100 REPRESENTATIVE SLOPE = 0.0100 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC) = 5.56 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1	<pre>PIPE-FLOW(CFS) = 4.97 PIPE TRAVEL TIME(MIN.) = 1.20 Tc(MIN.) = 8.58 LONGEST FLOWPATH FROM NODE 836.00 TO NODE 835.00 = 750.00 FEET. ***********************************</pre>	DENT STREAM FOR CONFLUENCE<<<<< US CONFLUENCED STREAM VALUES<<<<<	3 ENDEPE	TIME OF CONCENTRATION (MIN.) = 8.58 RAINFALL INTENSITY (INCH/HR) = 2.90 TOTAL STREAM AREA (ACRES) = 1.80	PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.97	** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 8.26 10.66 2.607 3.20 2 2.28 8.81 2.862 0.90 3 4.97 8.58 2.899 1.80	RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS.	TABLE ** Tc IN (MIN.) (IN 8.58 8.81	14.81 TED CONFLUENCE E FLOW RATE(CFS) = AREA(ACRES) = ST FLOWPATH FROM	**************************************	>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<	REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH (FEET) = 70.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.9 INCHES	Date: 07/03/2019 File name: P100_B8.RES Page 23

<pre>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<</pre> >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) REPRESENTATUE SLOPE = 0.0100 FLOM LENGTH (FEET) = 1.60.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.7 INCHES PIPE-PLOW VELOCITY (FEET/SEC.) = 6.40 PIPE-PLOW VELOCITY (FEET/SEC.) = 6.40 PIPE-PLOW VELOCITY (FEET/SEC.) = 6.40 PIPE-PLOW VELOCITY (FEET/SEC.) = 0.20 PIPE-PLOW VELOCITY (FEET/SEC.) = 10.00 PIPE-PLOW (FS) = 9.21 PIPE-PLOW (FS) = 0.20 PIPE-PLOW (FS) = 0.20 PIPE-PLOM (FS) = 0.20 PIPE-PLOW (F	24. LOULINY 834.00 TO NODE .00 TO NODE 8422 .00 TO NODE 8422 .00 TO NODE CONFLUENCE REAM FOR CONFLUENCE 	<pre>RAINFAIL INTENSITY(INCH/HR) = 2.69 TOTAL STREAM AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.21 ************************************</pre>	IAL SUBA IS COMME /(ELEVA7 /(ELEVA7 /(ELEVA7 /(ELEVA7) = FEET) = N(FEET) = E(FEET) 00**3)/. INTENSI7 INTENSI7 IS "C"	<pre>SUBAREA RUNOFF(CFS) = 2.76 TOTAL AREA(ACRES) = 1.10 TOTAL RUNOFF(CFS) = 2.76 ************************************</pre>	REPRESENTATIVE SLOPE = 0.0200FLOW LENGTH (FEET) = 120.00MANNING'S N = 0.013DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.5 INCHESPIPE-FLOW VELOCITY (FEET/SEC.) = 6.30ESTIMATED PIPE DIAMETER (INCH) = 12.00NUMBER OF PIPES = 1PIPE-FLOW (CFS) = 2.76PIPE TRAVEL TIME (MIN.) = 0.32PIPE TRAVEL TIME (
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CF2) (MIN.) (INCH/HOUR) 1 14.86 7.84 3.031 2 16.13 8.71 2.878 3 16.28 8.94 2.842 4 16.87 10.79 2.592	COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(FS) = 16.87 Tc(MIN.) = 10.79 TOTAL AREA (ACRES) = 6.8 LONGEST FLOWPATH FROM NODE 833.00 TO NODE 838.00 = 1340.00 FEET. ************************************	REPRESENTATIVE SLOPE = 0.0100FLOW LENCTH (FEET) = 1100.00MANNING'S N = 0.013DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.0 INCHESPIPE-FLOW VELOCITY (FEET/SEC.) = 7.56ESTIMATED PIPE DIAMETER (INCH) = 24.00NUMBER OF PIPES = 1PIPE-FLOM (CFS) = 16.87PIPE FLOM (CFS) = 2.42TC (MIN.) = 2.42TC (MIN.) = 2.440.00LONGEST FLOMPATH FROM NODE840.002440.00FEET.	<pre>************************************</pre>	ASSUMED INTITAL SUBAREA UNIFORM ASSUMED INTITAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K* (LENGTH**3) / (ELEVATION CHANGE)]**.2 INITAL SUBAREA FLOW-LENGTH(FEET) = 400.00 UPSTREAM ELEVATION(FEET) = 1615.00 ELEVATION DIFFRENCE (FEET) = 2.00 TC = 2.00	Dete: 07/03/2019 Terms 1 100 Terms 1 2.743 CLASSIFICATION IS "C" J/V. COEFFICIENT = .883 CLASSIFICATION IS "C" EA RUNOFF (CFS) = 9.21 AREA (ACRES) = 3.80 TOTAL RUNOFF (CFS ************************************

TOTAL STREAM AREA(ACRES) = 4.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.87 ************************************	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	<pre>************************************</pre>	REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH(FEET) = 260.00 MANNING'S N = 0.013 FLOW LENGTH(FEET) = 260.00 MANNING'S N = 0.013 DIPE-FLOW VELOCITY(FEET/SEC.) = 5.68 ESTIMATED FIPE DIAMETER(INCH) = 9.00 NUMBER OF FIPES = 1 PIPE-FLOWCFS) = 2.01 PIPE-TRAVEL TIME(MIN.) = 0.76 TC(MIN.) = 5.76 LONGEST FLOWPATH FROM NODE 846.00 TO NODE 845.00 = 500.00 FEET.	<pre>************************************</pre>	MBER OF STREAMS = 2 CE VALUES USED FOR INDEPENDENT CONCENTRATION (MIN.) = 5.76 INTENSITY (INCH/HR) = 3.52 REAM AREA(ASCRES) = 0.60 W RATE(CFS) AT CONFLUENCE =	** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 11.31 9.84 2.712 4.90 1 11.87 10.55 2.620 4.90 2 2.01 5.76 3.522 0.60	Date: 07/03/2019 File name: P100_B8.RES Page 28
**************************************	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.30 RAINFALL INTENSITY(INCH/HR) = 2.79 TOTAL STREAM AREA(ACRES) = 1.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.76 ** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 9.21 10.02 2.687 3.80 2 2.76 9.30 2.797 1.10 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.	** FEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 11.31 9.30 2.787 2 11.87 10.02 2.687	COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 11.87 Tc(MIN.) = 10.02 TOTAL AREA (ACRES) = 4.9 LONGEST FLOWPATH FROM NODE 843.00 TO NODE 842.00 = 850.00 FEET. ************************************	<pre>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<</pre> >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <pre>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)</pre> <pre>REPRESENTATIVE SLOPE = 0.0100 REPRESENTATIVE SLOPE = 0.0100 BPTH OF FLOW IN 21.0 INCH PIPE IS 14.1 INCHES DATA VERTOCATIVE VERTOCACOC</pre>	43 · · · · · · · · · · · · · · · · · · ·	DENT STREAM FOR CONFLUENCE<<<< s = 2 FOR INDEPENDENT STREAM 1 ARE: 4IN.) = 10.55 4/HR) = 2.62	Date: 07/03/2019 File name: P100_B8.RES Page 27

SUBAREA RUNOFF(CFS) = 5.95 TOTAL AREA (ACRES) = 2.20 TOTAL RUNOFF(CFS) = 5.95 ************************************	STREAM FOR CONFLUENC NFLUENCED STREAM VAL 2	FOR IN.) /HR) = CONE	TY AF JR) (AC	(AN	ENCE FORMULA USED FOR 2 K FLOW RATE TABLE ** RUNOFF TC	NUMBER (LE) (MLN.) (INUL/HUUK) 1 13.24 5.97 3.461 2 15.84 7.71 3.054 3 18.09 10.03 2.687 4 18.43 10.74 2.597	COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 18.43 Tc(MIN.) = 10.74 TOTAL AREA(ACRES) = 7.7 LONGEST FLOWPATH FROM NODE 843.00 TO NODE 848.00 = 1150.00 FEET.	FLOW PROCESS FROM NODE 848.00 TO NODE 850.00 IS CODE = 31 >>>>>COMPUTE FIPE-FLOW TRAVEL TIME THRU SUBAREA<<<< >>>>>USING COMPUTER-ESTIMATED FIPESIZE (NON-PRESSURE FLOW) <<<<	REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 330.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.68 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIDE-FLOW(FS) = 18.43 PIDE TRAVEL TIME(MIN.) = 0.72 Tc(MIN.) = 11.46 LONGEST FLOWPATH FROM NODE 843.00 TO NODE 850.00 = 1480.00 FEET. ***********************************	Date: 07/03/2019 File name: P100_B8.RES Page 30
LL INTENSITY AND TIME OF ENCE FORMULA USED FOR 2 K FLOW RATE TABLE ** K PLONFF TC	NUMBER (LES) (MLN.) (LNCH/HOUK) 1 8.64 5.76 3.522 2 12.85 9.84 2.712 3 13.37 10.55 2.620	COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 13.37 Tc(MIN.) = 10.55 TOTAL AREA(ACRES) = 5.5 LONGEST FLOWPATH FROM NODE 843.00 TO NODE 845.00 = 1070.00 FEET.			ESTIMATED FIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 13.37 PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN.) = 10.74 LONGEST FLOWPATH FROM NODE 843.00 TO NODE 848.00 = 1150.00 FEET.	**************************************	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.74 RAINFALL INTENTY(INCH/HR) = 2.60 TOTAL STREAM AREA (ACRE) = 5.50 PEAK FLOW PATRE(CFS) AT CONFLIENCE = 13.37	FLOW PROCESS FROM NODE 849.00 TO NODE 848.00 IS CODE = 21	<pre>>>>>>runumumumumumumumumumumumumumumumumumumu</pre>	Date: 07/03/2019 File name: P100_B8.RES Page 29

3 25.86 10.74 2.597 4 26.57 11.40 2.523 5 26.65 11.46 2.517 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 26.65 Tc(MIN.) = 11.46 TOTAL AREA(ACTES) = 11.4 LONGEST FLOWPATH FROM NODE 843.00 TO NODE 850.00 = 1480.00 FEET.	TRAVEL TIME THRU SUBAREA<<<< TIMATED PIPESIZE (NON-PRESSURE FLOW)<<< 0.0200 0.0200 70.00 MANNING'S N = 0.013 TINCH PIPE IS 17.4 INCHES T/SEC.) = 10.90 R(INCH) = 24.00 NUMBER OF PIPES = 26.65 26.65 0.11 TC(MIN.) = 11.57 NODE 843.00 TO NODE 851.00 = 15	FLOW PROCESS FROM NODE 851.00 TO NODE 851.00 IS CODE = 81 >>>>>DITTION OF SUBAREA TO MAINLINE PEAK FLOW<<<< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.505 UNDEVELOPED WATERHED RUNGFF COEFFICIENT = .7263 SOIL CLASSIFICATION IS "C" SUBARBA AREA (ACRES) = 2.20 SUBAREA RUNGFF(FS) = 4.00 TOTAL AREA (ACRES) = 13.6 TOTAL RUNGFF(FS) = 30.65 TC(MIN.) = 11.57	*** AAT NTE	<pre>************************************</pre>
<pre>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<</pre> TOTAL NUMBER OF STREAMS = 2 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.46 RAINFALL NUTENSITY(INCH/HR) = 2.52 TOTAL STREAM AREA(ACRES) = 7.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.43 ************************************	NITIAL SUBAREA ANALYSIS<<<< SUBAREA UNIFORM SUBAREA UNIFORM COMMERCIAL COMMERCIAL MENTIAL SUBAREA UNIFORM COMMERCIAL COMMERCIAL COMMERCIAL COMMERCIAL COMMERCIAL COMMERCIAL 1 (100 SET) = 670.00 T) = 1615.00 T) = 1615.00 T) = 1611.00 SET) = 4.00 SET) = 4.00 SET) = 4.00 SET) = 2.523 RUNFF COEFFICIENT = .8827 RUNFF COEFFICIE	DOLL CLADSAFTLALION 15 C SUBAREA RUNOFF(CFS) = 8.24 TOTAL AREA (ACRES) = 3.70 TOTAL RUNOFF(CFS) = 8.24 ************************************	Image: 10 minipage Image: 1	1 18.43 11.46 2.517 7.70 2 8.24 11.40 2.523 3.70 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2.5253 3.70 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2.5123 3.70 ** PEAK FLOW RATE TABLE ** STREAMS. * STREAM RUNOFF TC STREAM RUNOFF TC INTENSITY INTENSITY INTENSITY NUMBER (CFS) (MIN.) INTH/HOUR) 1 1.259 1 18.12 6.75 3.259 2.921 Page 31 Date: 07/03/2019 File name: P10_B8.RES Page 31

<pre>DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.63 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 33.58 PIPE TRAVEL TIME(MIN.) = 0.07 TC(MIN.) = 11.64 LONGEST FLOWPATH FROM NODE 843.00 TO NODE 840.00 = 1600.00 FEET. ***********************************</pre>	** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 255.26 6.95 3.214 15.10 2 289.88 8.64 2.890 15.10 3 32.76 10.92 2.576 15.10 4 33.56 11.58 2.504 15.10 5 32.51 11.64 2.498 15.10 6 32.51 11.64 2.498 15.10	T FLOWPATH FROM NODE 843.00 TO NODE ST FLOWPATH FROM NODE 843.00 TO NODE MORY BANK # 2 CONFLUENCE DATA ** M RUNOFF TC INTENSITY R (CF5) (MIN.) (INCH HOUR) (14.86 10.41 2.658 16.13 11.16 2.555 16.87 13.21 2.348 5T FLOWPATH FROM NODE 833.00 TO NODE	AK FLOW RATE TABLE ** M RUNDFF TC INTE R (CFS) (MIN.) (INCH 35.31 6.95 41.37 8.64 41.37 8.64 46.08 10.41 48.56 11.16 49.21 11.38 49.64 11.58 49.64 11.58 40.64 11.5	9 48.76 12.64 2.399 10 48.79 13.21 2.348 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 49.68 Tc(MIN.) = 11.64 TOTAL AREA(ACRES) = 21.9 ************************************	840.00 TO NODE 840.00 IS CODE = 12 # 2 <<<<>
DOWNSTREAM ELEVATION (FEET) = 1587.00 ELEVATION DIFFERENCE (FEET) = 10.00 TC = 0.303*[(1070.00*3)/(100.00])**.2 = 12.567 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.406 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8821 SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF (CFS) = 3.18 TOTAL AREA (ACRES) = 1.50 TOTAL RUNOFF (CFS) = 3.18 ************************************	<pre>>>>>besidente independent stream for confluence<</pre> >>>>>and compute various confluenced stream values Total number of streams = 2 Total number of streams = 2 Confluence values used for independent stream 2 are: Time of contrurenton(min.) = 12.57 Rainfall intensity(incH/HR) = 2.41 Total stream area(acres) = 1.50 FEAK FLOW RATE(CFS) AT CONFLUENCE = 3.18	JENCE DATA ** RUNGFF TC (CFS) (MIN.) 23.52 6.87 26.71 8.56 30.01 10.85 30.58 11.57 31.68 12.57 31.68 12.57 31.68 12.57	MALLINITIAN LINE OF CONCENTRATION FAILO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) 1 25.26 2 28.88 3 32.76 3 32.76 4 33.56 5 33.56 6 32.61 1 2.505	COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 33.58 Tc(MIN.) = 11.57 TOTAL AREA(ACRES) = 15.1 LONGEST FLOWPATH FROM NODE 843.00 TO NODE 851.00 = 1550.00 FEET. ************************************	TRAVEL TIME THRU SUBAREA<<<< TRAVEL TIME THRU SUBAREA<<<<< TIMATED PIPESIZE (NON-PRESSURE FLOM) 0.0200 50.00 MANNING'S N = 0.013 File name: P100_B8.RES

4 90.98 7.31 3.135 5 98.00 8.07 2.988 6 98.26 8.09 2.983 7 101.21 8.83 2.859 8 114.39 10.26 2.656 9 115.89 10.26 2.656 10 119.63 10.92 2.557 11 119.15 11.11 2.555 12 119.15 11.34 2.553 13 119.15 11.34 2.553 13 119.15 11.76 2.479 14 120.48 11.76 2.485 15 120.89 11.82 2.336 17 124.59 12.67 2.336 18 125.68 13.339 2.335 19 125.68 13.339 2.335 19 125.68 13.339 2.335 19 125.68 13.339 2.335 19 125.68 13.339 2.335	21 135.63 18.50 1.981 22 133.04 20.76 1.981 23 133.04 20.76 1.981 EMAR FLORM AFRE (CST hand AFRE (CST hand) 15.66 T CANILL) = 18.48 FLOW PROCESS FROM NODE 832.00 TO NODE 832.00 IS CODE = 12 ************************************	Date: 07/03/2019 File name: P100_B8.RES Page 36
FLOW PROCESS FROM NODE 840.00 TO NODE 832.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<< >>>SUGING COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<< >>>>USING CONPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)SEPRESENTATIVE SLOPE = 0.0200 FLOM LENGTH (FEET) = 140.00 MANING'S N = 0.013 DEPTH OF FLOW N 30.0 INCH PIPE IS 22.3 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 12.69 SETIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 49.68 PIPE FLOWFICEST FLOW NODE 833.00 TO NODE 832.00 = 2580.00 FEET. ************************************	<pre>>>>>CONTINUENCE MEMORY BAIK # 1 WITH THE MAIN-STREAM MEMORY.cont ** ANN STREAM CONFLUENCE DATA ** STREAM ONELDED EATA ** ** ANN STREAM CONFLUENCE DATA ** ** ANN STREAM CONFLUENCE DATA ** ** STREAM CONFLUENCE DATA ** ** STREAM CONFLUENCE DATA ** ** STREAM FUNCF TC INTCH/HOUTH (ACRE) ** 44.55 1111 2 535 21:90 9 40.76 11.34 2.555 21:90 9 40.76 11.32 2.495 21:90 9 40.76 11.25 2.495 21:90 9 40.76 11.25 2.495 21:90 9 40.76 12.82 2.495 21:90 9 40.76 12.82 2.495 21:90 1000GEST FLOMPATH FROM NOEE 033.00 TO NODE 033</pre>	Date: 07/03/2019 File name: P100_B8.RES Page 35

		Page 37
		File name: P100_B8.RES
11111111111111111111111111111111111111	L METHOD AN	2019
115.89 119.63 119.63 119.15 119.15 120.48 124.59 124.59 124.55 125.68 125.68 125.68 125.68 125.68 135.63 133.04	AT IONA 	Date: 07/03/2019
011111111111 0100000000000000000000000		

<pre>>>>Partional merhod initial SUBARBA ANALYSIS<</pre> >>>>Rarional merhod initial SUBARBA ANALYSIS Assumed initial SUBARBA UNIFORM Assumed initial SUBARBA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*((LEBCD+WENCIAL TC = K*((LEBCT+*3) / (ELEVATION CHANGE))**.2 INITIAL SUBARBA FLOW-LENGTH(FEBT) = 1140.00 UPSTREAM ELEVATION(FEBT) = 1567.00 DOWNSTREAM ELEVATION(FEBT) = 1567.00 ELEVATION DIFFERENCE(FEBT) = 1567.00 ELEVATION DIFFERENCE(FEBT) = 1567.00 TC = 0.303*((1140.00**)/(C 25.00))1**.2 = 10.868 100 YEAR NUFF(FC) = 2.583 COMMERCIAL DEVELOPMENT RUNFF COEFFICIENT = .8831 SOIL CLASSIFICATION IS "C" SUBARBA RUNFF(FC) = 4.56 merial EDEVELOPMENT RUNFF (CFS) = 4.56 merial EDEPLOPMENT RUNFF (CFS) = 4.56	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	<pre>************************************</pre>	<pre>************************************</pre>
<pre>************************************</pre>		<pre>SPECIFIED MININUM PIPE SIZE(INCH) = 6.00 SPECIFIED PERCENT OF GRADIENTS(IPECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.880 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 0.780 10-YEAR STORM 00-MINUTE INTENSITY(INCH/HOUR) = 0.780 100-YEAR STORM 00-MINUTE INTENSITY(INCH/HOUR) = 0.490 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4909833 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4890234 COMPUTED RAINPALL INTENSITY-DURATION CURVE = 0.4890234 STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.120 SLOPE OF INTENSITY DURATION CURVE = 0.4890 RCCKECD HYDROLOGY MANNALYEES 0.4890 NOTE: CONSIDER ALL ONTELNENT DATA: *USER-DEFINED STREAT-SECTIONS FOR COMPLIATIONS FOR ALL DOWNSTREAM ANALYEES *USER-DEFINED STREET-SCONS FOR COUPLED PIPEFLOM AND STREEFFLOM MODEL* HALF- CROWN TO STREET-SCONSTALL: CURB GUTTER-GEOMETRIES: MANNING WIDH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDH INP HIRE FACTOR NO. (FT) (FT) (FT) (FT) (FT) (FT) (FT) 1 30.0 2010 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150</pre>	<pre>LOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) SIZE PIPE WITH A FLOW CAPACITY GRATER THAN DR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ***********************************</pre>

FLOW PROCESS FROM NODE 905.00 TO NODE 905.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<	TOTAL NUMBER OF STREAMS = 2 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 9.17 RAINFALL INTENSITY (NIS.) = 2.81 TOTAL STREAM AREA (ACRES) = 2.90 PEAK FLOW RATE (CFS) AT CONFLUENCE = 7.20	** CONFLUENCE DATA ** STREAM RUNGFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.80 8.40 2.929 1.70 2 7.20 9.17 2.807 2.90	ATION RATI Y R)	COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 11.80 Tc(MIN.) = 9.17 TOTAL AREA(ACRES) = 4.6 LONGEST FLOWPATH FROM NODE 903.00 TO NODE 905.00 = 560.00 FEET.	**************************************	REPRESENTATIVE SLOPE = 0.0100 FLOM LENGTH(FEET) = 160.00 MANNING'S N = 0.013 DEFTH OF FLOM IN 21.0 INCH PIPE IS 14.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.92 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOM(CFS) = 11.80 PIPE-FLOM(CFS) = 11.80 PIPE TRAVEL TIME(MIN.) = 0.39 Tc(MIN.) = 9.55 LONGEST FLOWPATH FROM NODE 903.00 TO NODE 906.00 = 720.00 FEET.	**************************************	TOTAL NUMBER OF STREAMS = 2 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.55 RAINFALL INTENSITY(INCH/HR) = 2.75 TOTAL STREAM AREA(ACRES) = 4.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.80	Date: 07/03/2019 File name: P100B9AA.RES Page 4
[FEET) = 190.00 1598.00 = 1597.00		**************************************	ц о	**************************************	TOTAL NUMBER OF STREAMS = 2 TOTAL NUMBER OF STREAMS = 2 TIME OF CONCENTRATION (MIN.) = 8.40 RAINFALL INTENSITY (INCH/HN) = 2.93 TOTAL STREAM AREA (ACRES) = 1.70 PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.80	NO NO	<u> </u>	<pre>100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.807 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8842 SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF(CFS) = 7.20 TOTAL AREA(ACRES) = 2.90 TOTAL RUNOFF(CFS) = 7.20 ************************************</pre>	Date: 07/03/2019 File name: P100B9AA.RES Page 3

** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 14.78 8.79 2.865 2 14.83 9.15 2.809 3 15.25 9.55 2.751 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 15.25 TC(MIN.) = 9.55 TOTAL AREA (ACRES) = 6.0 LONGEST FLOWPATH FROM NODE 907.00 TO NODE 906.00 = 1130.00 FEET. ************************************	<pre>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<>>>>>>USING COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<>>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)</pre>	****** NODE A ANZ ORM 0 0 0)]** AL RU AL RU AL RU	Date: 07/03/2019 File name: P100B9AA.RES Page 6
	100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.847 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8844 SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF(CFS) = 3.53 TOTAL AREA (ACRES) = 1.40 TOTAL RUNOFF(CFS) = 3.53 TOTAL AREA (ACRES) = 1.40 TOTAL RUNOFF(CFS) = 3.53 ************************************	<pre>>>>>ESIGNATE INDEPENDENT STREAM FOR CONFLUENCE</pre> <pre>>>>>ADD COMPUTE VARIOUS CONFLUENCED STREAM VALUES</pre> TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.15 RAINFALL INTENSITY(INCH/HR) = 2.81 TOTAL STREAM AREA(ACRS) = 1.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.53 ** CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 11.40 8.79 2.865 4.60 1 11.40 9.55 2.751 4.60 2 3.53 9.15 2.809 1.40 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.	Date: 07/03/2019 File name: P100B9AA.RES Page 5

	CODE = 21	5
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.59 RAINFALL INTENSITY(INCH/HR) = 2.62 TOTAL STREAM AREA(ACRES) = 8.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 20.10	<pre>FLOW FROCESS FROM NODE 912.00 TO NODE 911.00 IS CODE = 21 >>>>service Number Nation Nutrial Subards Nutries >>>>service Number Nation Nutrial Subards Nutries >>>>service Nutrial Subards Nutries Nutrial Subards Nutries Commendation Nutrial Subards Nutries Number (FEET) = 800.00 PEGREAM ELENATION (FEET) = 1597.00 DELENATION (FEET) = 150.00 DELENATION (FEET) = 100 DELENATION (FEET) = 10</pre>	
<pre>************************************</pre>	<pre>CONTL MUBBER OF STREAMS = 5.02 TOTAL MUBBER OF STREAMS = 5.12 TOTAL MUBBER OF STREAMS = 5.12 TOTAL MUBBER OF CONCENTRATION(IIII) = 3.51 TOTAL STREAM AREA (ACRES) = 2.05 TOTAL STREAM ANDOFT TC INTENSITY AREA WINHER ENDART TC INTENSITY AND THAS 0.000 1 143.33 0.27 0.2735 6.00 2 2.222 5.222 5.222 5.222 5.223 5.00 AMINPALL INTENSITY AND THAS OF CONCENTRATION RATIO CONTLIBERDE FONDIAL USED FOR 2 STREAMS. ** PEAK FLOW ARET TAILS * TOTAL MUBBER (CFS) 0.000 2 10.33 6.00 2 10.33 6.00 2 10.33 6.00 3 10.33 6.00 2 10.33 6.00 2 10.33 6.00 2 10.33 6.00 3 10.00 4 10.00 4</pre>	

FLOW PROCESS FROM NODE 902.00 TO NODE 913.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<< >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<>>>>>SUSING COMPUTE PIPESIZE (NON-PRESSURE FLOM)<<<<>>>>>>CONTENCESENTATIVE SLOPE = 0.0150 FLOW LENGTH (FRET) = 130.00 MAINING'S N = 0.013	27.0 INCH PIPE IS 21.7 INCP (FEET/SEC.) = 10.32 METER(INCH) = 27.00 NUME 35.40 INN) = 0.21 TC.(MIN.) =	WODE 907.00 TO NODE 913.00 TO NODE 913. COPIED ONTO MEMORY BANK	<pre>************************************</pre>		ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = K*[(LENGTH**3)/(ELEVATION GHANGE)]**.2 INITIAL SUBAREA FLOW-LENET) = 640.00 UPSTREAM ELEVATION (FEET) = 1654.00 DOWNSTREAM ELEVATION (FEET) = 1654.00 DOWNSTREAM ELEVATION (FEET) = 51.00 TC = 0.533*([640.00**3)/(51.00)]**.2 = 11.711 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.490 UNDEVELOPED WATERSHED RUNOFF COFFICIENT = .7255 SOLL CLASSIFICATION (F COFFICIENT = .7255 SOLL CLASSIFICATION IS *C"	SUBAREA RUNOFF(CFS) = 5.06 TOTAL AREA(ACRES) = 2.80 TOTAL RUNOFF(CFS) = 5.06 ************************************	<pre>EL TIME THRU SUBAREA<<</pre> ED PIPESIZE (NON-PRESSURE FLOW) < <pre> 500 0 MANNING'S N = 0.013 1 PIPE IS 7.2 INCHES </pre> <pre> 6 1.03 1 = 12.00 NUMBER OF PIPES = 6 1.03 Tc(MIN.) = 12.75 </pre>	LONGEST FLOWPATH FROM NODE 914.00 TO NODE 916.00 = 1280.00 FEET. ***********************************	>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<> Date: 07/03/2019 File name: P100B9AA.RES Page 10
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 27.85 Tc(MIN.) = 10.59 TCTAL AREA(ACRES) = 12.2 LONGEST FLOWPATH FROM NODE 907.00 TO NODE 911.00 = 1610.00 FEET.	FLOW PROCESS FROM NODE 911.00 TO NODE 902.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<>>>>>COMPUTER-ESTINATED PIPESIZE (NON-PRESSURE FLOW)<	0200 MANNING'S N = 0.013 A PIPE IS 18.1 INCHES C.) = 10.96 DH) = 24.00 NUMBER OF PIPES = 1 5 0.20 TC(MIN.) = 10.79	LONGEST FLOWPATH FROM NODE 907.00 TO NODE 902.00 = 1740.00 FEET. ***********************************	>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<	** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 20.83 6.99 3.205 12.20 2 27.02 10.03 2.686 12.20 3 27.24 10.39 2.640 12.20 4 27.88 12.50 2.412 12.20 LONGEST FLOWPATH FROM NODE 907.00 TO NODE 902.00 = 1740.00 FEET.	AREA (ACRE) 3.70 90.700 =	INTENSITY INTENSITY (INCH/HOUR) 3 2.05 3 2.686 9 2.692 0 2.557 0 2.557	COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 35.40 Tc(MIN.) = 10.79 TOTAL AREA(ACRES) = 15.9	**************************************

NFLUEN ====== 2 INDEPE	TIME OF CONCENTRATION(MIN.) = 8.59 RAINFALL INTENSITY(INCH/HR) = 2.90 TOTAL STREAM AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.50	** CONFLUENCE DATA ** Stream ringef to intensity area	CCFS) (MIN.) (INCH/HOUR) (5 06 12 75 3 380	<pre>1 ************************************</pre>	USED FOR 2	** FEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)	8.59 12.75	ICE ESTIMAT 'S) =	TOTAL AREA(ACRES) = 4.6 LONGEST FLOWPATH FROM NODE 914.00 TO NODE 916.00 = 1280.00 FEET.	************************	FLOW PROCESS FROM NODE 916.00 TO NODE 913.00 IS CODE = 31	>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<	.0150 .00 MANNING'S N CH PIDF TS 11 3	THE	PIPE TRAVEL TIME (MIN.) = 0.29 TC(MIN.) = 13.03 LONGEST FLOWPATH FROM NODE 914.00 TO NODE 913.00 = 1410.00 FEET.	**************************************	>>>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<<<<	** MAIN STREAM CONFLUENCE DATA **	STREAM RUNGFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 701 800 7850 A 60	0.09 2.090 13.03 2.363 FROM NODE 914.00 TO NODE	** MEMORY BANK # 2 CONFLUENCE DATA **	Date: 07/03/2019 File name: P100B9AA.RES Page 12
= INDE	RAINFALL INTENSITY (INCH/HR) = 2.39 TOTAL STREAM AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.06	**************************************	>>>>PATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<	ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2	INITIAL SUBAREA FLOW-LENGTH(FEET) = 840.00 UPSTREAM ELEVATION(FEET) = 1606.00	DOWNSTREAM ELEVATION(FEET) = 1567.00 ELEVATION DIFFERENCE(FEET) = 39.00 TC = 0.303*[(840.00**3)/(39.00)]**.2 = 8.278	<pre>/(INCH/HOUR) = 2.950 // COEFFICIENT = .884</pre>	SULD CLARSLELUATION IS "C" SUBAREA RUNDFF(CFS) = 3.39 TOTAL AREA (ACRES) = 1.30 TOTAL RUNDFF(CFS) = 3.39	**************************************	T3 CODE =	>>>>ADDITION OF SUBAREA TO MAINLINE FEAK FLOW<<<<<	100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.950 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7481 SOTL FLASSIFICATION IS "C"	SUBAREA AREA (ACRES) = 0.50 SUBAREA RUNOFF (CFS) = 1.10 TOTAL AREA (ACRES) = 0.50 SUBAREA RUNOFF (CFS) = 4.50 TOTAL AREA (ACRES) = 1.8 TOTAL RUNOFF (CFS) = 4.50	**	<pre>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<</pre> >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)	REPRESENTATIVE SLOPE = 0.0200	ELOW LENGTH (FEET) = 100.00 MANNANG S N = 0.013 DEPTH OF FLOW 11 12.0 INCH FIFE IS 9.3 INCHES PIPE-FLOW WFLOCTTY (FEFT/SEC.) = 6.92	12.00 NUMBER	FIPE TRAVEL TIME (MIN.) = 0.31 Tc (MIN.) = 8.59 LONGEST FLOWPATH FROM NODE 917.00 TO NODE 916.00 = 970.00 FEET.	**************************************	>>>>besignate independent stream for confluence<<<<	Date: 07/03/2019 File name: P100B9AA.RES Page 11

ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 900.00 UPSTREAM ELEVATION(FEET) = 1595.00 DOWNSTREAM ELEVATION(FEET) = 1562.00 ELEVATION DIFFERENCE(FEET) = 33.001 TC = 0.303*[(900.00*33)/(33.001)*2 = 8.921	<pre>(INCH/HOUR) = 2.844 F COEFFICIENT = .884 0 1 TOTAL RUNOFF(CFS ************************************</pre>	REPRESENTATIVE SLOPE = 0.0200 FLOW LENGTH (FEET) = 50.00 MANNING'S N = 0.013 DEPTH OF FLOM N 9.0 INCH PIPE IS 6.7 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 5.69 ESTIMATED PIPE DIAMETER (INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 2.01 PIPE-FLOW (CFS) = 2.01 PIPE TRAVEL TIME (MIN.) = 0.15 TC (MIN.) = 9.07 LONGEST FLOWPATH FROM NODE 920.00 TO NODE 919.00 = 950.00 FEET.	<pre>************************************</pre>	EBER OF STREAMS = 2 EBER OF STREAMS = 2 E: VALUES USED FOR INDEPENDENT STREAM ONCENTEATTON (MIN.) = 9.07 INTENSITY (INCH/HR) = 2.82 EAM AREA (ACRES) = 0.80 I RATE (CFS) AT CONFLUENCE = 2.01 FINCE DATA **	DIREAM COUNT TC INILABALIT AREA 1 32.15 7.50 3.097 20.50 1 37.46 9.15 2.809 20.50 1 37.46 9.15 2.809 20.50 1 41.42 10.50 2.627 20.50 1 41.77 10.86 2.583 20.50 1 42.84 11.25 2.539 20.50 1 42.84 11.26 2.506 20.50 1 43.56 12.97 2.369 20.50 1 43.56 12.97 2.369 20.50 1 43.35 13.29 2.341 20.50 2 2.01 9.07 2.822 0.80	RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. Date: 07/03/2019 File name: P100B9AA.RES Page 14
STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 25.73 7.22 3.155 15.90 2 34.05 10.24 2.659 15.90 3 34.52 10.60 2.614 15.90 4 35.40 11.00 2.568 15.90 5 35.24 11.31 2.533 15.90 6 35.01 12.71 2.333 15.90	<pre>ST FLOWPATH FROM NODE 907.00 TO NODE AK FLOW RATE TABLE ** M RUNOFF TC INTENSITY R (CFS) (MIN.) (INCH,HOUR) 32.15 7.22 3.155 37.46 889 2.850 41.42 10.24 2.659 41.77 10.60 2.659 41.77 10.60 2.568 42.84 11.31 2.533 43.56 12.71 2.392</pre>	8 43.35 13.03 2.363 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLDOWS: PEAK FLOW RATE(CFS) = 43.56 Tc(MIN.) = 12.71 TOTAL AREA(ACRES) = 20.5 ************************************	<pre>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<</pre> >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH (FEET) = 170.00 MANNING'S N = 0.013 DEPTH OF PIPOTIA IN 200 ALMOUNDS 205 FLOUDS		<pre>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<</pre> TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.97 RAINFALL INTENSITY(INCH/HR) = 2.37 TOTAL STREAM AREA(ACRES) = 20.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 43.56 ************************************	File name: P1000B9AA.RES

	2040.00 FEET.		
	12.97 919.00 =	12.97	
INTENSITY (INCH/HOUR) 3.097 2.822 2.809 2.633 2.539 2.539 2.566 2.349 2.341	TES ARE AS FOLLOWS: 45.25 Tc(MIN.) = 21.3 : 907.00 TO NODE	21.3 TC(MIN.) = 45.25	
TABLE ** TC 7.50 9.15 9.15 9.15 10.50 10.86 11.25 11.25 11.25 11.25 11.25 11.25 11.25 11.25	ESTIMA = DM NODE	MARY:) = 2 () = 45 () = 45 (MIN.) = 45 (MIN.) = 45 (MIN.) = 45 (10.50 9.07 9.15 11.25 11.25 11.25 11.56 12.97 13.29 13.29 MARY:	
FLOW RATE ' RUNDEF (CS) 33.81 39.136 43.81 44.61 44.61 44.61 44.63 44.63 44.63 44.63 44.63 44.63 44.63 44.63 44.63	CONFLUEN RATE (CF A (ACRES) COMPATH	DY SUM A (ACRES A (ACRES I (ACRES EFS) 3 (ACRES FES) 3 (ACRES 5 (ACRES 5 (ACRES) 3 (AC	
N NUMBER NUMBER 1 1 5 9 8 8 8 8 8 8	COMPUTED (PEAK FLOW TOTAL AREA LONGEST F1	END OF STU PDTAL AREA PDTAL AREA PEAK FLOW *** PEAK E *** PEAK E *** 92(0) 1 2 33 33 33 33 33 33 4 4 4 4 4 4 4 4 4 4	5

Page 15

File name: P100B9AA.RES

Date: 07/03/2019

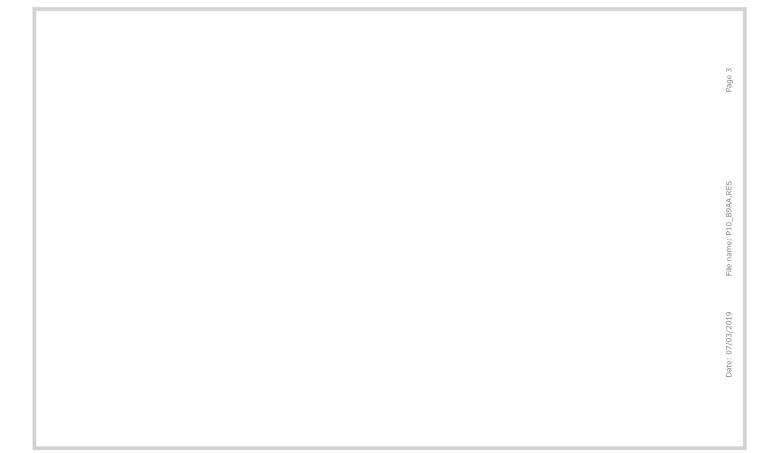
*******************************	*************************************	**************************************	**************************************	M NODE 800.00 TO NODE	**************************************	************
ACCORDING TO RIVERSIDE COUN	ORL AND WATER	ION DISTRICT	>>>>SUBAREA RUNOFF		ISTI	
(RCFC (c) Copyright 198 (Syntheti Release D:	<pre>(RCFC&MCD) 1978 HYDROLOGY MANUAL (c) Copyright 1989-2013 Advanced Engineering Software (aes) (Synthetic Unit Hydrograph Version 20.0) Release Date: 06/01/2013 License ID 1264</pre>	(aes)	(UNIT-HYDROG	(UNIT-HYDROGRAPH ADDED TO STREAM #1)	M #1)	
	Analysis prepared by:		WATERSHED AREA BASEFLOW = 0 *HSPE FNUTERED	= .000 СFS "Т.АС" ТТ	71.000 ACRES /SQUARE-MILE MF = 0 266 HOURS	
			CAUTION THE 5-MI MAY BE T VALLEY S- UNLFORM	CAUTION: LAG TIME IS LESS THAN 0.50 HOURS. CAUTION: LAG TIME IS LESS THAN 0.50 HOURS. THE 5-MINUTE PERIOD UH MODEL (USED IN THIS MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES. VALLEY S-GRAPH SELECTED UNIFORM MEAN SOLL-LOSSINUCH/HOUR) = 0.115	CAUTION: LAG TIME IS LESS THAN 0.50 HOURS. THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM) MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES. ALLEY S-GRAPH SELECTED NFLORM MAN SOIL-LOSS(INCH/HOUR) = 0.115	. PROGRAM)
**************************************	**************************************	* * * * * * * * * * * * * * * * * * * *	LOW SOLL- MINIMUM S USER-ENTE REFC&WCD RCFC&WCD	LOW SOIL-LOSS RATE PERCENT (DECIMAL) MINIMUM SOIL-LOSS RATE (INCH/HOUR) = USER-ENTERED RAINFALL = 3.10 INCHE RCTC&WCD 24-HOUR Storm (15-Minute p RCTC&WCD DEPTH-AREA ADJUSTMENT FACT	= 0.058 0.058 s sriod) SELECTED DR(PLATE E-5.8)	= 0.9999
FILE NAME: E10_B8.DAT TIME/DATE OF STUDY: 13:19 06/18/2019	9 06/18/2019		UNIT HYDR UNIT INTE	UNIT HYDROGRAPH TIME UNIT = 15.000 MII UNIT INTERVAL PERCENTAGE OF LAG-TIME =	15.000 MINUTES LAG-TIME = 84.374	
				UNTT HYDROGRAPH DETERMINATION	DETERMINATION	
			INTERVAL NUMBER	"S" GRAPH MEAN VALUES	UNIT HYDROGRAPH ORDINATES (CFS)	
			1 0	14.297 60 254	40.921 131 537	
			1 m ·	79.116	513.988	
			4	87.017 91.632	22.614 13.208	
			9 1-	94.693 96.785	8.761 5.988	
			∞ σ	98.126 98.762	3.840 1.819	
			0,	99.344 00.720	1.126	
			12	99.934 100.000	0.563 0.188 0.188	
			TOTAL STO TOTAL SOI TOTAL EFF	STORM RAINFALL (INCHES) = SOIL-LOSS (INCHES) = 1.70 EFFECTIVE RAINFALL (INCHES)	5) = 3.10 1.70 MCHES) = 1.39	
Date: 06/18/2019	File name: E10_B8.RES	Page 1	Date: 06/18/2019		File name: E10_B8.RES	Page 2

(HRS) VOLUME (AF) $Q(CFS)$ $0.$ 7.5 15.0 167 0.0005 0.04 $0.$ 7.5 15.0 233 0.0005 0.04 $0.$ 7.5 15.0 333 0.00019 0.166 0.004 $0.$ 0.016 583 0.00075 0.255 0.0075 0.256 0.0309 913 0.01176 0.255 0.256 0.256 0.256 913 0.01176 0.232 0.302 0.344 0.344 0.01220 0.03246 0.322 0.322 0.334 0.322 0.0179 0.0329 0.334 0.322 0.344 0.322 0.0172 0.03246 0.322 0.344 0.344 0.332 0.0175 0.03246 0.322 0.334 0.332 0.332 0.0175 0.03246 0.322 0.344 0.344 0.332 <td< th=""><th>4</th><th>HYDROGRA: (Note: Time ind)</th><th>PH IN F</th><th>IVE-MINUT is at END</th><th>E UNIT of Eac</th><th>INTERVALS (CF:</th><th>CFS) ervals)</th><th></th></td<>	4	HYDROGRA: (Note: Time ind)	PH IN F	IVE-MINUT is at END	E UNIT of Eac	INTERVALS (CF:	CFS) ervals)	
0.003 0.004 0.04	RS	VOLUME (AF	(CF		1	5.0	5	
	0.8	000	Ċ	С				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.16	.000	<u> </u>	N OK				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.25	.000	•	Ø	•		•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.33	.001	Ξ.	Ø				•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.41	.003		Ø				•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.50	.004	Ξ.	Ø	•	•	·	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 58	.005	\sim	Ø	•	•	·	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.66	.007	\sim	Ø	•	•		•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 75	.000	~	Š				•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 83	.011	с.	Ø				•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.91	.013	с.	0	•		•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00	.015	~	0				•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.08	.017	ς.	0	•	•	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.16	.020	с.	õ				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.25	.022	ς.	0	•	•	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.33	.024	ς.	Ø	•	•		•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.41	.026	ς.	Ø	•	•		•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.50	.029	ς.	0	•	•	•	•
.667 0.0334 0.32 .750 0.0356 0.334 .917 0.0425 0.344 .000 0.0425 0.344 .003 0.0425 0.344 .003 0.0479 0.394 .003 0.0479 0.394 .167 0.0479 0.394 .167 0.0619 0.411 .550 0.0534 0.411 .510 0.0619 0.494 .511 0.0619 0.494 .513 0.0619 0.494 .513 0.0619 0.494 .517 0.0619 0.494 .5183 0.0746 0.494 .917 0.0746 0.494 .917 0.0780 0.651 .667 0.0780 0.651 .513 0.0780 0.651 .667 0.0796 0.521 .917 0.0796 0.521 .917 0.0926 0.521 .917 0.0926 0.521 .917 0.0926 0.521 .917 0.0926 0.521 .917 0.1027 0.521 .917 0.1027 0.521 .917 0.1174 0.541 .917 0.1174 0.541	.58	.031	ς.	Ø				•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.66	.033	e.	Ø	•	•		•
.833 0.0379 0.34 .917 0.0425 0.34 .003 0.0425 0.34 .167 0.0479 0.39 .250 0.0506 0.39 .251 0.0506 0.39 .253 0.0506 0.39 .253 0.0562 0.41 .251 0.0562 0.41 .253 0.0562 0.41 .253 0.0562 0.41 .333 0.0562 0.43 .333 0.0562 0.43 .333 0.0713 0.49 .333 0.0713 0.49 .333 0.0713 0.49 .333 0.0713 0.49 .333 0.0713 0.49 .333 0.0912 0.52 .333 0.0920 0.52 .333 0.0920 0.52 .333 0.0920 0.52 .333 0.1027 0.52 .333 0.1027 0.52 .333 0.1027 0.52 .333 0.1073 0.52 .333 0.1073 0.52 .333 0.1077 0.52 .333 0.1073 0.52 .333 0.1073 0.52 .333 0.1073 0.52 .333 0.1073 0.52 .333 0.1174 0.54	.75	.035	ς.	õ	•		•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 83	.037	ς.	Ø				•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.91	.040	ς.	Ø				•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00	.042	ς.	Ø	•		•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.08	.045	<u>۰</u>	Ø	•	•	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.16	.047	~	Ø			•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.25	.050	ς.	Ø	•			•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.33	.053	₽.	Ø	·		•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.41	.056	4.	Ø	•	•	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.50	.059	₽.	0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.58	.061	₽.	0		•		•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.66	.064	₽.	Ø	•		•	•
.833 0.0713 0.49 .917 0.0746 0.49 .000 0.0780 0.49 .0163 0.07815 0.51 .167 0.0885 0.51 .250 0.0885 0.51 .333 0.0926 0.52 .333 0.0921 0.52 .333 0.0926 0.52 .500 0.0991 0.52 .533 0.1027 0.52 .533 0.1063 0.52 .533 0.1063 0.52 .533 0.1077 0.52 .533 0.1077 0.52 .533 0.1077 0.52 .533 0.1177 0.54 .917 0.1174 0.54	.75	.067	4.	0	•	•		•
.917 0.0746 0.49 .000 0.0780 0.49 .0163 0.0815 0.51 .167 0.0815 0.51 .250 0.0815 0.51 .333 0.0920 0.52 .333 0.0920 0.52 .333 0.0920 0.52 .333 0.0921 0.52 .333 0.1027 0.52 .567 0.1063 0.52 .533 0.1027 0.52 .533 0.1033 0.52 .533 0.1063 0.52 .533 0.1177 0.52 .917 0.1174 0.54	. 83	.071	4.	0	•	•	•	•
.000 0.0780 0.49 .083 0.0815 0.51 .167 0.0850 0.51 .250 0.0855 0.51 .333 0.0920 0.52 .417 0.0926 0.52 .333 0.0926 0.52 .500 0.0991 0.52 .513 0.1027 0.52 .583 0.1027 0.52 .583 0.1027 0.52 .583 0.1027 0.52 .583 0.1027 0.52 .583 0.1077 0.52 .583 0.1137 0.52 .917 0.1174 0.54	91	.074	₽.	0	•		•	•
.083 0.0815 0.51 .167 0.0850 0.51 .250 0.0885 0.51 .333 0.0956 0.52 .417 0.0956 0.52 .500 0.0991 0.52 .5133 0.1027 0.52 .583 0.1027 0.52 .583 0.1027 0.52 .583 0.1027 0.52 .583 0.1033 0.52 .583 0.1107 0.52 .3133 0.1177 0.54 .917 0.1174 0.54	.00	.078	4.	Ø	•		•	•
.167 0.0850 0.51 .250 0.0885 0.51 .333 0.0920 0.52 .417 0.0956 0.52 .500 0.0991 0.52 .583 0.1027 0.52 .583 0.1027 0.52 .583 0.1099 0.52 .750 0.1093 0.52 .833 0.1137 0.52 .917 0.1174 0.54	.08	.081	ч С	Ø				•
.250 0.0885 0.51 .333 0.0920 0.52 .417 0.0956 0.52 .500 0.0991 0.52 .583 0.1027 0.52 .583 0.1027 0.52 .583 0.1077 0.52 .583 0.1077 0.52 .583 0.1137 0.52 .917 0.1174 0.54	.16	.085	<u>د</u>	0				
.333 0.0920 0.52 .417 0.0956 0.52 .500 0.091 0.52 .583 0.1027 0.52 .667 0.1063 0.52 .1063 0.52 0.52 .533 0.1063 0.52 .667 0.11063 0.52 .933 0.1137 0.54 .917 0.1174 0.54	.25	.088	ഹ	0				
.417 0.0956 0.52 .500 0.0991 0.52 .583 0.1027 0.52 .667 0.1063 0.52 .750 0.1099 0.52 .753 0.1174 0.54	.33	.092	<u>۰</u>	Ø		•		•
.500 0.0991 0.52 .583 0.1027 0.52 .667 0.1063 0.52 .750 0.1099 0.52 .333 0.1137 0.54 .917 0.1174 0.54	41	.095	<u>с</u>	10				
.583 0.1027 0.52 .667 0.1063 0.52 .750 0.1099 0.52 .833 0.1137 0.54 .917 0.1174 0.54	.50	.099	<u>د</u>	Ø				
.667 0.1063 0.52 750 0.1099 0.52 .833 0.1137 0.54 .917 0.1174 0.54	.58	.102	<u>د</u>	Ø	•		•	
.750 0.1099 0.52 .833 0.1137 0.54 .917 0.1174 0.54	.66	.106	<u>ں</u>	Ø	•		•	
.833 0.1137 0.54 .917 0.1174 0.54	.75	.109	ч С	0				•
.917 0.1174 0.54	. 83	.113	ഹ	0				
	.91	.117	<u>،</u>	C				

1	
	~
	(-1
	e
	e,
i	Page 3
i	
1	
1	
1	
_	
11.5960 10.3020	
6	
0 .	
9 · 0	
60	
50	
-	10
-	File name: P10_B8.RES
	2
i	
	8
\sim 1	0
	7
E	<u>u</u>
É E	
등 끈 -	ĕ
딸님	5
	č
E-F ACF	-
⊡ ≼	
	LL
ÜЫ	
$\triangleleft \Sigma$ I	
\sim D	
표 문 문	
2 Q I	
22	
I III	6
VO EE	
- S	0
s No	~
ωБ	č
ОЦI	2
H	
1 2 1	0
그 정 !	12
등 음 음	E L
SOIL-LOSS VOLUME (ACRE-FEET) = STORM RUNOFF VOLUME (ACRE-FEET)	Date: 07/03/2019
TOTAL TOTAL	
AA	
- 단단 -	
201	
нн	
i i i i i i i i i i i i i i i i i i i	
i i	
i	

	Q G
	Page
	File name: P10_B8.RES
0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3/2019
00000000000000000000000000000000000000	Date: 07/03/2019
8.833 9.107 9.167 9.167 9.167 9.417 9.417 9.550 9.553 9.553 9.553 9.553 9.553 10.167 10.167 10.1683 11	

	•	•			•				•			•																		•	•		. .										•						•		•	•		•	•	e 5
	•																														•		. .										•								•			•		Page
·	•	•			•				•				•					•			•			•	•		•				•		. .				•	•				•						•		•		•				
·	•																														•							•														•	Э	x c	•	P10_B8.RES
0	R	Ø	Ø	õ	ð	Ø	Ø	Ø	Q	Ø	0	0	οΛ	- 0N	NO X	° C	* 0	10	10	2 O	Ø	ΛQ	VQ	VQ	VQ	VQ	ΔŎ	o.	ż	à	ə.c	ÿĊ	, c	×c	. 0.	ø.	ġ	o,	ġ	o.	à	Ņ	2 c	NO X	Ň	۰vو	0 2	v.	0		0 - - - - - - - - - - - - -	> : •	> :	> > •	•	name:
24	00.	. 60	• 60	. 63	. 63	. 63	. 69	. 69	. 69	.74	.74	74	.76	76	76	70	70	.70	.75	.75	.75	.81	.81	.81	.85	.85	. 85	.91	5.0	15.				10	.01	.03	.03	.03	.00	.06	90 .	12.	12.	17	71	.71	.80	°°	°.				<u> </u>	n 0		File
0.1212	C71.	.129	.133	.137	.142	.146	.151	.156	.161	.166	.171	.176	.181	.186	191.	.196	.201	.206	.211	.216	.221	.227	.232	.238	.244	.250	.255	.262	897.	- 2 / 4	182.	102.	.301	308	.314	.322	.329	.336	.343	.350	355.	0000. 975	0,00 6,86	.395	.406	.418	.437	.457	.476	.505	.533	296.	080.	. 000 664	•	Date: 07/03/2019
4.000	۰. ۵	.16	.25	.33	.41	.50	. 58	. 66	.75	. 83	.91	00.	08	9	25	33	41	.50	.58	. 66	. 75	.83	.91	00.	.08	.16	.25	. 33	- 4 L	. 50	, 50 26.	57.0	. 83	. 6	00.	.08	.16	.25	с. С	.41	.50	. Ja	75	833	916	.00	.08	.16	.25	.33	.41	.50	80.	. 00		D


ୁ 	
малаларовоооооооооооооооооооооооооооооооо	
9.7783 9.8764 9.83664 9.8370 9.93705 9.93705 9.93705 9.937012 10.0112 10.0112 10.0317 10.0317 10.0317 10.0375 10.1279 10.1278 10.1279 10.1278 10.1279 10.1278 10.1278 10.1278 10.1278 10.1278 10.1278 10.1278 10.1278 10.2277 10.2277 10.2218 10.2218 10.2218 10.2218 10.2265 10.2218	
16.167 16.167 16.167 16.167 16.583 16.583 16.583 16.583 16.583 16.583 16.583 16.583 16.583 16.583 16.583 17.255 17	

1
3 5

30.0	ν.	۷.	ν.	• ^	۷.	ν.	ν.		. ~	. ^ ^	۷.		· ^ ^	ν.	۲. ۲.											
22.5								•								FLOW RATE:										
15.0				•				•	•							IMATED PEAK ed to have	Duration (minutes)		0.0	525.0	465.0 /20 0	360.0	225.0	210.0	0.0	45.0
7.5					•		•	•	•		•	•				LES OF EST nate assume	Duration (minutes		1530.0	22	461	36(221	21(180	4
Q(CFS) 0.	0.17 Q								0.04				0.01 0		0.01 Q 0.01 Q	TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)	ted									
VOLUME (AF)	10.2962	10.2975	10.2987	10.2992	10.2996	10.3001	10.3004	10.3007	10.3009	10.3012	10.3014	10.3015	10.3016	10.3017	10.3017 10.3018	TIME DURATION(minutes) OF PERCE (Note: 100% of Peak Flow Rate e an instantaneous time duration)	Percentile of Estimated Peak Flow Rate		°% 0 %	10%	20% 30%	40% %0%	50%	60%	70%	% % %
TIME (HRS)	24.083	24.166	250	333	116	00	583	566	/ 5 U	916	000)83 ادد	т ю ю 250	5.333	116 500	HE DUR te: 1 insta	centi Peak									
E	24.	24.	24.	24.	24.4	24.500	24.5	24.6	. 42	24.916	25.000	25.083 25.166	25.250	25.	25.416 25.500	TIM (NC an	Per									
									. V			· V. 25.			. V. 25.4 . V. 25.5			. V. ====	. v.	· · ·	. ^V .	· · · · ·	· · ·	. v.	. v.	
			. v.	Δ.								· · ·		. v.	. v. v.				•	•				•	•	
	· · · · · · · · · · · · · · · · · · ·	Q V.	. v.	2 V	Q · · · · V.	Q · · · V.	2 · · · ν.		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Q · · · V.	· · · ·	· · · · · · · · · · · · · · · · · · ·	ē v.	ο	·····	· · · · · · · · · · · · · · · · · · ·	· · ·		•••••••••••••••••••••••••••••••••••••••	•	 	••••		· ·	

**************************************	>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) <<<<< (UNIT-HYDROGRAPH ADDED TO STREAM #1)	WATERSHED AREA = 21.300 ACRES BASEFLOW = 0.000 CFS/SQUARE-MILE *USER ENTERED "LAG" TIME = 0.174 HOURS CAUTION: LAG TIME IS LESS THAN 0.50 HOURS. THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM) MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.	VALLEY S-CRAPH SELECTED UNIFORM MEAN SOLL-LOSS (INCH/HOUR) = 0.104 LOW SOLL-LOSS RATE PERCENT(DECIMAL) = 0.900 MININMON SOLL-LOSS RATE (INCH/HOUR) = 0.052 USER-ENTERED RAINFALL = 3.10 INCHES RCFC&WCD 24-HOUR SLORM (15-MINUTE PERIOd) SELECTED RCFC&WCD DEPTH-AREA ADUUSTMENT FACTOR (PLATE E-5.8) = 1.0000	UNIT HYDROGRAPH TIME UNIT = 15.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG-TIME = 143.926	UNIT HYDROGRAPH DETERMINATION	INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES (CFS)	1 31.544 27.086 2 79.127 40.857 3 90.580 9.834 4 95.714 4.408 5 98.210 2.144 6 99.250 0.386 7 99.250 0.386 8 99.925 0.193 9 100.000 0.64	TOTAL STORM RAINFALL(INCHES) = 3.10 TOTAL SOIL-LOSS(INCHES) = 1.62 TOTAL EFFECTIVE RAINFALL(INCHES) = 1.48	TOTAL SOIL-LOSS VOLUME (ACRE-FEET) = 2.8722 TOTAL STORM RUNOFF VOLUME (ACRE-FEET) = 2.6287	Date: 07/03/2019 File name: P10_B9AA.RES Page 2
**************************************	ACCORDING TO RIVERSIDE COUNTY FLOOD CONTORL AND WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1989-2013 Advanced Engineering Software (aes) (Synthetic Unit Hydrograph Version 20.0) Relaase Date: 06/01/2013 lifense TD 1264	Ğ	<pre>************************************</pre>	FILE NAME: P10_B9AA.DAT TIME/DATE OF STUDY: 15:58 07/03/2019						Date: 07/03/2019 File name: P10_B9AA.RES Page 1

		5 10.0				•		•				•		•			•			•	•	•	•			•		·		•								•		•
	CFS) ervals)	7.5		·	•	•		•	•		•	•	•	•		•	•	•	•••	•	•	•	•	•		•	•	•		•	•	•	•			•	•	•	•	
АРН	RVALS(5.0		•	•	•		•				•	•	•				•		•	•	•	•												, .		•		•	•
T D T O G R		2.5		•	•	•		•				•	•	•			•				•	•	•			•	•	•		•							•	•	•	•
) III) 	n d E	.0	Ø	Ø	0	ЭС	20	0	20	N OK	Ø	0	ж	ЯC	0	Ø	00	ЭС	x OX	0	ЭС	20	0	20	N OK	Ø	00		юк	N ON	Ø	00	2 C	0 10	x OI	0	0 (00	ЭС	ж
E O N	PH IN F cated	Q (CFS)	· ·	0.0	<u> </u>	20	<u> </u>	°.'	<u> </u>	<u> </u>	•	<u> </u>	<u> </u>		0	∘.	<u> </u>	20	<u> </u>	0.0		Ξ.	-		:	Ξ.			. –		Ξ.			0.13	: .	Ξ.				
RU	HYDROGRA : Time ind	VOLUME (AF)	.000	.000	000.	000.	.001	.001	200.	.003	.004	.004	200. 2005	.006	007	.007	.008	800.	.009	.010	110	.012	.013	.013 014	.015	.015	.016	, TU.	.019	.020	.020	.021	220.	0.0244	.025	.026	.027	.028	030.	
		TIME (HRS)	.08	.16	.25	41	.50	.58	. 66 75	. 83	.91	.00	.08	25	.33	.41	.50	. 56	.75	.83	100	.08	.16	67. 52	.41	.50	.58	. 00 75	. 83	.91	.00	.08	9 T O	3.233 3.333	.41	.50	.58	. 66	• / J	

	Page 6
	ъ В
	B9AA.RES
	name: P10
20000000000000000000000000000000000000	9 File
0.1980 0.2198 0.2198 0.22198 0.22198 0.22198 0.2523 0.25223 0.2523 0.25	Date: 07/03/201
88.833 9.000 9.167 9.167 9.167 9.250 9.250 9.750 9.750 10.250 10.250 10.250 10.250 10.250 10.250 10.250 10.250 11.250 1200 1200 1200 1200 1200 1200 1200 1	

	•														•		•										•					•		•			•							•			•	•		•	•		•						е 5
•	•				•	•				•				•	•	•	•		•			•			•		•		•	•		•	•	•			•	•			•			•	•		•	•		•	•	•	•		•			•	Page
	•				•				•		•			•	•	•	•		•					•	•	•	•			•			•	•				•						•	•		•	•	•	•	•	•	•		•			•	
•	•													•	•	•	•										•		•			•		•			•	•													•	•	•					•	0 B9AA.RES
8) K	Ø	Ø	ð	ð	Ø	0	C	жс	ĸ	Ø	0	C	×C	S (Di P	Ø	Ø	Ø	Ø	Ø	0	۰ C	×C	×c	× C	ж	ЯC	211	21	20	20 6	21	20	21	> c	×⊂	, c		0	<u>,</u> 0	0	ø.	ō.	o.	ō.	ġ	VQ	.VQ	~~~	> < - <	> < > >	ב ג	0 K 0 V 0 V	. V Q	. v 0	. v 0	. v	e name: P10
5 6) 	.15	.15	.17	.17	.17	.18	18) (-	01.	.19	.19	19	10	. T	۰T،	.19	.18	.18	.18	.19	.19	19	5	15	15		22.0	• • • •	44.0	5.00	3.0	. 4	- 7 T	C	190	2 4 6	26.	.26	.26	26	.27	.27	.27	.35	.35	. 35	. 55	• 55	. 55 CC .	. c	. o	; ^	. ~	~	4.	₽.	4.	File
0.0319		.034	.035	.036	.037	.038	.039	041		.042	.043	.044	046		. 04 0	.048	.050	.051	.052	.053	.055	.056	0.57	050	0.000	062	700. 1003	1901. 1901.		0000	0000.	120.	100.	010. 070	500	0/0. 8/0	070.	0.81	.083	.085	.087	.089	.090	.092	.095	.097	.100	.103	.107	1111.	/ TT .	001	138	.146	.155	.165	.174	.184	Date: 07/03/2019
4.000	? '	-	\sim	e.	4.	Ω.	<u>د</u>	9	- r	. '	œ.	°.	C	\sim	? '	- '	∼.	ς.	4.	ς.	<u>د</u>	9.	L	- ~ ~	0	\sim	\sim	2 -		10	. 4	י ע י	<u>,</u> п	റ യ		-α	. 0	$: \subset$	2	-	2	~.	4.	<u>۰</u>	ς.	9.	Ŀ.	∞.	°.'	<u> </u>	⊇ -	10	100	27	<u>د</u>	<u>ں</u>	9.	Ŀ.	Da

	rage x
	2
aa aa	P10_B9AA.KES
2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	Ē
2.5548 2.5548 2.5548 2.5548 2.5548 2.5548 2.5548 2.5548 2.5548 2.5548 2.5548 2.5548 2.5548 2.5548 2.5548 2.5548 2.5548 2.5588 2.5588 2.5588 2.55988 2.55988 2.55988 2.55988 2.55988 2.55988 2.55988 2.55988 2.55988 2.55988 2.55988 2.55988 2.55988 2.55988 2.55988 2.55988 2.55988 2.55988 2.55988 2.559888 2.55988 2.55988	Date: 07/03/2019
16.167 16.167 16.167 16.583 16.583 16.583 16.583 16.583 16.583 16.583 16.583 16.583 17.256 17.256 17.256 17.256 17.256 17.257 17.256 18.256 19.256 19.256 19.256 19.256 19.256 19.256 19.256 19.256 19.256 10.256	C

10.0		•		•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•		• .					V	۰ ۸	۰ ۱	۰ ۸	^	^	۰ ۸	. ν	v	>	•	• > #	•
7.5		•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	२ ०	> <				×	, X C	 × 0	· ·		v	. ν	^	·	>:	• 11	• •	• ^	\sim	ν.	•	•		•	•		•	•			•	•	•	•	•
5.0		•	•	•	•	•	•	•	•	0	νQ.	νQ.	v Q.	v 0.	ν φ.	0	∂. < > ;	λ. >		> ₽	11		> p	•	•			•			б.	• •	90	20	×⊂	×C	• 0	Ø	0	ð	б.	ō.	ō.	0	Ø		ŏ	0				a	•
2.5	δV	QΛ		QΝ	0 °	л С			0		•	•		•	•		•		•	•	•	•	•					•	•		•	•	•	•		•										•				•	•		
0.			•		•			•	•	•	•	•			•	•		•		•			•	•	•			•	•		•	•	•			•	•						•				•			•	•	•	•
Q(CFS)	Г.	•	Γ.	പ	<u>.</u> .	<u>،</u>	7.	2.	2.	~	<.	~	°°	°.	œ.	n d	n d	n e	•) r				0,0	6.05 6.05	5	r-	•	œ	°°.	~ `						Ο.	Ο.	ο.	°.	°°	°.	.6		9.	Ξ.	Ξ.	-	ف	ف	3.64	÷.
VOLUME (AF)	.780	.799	.818	.835	.853	T/8.	. 893	.916	.938	.968	.997	.026	.060	.093	.126	.162	.199	C27.	117.	010. 010	800	001. 100	1001	. 4 4 4 7 4 0	. 040	.624	. 657	.689	.722	.756	.789	.822	858.	. 000 000	050.	666	034	.069	.104	.139	.172	.206	.239	.271	.303	.335	.364	.393	.422	.447	.472	n 4 ک	•
TIME (HRS)	1.58	. 66	1.75	1.83	1.91	2.00	2.08	2.16	2.25	2.33	41	2.50	.58	2.66	.75	2.83	7.91	3.00	00.	. н с	0.4.0			001	900. 900	.75	. 83	91	.00	.08	14.167	.25		- 1 L		.66	75	. 83	.91	5.00	.08	5.1	.25	5.33.	5.41	5.50	5.58	. 66	5.75	5.83	5.91	16.000	00.0

10.0	. v.	· ^		· · >	. V.	 ^ /														
		-					RATE:													
7.5	•		•	•••	•	• •	K FLOW I													
5.0	•		•		•		TED PEA	to have	u (s	10										
2.5							F ESTIMA	assumed	Duration (minutes)	=======	1485.0 510 0	465.0	420.0 345.0	225.0	21U.U 165.0	45.0	15.0			
2							TILES O	stimate												
Q(CFS) U.	0.04 Q			0.01 Q		0.01 2	OF PERCENTILES OF ESTIMATED PEAK FLOW RATE	(Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)										NALYSIS		
							utes) 0	ak Flow time du	Estimated	ų								UTING A		
TIME (HKS) VOLUME (AF)	2.6278 2.6280	2.6283	2.6283 2.6283	2.6285	2.6285	2.6286 2.6286	TIME DURATION (minutes)	(Note: 100% of Peak Flow Rate e an instantaneous time duration)	of		% % % %	20%	30% 40%	50%	20% 20%	80% %	90%	FLOODSC× ROUTING ANALYSIS		
HKS) V	24.083 24.166	250	333 116	4 T 0 200	583 666	750	ME DURA	lote: 10 i instan	Percentile Peak F	L CON								ЧС		
			כדי כ	r 🗸	5	, 7 7	Ē	ar ar	Ъ	li								END		
TIME (24.	24	¢, ¢	7 7													ii			
					. v.			. л 	. v v.	· ^^	v	· ^ ·	V.	· ^	. ^ V				. v. V.	
								· ^ ^ ·	v v	· Λ ·	. ^V	. · · ·	V	. V.	· ^ ^ · · ·	. v.	. V	. ^ ^ ^		
								· ^ ^ · ·	· ^ ^ · · ·	· ^ ^ · · ·	. v	· · · · · · · · · · · · · · · · · · ·	Λ	. V	· · · ·	· · · · · · · · · · · · · · · · · · ·	. V			
								· A · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · ·					
· · · ·		· · · · · · · · · · · · · · · · · · ·	. Υ	· · · · · · · · · · · · · · · · · · ·	V.	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· ·			•		• •							
	Δ Δ .	· · · · · · · · · · · · · · · · · · ·	ο	· · ·	. v.			· · ·		· · ·	•	· · ·	• • •		· · ·		•••	· · · ·		
6129 0.07 2 · · · V.	6139 0.07 Q V V	6148 0.07 Q V.	6153 0.07 Q V.	5162 0.07 Q · · · · · · · ·	6166 0.07 Q V.		5185 0.07 Q · · · · · · · ·	6194 0.07 Q	0.07 0 · · · · · · · · · · · · · · · · · ·	5212 0.06 Q · · · · · · ·	6216 0.06 Q	6223 0.05 Q · · · · ·	6227 0.05 Q 6231 0.05 Q		6242 0.05 0	6246 0.05 Q · · · · ·	6249 0.05 Q	2257 0.05 2 2260 0.05 2 2260 0.05 2	2264 0.05 0	2271 0.05 2 · · · · · · · · · · · · · · · · · ·
2.6129 0.07 Q V.	2.6139 0.07 Q V V	2.6148 0.07 Q V.	2.6153 0.07 Q V.	2.6162 0.07 Q V.	2.6166 0.07 Q V.		2.0160 0.07 Q · · · · · · · · · · · · · · · · · ·	2.6189 0.07 0	· · ·		2.6216 0.06 Q · · · · · · · · · · · · · · · · · ·	2.6223 0.05 Q	2.6227 0.05 Q	2.6235 0.05 2 2.6235 0.05 2	2.6242 0.05 0	2.6246 0.05 2	2.6249 0.05 Q	2.6257 0.05 0 2.6260 0.05 0 2.6260 0.05 0	2.6264 0.05 Q	2.6271 0.05 0

	30.0		•			•	• •	•	•	• •	•	•	•	•	•		•	·		•	•	•		•	•	•	• •		•	•	•	•		•	•	•	•	•	•
(CFS) tervals)	22.5											•		•	•			•				•		-		•			-	•	•								•
INTERVALS (CI h Unit Inter	15.0									• •	•	•		•	•	• •		•				•		•	•	•			•	•	•				•	•			
E UNIT of Eac	7.5	•			•	•		•			•				•											•											•		
VE-MI s at	0.	00	ЭC	N OK	Ø	00	N OK	Š	0	2 K	× O	Ø	Ø	00	ЭС	KO K	Ø	00	ЭС	201	0	ЭC	юĸ	õ	0	ЭК	×c		Ø	Ø	00	ЭС	× o	0	Ø	0	00		×
GRAPH IN FI indicated i	Q (CFS)	0.0	· ·	2.11	Ξ.	0.12			2.0	2.5	2	\sim	2.	\sim	10	. ~.	\sim .	~ ~	20	~	~ ·	۳. «	: ~ .	с.	<u>.</u>	γ. c	. m	4	4.	4.	0.42	. d	. T.	4.	₽.	4.	4.2	. ∠	
HYDRO : Time	VOLUME (AF)	000.	000	.001	.002	0 C	.005	.007	.008	.011	.013	.015	.017	.019	.023	.025	.026	.028	.032	.034	.036	040	.043	.045	.047	050.	.055	.058	.060	.063	.066	200. 070	.075	.078	.081	.084	.087	020.	
(Note	TIME (HRS)	•	1.0	·	4.	ഗഗ		Ŀ.,	°, c		•	Ξ.	.2	с	т IC	· ·	<u>ە</u>	r. °	°.	•	•	~	: ~ .	4.	ം	<u>م</u> ،		~~	6.	•	°. '		·	4.	<u>د</u>	5.	۰ r	-α	

	Page 3
S(ACRE-FEET) = 10.0873 SUME(ACRE-FEET) = 8.2477	File name: E10_B8.RES
TOTAL SOLL-LOSS VOLUME (ACRE-FEET) = TOTAL STORM RUNOFF VOLUME (ACRE-FEET)	Date: 06/18/2019

	e e
	Page
	0
	name: E10_B8.RES
44400000000000000000000000000000000000	File
0.5294 0.5284 0.6538 0.6538 0.6538 0.6538 0.6538 0.6538 0.9473 0.9473 0.9447 0.9447 1.1058 0.9447 1.1058 1.1058 1.17394 1.17394 1.17394 1.17394 1.17395 1.17395 1.17395 1.17395 1.17395 1.17395 1.17395 1.17355 1.17355 1.17355 1.17355 1.17555 2.0036 2.0036 2.155555 2.155555 2.155555 2.155555 2.155555 2.155555 2.155555 2.155555 2.155555 2.155555 2.155555 2.155555 2.155555 2.155555 2.1555555 2.1555555 2.1555555 2.15555555555	Date: 06/18/2019
8.833 9.167 9.250 9.250 9.250 9.250 9.250 9.550 9.550 10.250 10.250 10.250 10.250 11.250 1200 1200 1200 1200 1200 1200 1200 1	

	د
	Page
	E10_B8.RES
∞∞ < < < < < < < < < < < < < < < < < < <	• V Q e name: E
0.45 0.49 0.49 0.52 0.52 0.52 0.55 0.55 0.55 0.55 0.55	.39
0.11028 0.1028 0.11062 0.11062 0.11062 0.11062 0.11168 0.11284 0.11284 0.12844 0.12844 0.12844 0.128319 0.128319 0.226599 0.2277777777777777777777777777777777777	5.1 5/1
 444444444444444444444444444444444444	.750

	je 8
	Page
aa 	E10_B8.RES
	File name: E:
10.18 10.18 10.18 10.18 10.18 10.18 10.28 10	
7.7525 7.9526 7.9526 7.9567 7.9567 7.9567 7.9566 7.99565 7.99655 7.99655 8.02422 8.02442 8.02644 8.02626 8.02624 8.02624 8.02626 8.02666 8.02666 8.026666 8.0266666 8.02666666666666666666666666666666666666	Date: 06/18/2019
16.167 16.167 16.5683 16.5683 16.5667 16.5683 16.5683 16.5667 16.5683 16.5683 17.2560 17.2560 17.2560 17.2560 17.2563 19.2563 10.2563 10.2563 10.2563 10.2563 10.2563	

15.0 22.5		•	•	•	•			 	· 0 ·	V Q .	V Q .	. v v v	v o .	•	. v.	•	× .	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ŏ		•	×~	· · · · · · · · · · · · · · · · · · ·	· 0 v ·		. v	к	Q V		. v v		$-\alpha$. v .	a	0	» N			a	ο. ν		Ø		> >			· · ·
0. 7.5	. vo	о				× ·			•	•	•	•	•	•			•••	•		•	•	•		•	•								•	•		•		•	•	•	•	•	•	•••	•	•	•
) Q(CFS)	.4	4.	ব' ও	ς γ	, o	<u> </u>	0	? ?	2.1	2.1	2.1	4.0	4.0	4.0	س	 	7.6	7.6	7.6	e. 0	n (?.c	0.1	0.1	6.3	16.33	5.4	5.4	5.4	6.4	5.4	6.5	6.5	6.5	6.4	7 7 2 7	5.9	5.9	5.9	5.3	с. С. С.	с. С.	7.0	1.4	2.4	2.4	2.4
) VOLUME (AF)	.214	.272	.330	022.	2017. 494	.556	. 618	.680	.764	.848	.931	.028	.125	.222	.331	204. 2025	.669	.791	.912	.052	.192	470	. 609	.748	.861	4.9735 5 0050	.192	.298	.404	.518 631	745.	.859	.973	.086	.200	426. 426	.536	.645	.755	.860	.966	.071	767.	.365	.451	.536	.622
TIME (HRS)		1.66	с/.т		100	80.	2.16	.25	.33	.41	.50	.58	.66	.75	•	12.00	.08	.16	.25	.33	141	 	. 66	.75	. 83	13.917	.08	.16	.25	33	- 4 T	58	.66	.75	. 83	12.00	. 08	5.16	.25	5.33	.41	5.50	2 C .	75	.83	.91	16.000

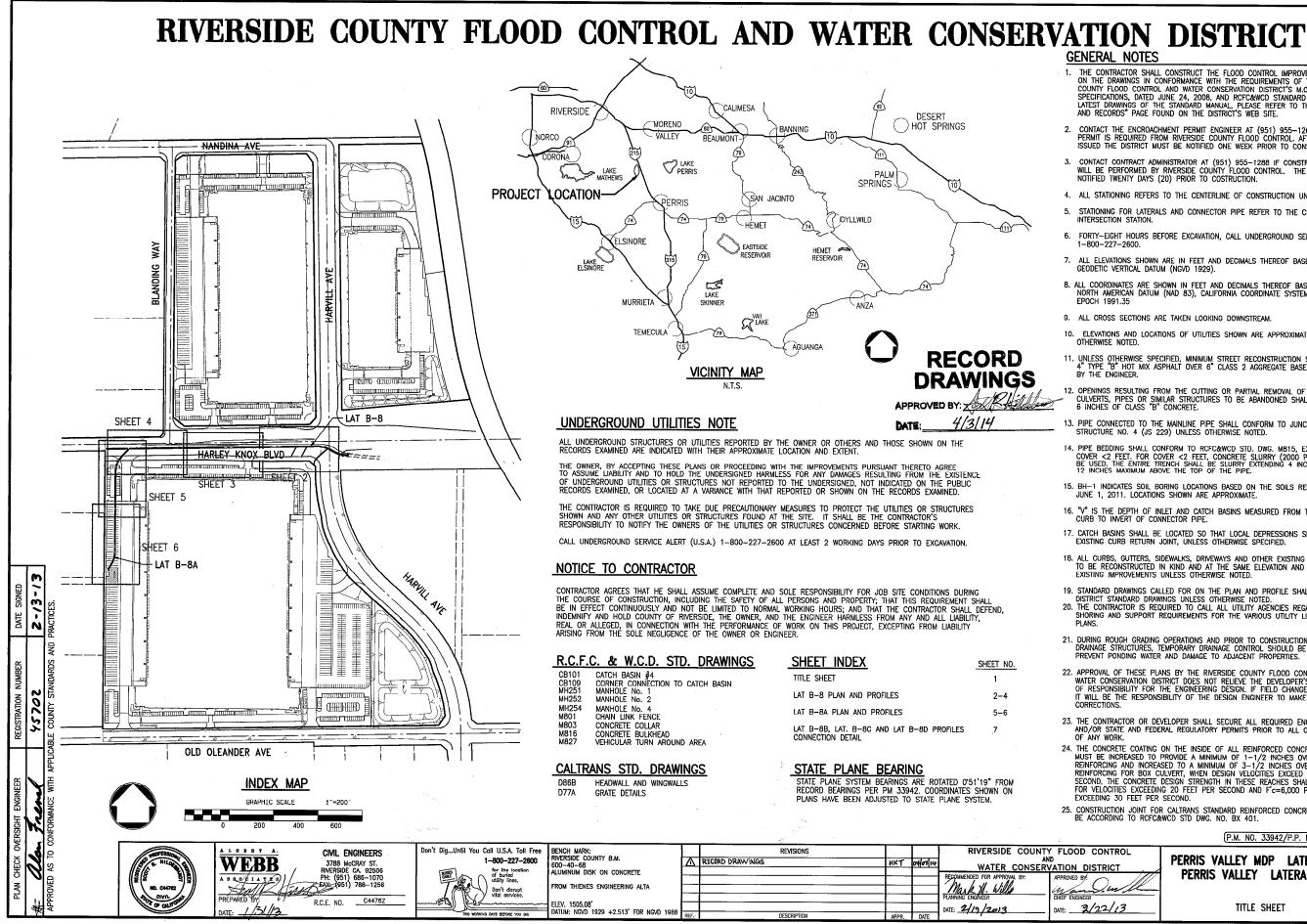
.5 30.0	. V.	. V.	. v.				· ^ ^	· ^	. v.	. v.	. ^ ^		. v.		 . v	W RATE:										
22.																EAK FLO										
15.0			•	•	•	•	•		•	•						DF ESTIMATED PEA assumed to have	Duration (minutes)		0.0	0.0	465.0	345.0	240.0	0.0	106.0	0.01 30.0
7.5				•		•	•							•		ES OF EST. ate assume	Duration (minutes		153(510.0	46	34	24(21(180	ЭС Т
Q(CFS) 0.	0.15 Q					0.07					0.02				0.01 Q 0.01 Q	TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)	ted									
TIME (HRS) VOLUME (AF)	8.2421	8.2432	8.2442	8.2447	8.2452	8.2457 8.2457	8.2462	8.2465	8.2466	8.2468	8.2469 2 2771	8.2472	8.2473	8.2473	8.2474 8.2475	ATION(minute 00% of Peak ntaneous tin	entile of Estimated Peak Flow Rate		%	10%	20%	40% %	50%	60%	70%	%08 %08
SS) V		9	20	33	16	00 6	0 0 9 0	50	333	916	000	166 166	250	333	116 500	TIME DURATIC (Note: 100% an instantar	Percentile of Peak Flow									
TIME (HI	24.083	24.16	24.25	24.30	24.4	24.5	24.6	24.7	24.8	24.0	1.62	25.166	25.250	25.333	25.416 25.500	TIM (No an	Per									
						. V. 24.5 24.5					. V				. V. 25.4 . V. 25.5	. V. TIM . V. (No . V (No . V			. v.	. V.	. V.	· · · · ·	. ^ V .	. v.	. v.	
	· · · ·	V.	V.	. v.	. V.	. v	· · · · · · · · · · · · · · · · · · ·	. V.	· · V.	. V.	· ^ ·	· · · · · · · · · · · · · · · · · · ·	. v.	. v	V			V.		•	•			•	•	
· · · · · · · · · · · · · · · · · · ·	· · · ·	Q V.	õ . v.	0 · · · · 0.	. v.	· · ·		2 · · · · · · · · · · · · · · · · · · ·	Q · · · V.	. v.		· · · ·	Q	2 · · · V.	ο · · · · · · · · · · · · · · · · · · ·	· · · · · ·	о о о о о о о	Q V.	· ·	· ·	• •	 	· · ·		· ·	

21.000 21.083 21.157 21.250 21.1333 21.1333 21.1333 21.1583 21.1583 21.500 21.503 21.503 22.250 22.2503 22.250

**************************************	>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS)<<<<< (UNIT-HYDROGRAPH ADDED TO STREAM #1)	WATERSHED AREA = 34.700 ACRES BASEFLOW = 0.000 CES/SQUARE-MILE *USER ENTERED "LAG" TIME = 0.236 HOURS CAUTION: LAG TIME IS LESS THAN 0.50 HOURS.	MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES. MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES. VALLEY SGRAPH SELECTED UNIFORM MEAN SOIL-LOSS (INCH/HOUR) = 0.115 LOW SOIL-LOSS RATE PERCENT (DECIMAL) = 0.900 MINIMUM SOIL-LOSS RATE (INCH/HOUR) = 0.058 USER-ENTERED RAINFALL = 3.10 INCHES RCFCGWCD 24 HOUR STORM (15-MINUTE period) SELECTED RCFCGWCD DEPTH-AREA ADJUSTMENT FACTOR (PLATE E-5.8) = 0.9999	UNIT HYDROGRAPH TIME UNIT = 15.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG-TIME = 106.067	NOTINE HOROZALA HOROZALA	ONIT HIDROGRAFH DETERMINATION	INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS)	1 20.886 29.216 2 69.734 68.331 3 84.630 20.837 4 91.212 9.208 5 95.055 5.389 6 97.426 3.303	98.563 99.297 99.719 99.930	COTAL STORM RAINFALL(INCHES) = 3.10 COTAL SOLL-LOSS(INCHES) = 1.70	TOTAL EFFECTIVE RAINFALL(INCHES) = 1.39	LUME (ACRE-FEET) = 4.9302	Date: 07/03/2019 File name; E10_69AA.KES
**************************************	ACCORDING TO RIVERSIDE COUNTY FLOOD CONTORL AND WATER CONSERVATION DISTRICT (RCFC&MCD) 1978 HYDROLOGY MANUAL (c) Copyright 1989-2013 Advanced Engineering Software (aes) (Synthetic Unit Hydrograph Version 20.0)	Kelease Date: U6/U1/2U13 LICense ID 1264 Analysis prepared by:	<pre>************************************</pre>	FILE NAME: E10_B9AA.DAT TIME/DATE OF STUDY: 15:44 07/03/2019								Ella annora Etalo BOAA BEC	Date: U//U3/2019 File name: E10_B9AA.KES Page 1

	(Note: Time ind	ndicated i	is at END	E UNIT IN of Fach	NTERVALS (C UNERVALS (C	(CFS) tervals)	
ME (HRS)	LUME (AF)	CFS)	0.	5.0	10.0		20.0
1 00	000	0	C				
167	0.0002	0.02	N OK				
S	.000	∘.	O	•	•	•	•
ς,	.000	<u> </u>	0				•
- <	.001	°.	0	•	•		•
\supset o	•	°	0 0				
0 4	200.					•	
2 5	004		×c	•	•		•
2 6	004		×c	•	•		•
56	.005	: -	хс	•	•	•	•
10	000	•	ЯС	•	•	•	•
80	007	1	×C	•	•		•
16	008		×C				• •
22	000	1 -	×C	•	•	• •	•
333	010		10				
41	.011		0				
50	.012	Ξ.	Ø				
58	.013	0.13	Ø				•
66	.014	÷	Ø	•	•	•	•
75	.014	.1	õ				•
83	.015	Ξ.	O	•	•	•	•
91	.016	-	8	•			•
88	.017	÷.	0 0	•	•		•
80,	8T0.		3	•	•	•	•
9 U T (020.		ЭК				
200	120.) K	•	•	•	
55	770.	÷.	⊃×⊂		•		•
+ ⊂ # ℃	0074			•	•		•
200	025		хс	•	•	•	•
200	027	: -	×c	•	•	•	•
52	028		* C				
. m	.029	\sim	* 0				
91	.031	\sim	0				
00	.032	~.	0				
08	.033	∼.	0				•
16	.035	\sim	Ø				
25	.036	\sim	Ø	•		•	•
33	.038	\sim	Ø				
41	.039	.2	Ø	•	•		·
50	.041	2.	Ø				•
58	.042	∼.	Ø	•	•		•
66	.044	∼.	Ø				
75	.045	2.	Ø				•
83	.04	0.22	Ø	•			•
5	0480	¢	<				

	Page 3
4.0314	
JUME (ACRE-FEET) =	File name: E10_B9AA.RES
TOTAL STORM RUNOFF VOLUME (ACRE-FEET)	Date: 07/03/2019
İ	


	Page 6
	ď
	B9AA.RES
	name: E10
00000000000000000000000000000000000000	File
0.270 0.33196 0.33196 0.33196 0.33196 0.45139 0.45139 0.544559 0.544255 0.6644559 0.85514 1.02564 0.87554 0.96731 1.02564 0.96731 1.02564 0.96731 1.02564 0.9673 0.9673 0.9673 0.9673 0.9673 0.97754 0.9673 0.97754 0.9673 0.97754 0.9673 0.977544 0.97754	Date: 07/03/2019
8.833 9.017 9.010 9.167 9.167 9.167 9.167 9.250 9.258 9.258 9.258 9.258 9.258 10.168 10.168 10.256 110.258 111.250 111.167 111.250 111.250 111.250	_

	• .	•					•	•						·	•		•	•							•		•		•	·			•		·	•		•				•	•		•			•	•				ge 5
	•		• •	•		•	•	·			•	•		•	•			•	•	•		•	•		•		•		•	•	•		•	•	•	·	•				•	•	•	•	•	•				•		•	Page
											•	•			•				•	•		•						•			•		•			•						•			•								
	• •	•					•											•												•																		•					E10_B9AA.RES
00	× C	хc	× 0	Ø	Q	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø	Ø	0	30	20	жс	жс	× 0	× O	δΛ	QV	QV	QV	δV	δΛ	VQ 1	20	2 6	, NO	δV	QV	QV	QV	200	2 20	, NO	δΛ	QV	ġ	ġ	ş	, S	×c	. 00	0	• 01	. VQ	. vo	. VQ	name:
0.25	5	10	\sim	~	N.	~	2	2	ē.	ē.	ē.	3	ŝ	m.	2	2	20	n i	; e	; m	, m	e co	ē.	e.	ē.	÷.	m,	è,	m, c		, d	4	4	4	4	4		7 7	4	4	4	in i	in i	<u>م</u>	'n ơ	, o	. 4	4.	4	5	Ē.	Ē.	File
0.0502 0.0519	0.53	055	.057	.058	.060	.062	.064	.066	.068	.070	.072	.075	.077	.079	.081	.083	C80.	1000	100.	100.	.096	.098	.100	.103	.105	.108	.110	.113	.116	101 077.	701. 777.	.127	.130	.132	.135	.138	747. 777	.147	.151	.154	.157	.161	.165	. 169 175	C/T.	188	.198	.208	.218	.231	.243	.255	Date: 07/03/2019
4.000 4.083	19		.33	.41	.50	.58	.66	. 75	. 83	.91	.00	.08	.16	.25	. 33	.41	. 50	999 999			. 16	00.	.08	.16	.25	.33	.41	.50	. 58	00. 100	2.8	.91	00	.08	.16	. 25	 1	50	.58	. 66	.75	. 83	.91	00.00	ν 2 σ		 	41	.50	.58	.66	. 75	Q

	Page &
	τ
	E10_B9AA.KES
$\mathcal{P}_{\mathcal{P}} \mathcal{P}_{\mathcal{P}} \mathcal{P} \mathcal{P} \mathcal{P} \mathcal{P} \mathcal{P} \mathcal{P} P$	name:
4.51 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.8	TILE
833 833 833 833 833 833 833 833	Date: 07/03/2019
16.167 16.167 16.167 16.333 16.6417 16.6417 16.657 16.657 16.657 16.6583 16.657 17.083 19.000 19.000 19.083 19.0000 19.0000 19.00000 19.00000 19.00000 19.00000 19.0000000000	-

1583 111131 412 2.4 1597 111415 412 2.4 1597 111415 412 2.4 1597 111415 412 2.4 1593 113131 412 2.4 1593 113131 412 2.4 1593 113131 412 2.4 1593 113131 412 2.4 1593 113131 412 2.4 1593 11572 7.16 2.4 1593 11572 7.19 2.4 1573 7.16 2.4 2.4 1573 11912 8.9 2.4 1573 11912 8.9 2.4 1573 11911 8.9 2.4 1573 11911 8.9 2.4 1573 1.911 8.9 2.4 1573 1.911 8.9 2.4 1583 2.1413 1.722 2.9 1593 2.1413 1.722 2.9 1593 2.1314 <	583 1.1131 4.12 0 0 567 1.1415 4.12 0 0 317 1.1415 4.12 0 0 313 1.19649 3.85 0 0 313 1.19649 3.85 0 0 313 1.2813 4.62 0 0 313 1.2813 4.62 0 0 313 1.2813 4.62 0 0 313 1.2813 4.62 0 0 313 1.2336 6.26 0 0 313 1.5729 7.16 0 0 000 1.4713 6.26 0 0 1.417 1.4131 6.26 0 0 3133 1.6222 7.16 0 0 1.667 1.9110 8.98 0 0 1.7322 7.99 0 0 0 1.667 1.9110 8.98 0 0 3.333 2.1944 7.72 0	583 1.11 .567 1.14 .750 1.16 .833 1.19 .833 1.19 .833 1.22 .000 1.22 .003 1.28 .333 1.23 .333 1.23 .333 1.23 .550 1.34 .333 1.52 .583 1.52	1						
667 1.1415 4.12 0.0 750 1.1416 4.12 0.0 917 1.1969 3.85 0.0 918 1.1969 3.85 0.0 917 1.23913 3.85 0.0 918 1.23913 4.62 0.0 919 1.2393 3.85 0.0 910 1.2336 1.626 0.0 917 1.4312 6.26 0.0 917 1.4312 6.26 0.0 917 1.6772 7.99 0.0 917 1.6772 7.99 0.0 917 1.6772 7.99 0.0 917 1.7322 7.99 0.0 917 1.7322 7.99 0.0 0.0 9183 1.6772 7.99 0.0 0.0 917 1.722 0.302 0.361 0.0 9183 1.6772 7.99 0.0 0.0 919 0.302 0.302 0.0	667 1.1415 4.12 0.12 750 1.1416 4.12 0.12 008 1.1969 3.85 0.17 11969 3.85 0.2 0.12 11969 3.85 0.2 0.7 11969 3.85 0.2 0.7 500 1.2435 4.62 0.7 500 1.4743 6.26 0.7 500 1.4743 6.26 0.7 500 1.4743 6.26 0.7 500 1.4743 6.26 0.7 500 1.4743 6.26 0.7 500 1.4743 6.26 0.7 500 1.4743 6.26 0.7 5100 1.2232 7.16 0.7 1.6772 7.99 0.99 0.7 1.6772 7.99 0.99 0.7 1.6772 7.99 0.93 0.99 1.6772 7.99 0.93 0.99 <td>.667 1.14 .750 1.16 .833 1.12 .917 1.22 .917 1.22 .003 1.28 .167 1.31 .250 1.33 .333 1.33 .417 1.31 .52 .583 1.52</td> <td>31</td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td>	.667 1.14 .750 1.16 .833 1.12 .917 1.22 .917 1.22 .003 1.28 .167 1.31 .250 1.33 .333 1.33 .417 1.31 .52 .583 1.52	31			•			
750 1.1669 4.12 0.10^{-1} 833 1.21964 3.85 0.1^{-1} 1167 1.21956 3.85 0.1^{-1} 1167 1.21956 3.85 0.1^{-1} 1167 1.21956 3.85 0.1^{-1} 117 1.2495 3.85 0.1^{-1} 117 1.3131 4.62 0.0^{-1} 563 1.5236 7.16 0.2^{-1} 515 1.5729 7.16 0.1^{-1} 515 1.5729 7.16 0.1^{-1} 517 1.5729 7.16 0.1^{-1} 516 1.5729 7.16 0.1^{-1} 517 1.5729 7.16 0.1^{-1} 517 1.5729 7.16 0.1^{-1} 517 1.5729 7.16 0.1^{-1} 516 1.5729 7.16 0.1^{-1} 517 1.772 7.99 0.0^{-1} 518 1.9110 8.98 0.130 0.1^{-1} 519 1.9130 0.32552 7.755 <td>750 1.1699 4.12 0.00 1.2495 3.85 0.0 1.2495 3.85 0.0 1.2495 3.85 0.0 2.247 1.2249 3.85 0.0 2.247 1.2331 1.462 0.0 2.247 1.2331 1.462 0.0 2.250 1.3450 4.62 0.0 1.47312 6.26 0.0 2.20 1.4732 7.16 0.0 2.20 0.0 2.20 1.7722 7.16 0.0 2.20 0.0 2.250 1.5722 7.16 0.0 2.20 0.0 2.250 1.6772 7.99 0.0 2.250 1.9712 8.98 0.0 2.250 1.9712 7.99 0.0 2.250 1.9712 7.99 0.0 2.250 1.9712 7.99 0.0 2.250 1.9712 7.99 0.0 2.250 1.9722 7.99 0.0 2.250 1.9722 8.11 0.30 0.0 2.250 1.9722 8.11 0.30 0.0 2.250 1.9722 8.11 0.30 0.0 2.250 1.9722 8.11 0.30 0.0 2.250 1.9722 0.303 0.0 2.2515 7.55 0.2 0 2.2532 0.733 0.772 0.0 0.0 2.2633 2.7936 8.11 0.30 0.0 2.263 2.7936 0.0 0.0 2.263 2.7936 8.10 0.0 0.0 2.263 2.7739 8.10 0.0 0.0 2.265 2.3333 3.6147 7.72 0.00 2.772 0.0 0.0 2.265 2.3333 2.7739 0.00 0.0 2.2773 2.6167 0.00 2.772 0.00 0.0 2.267 0.00 3.36145 5.85 0.0 0.0 2.2733 3.6145 5.85 0.0 0.0 2.267 0.00 3.37515 5.85 0.0 0.0 2.273 3.6145 5.85 0.0 0.0 2.269 0.0 0.0 2.273 0.000 3.2775 0.0 0.0 2.260 0.0 0.0 0.0 2.260 0.0 0.0 0.0 2.261 0.000 0.0 0.0 2.261 0.000 0.0 0.0 0.0 2.261 0.000 0.000 0.0 0.0 0.0 2.261 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000000000</td> <td>.750 1.16 .833 1.19 .833 1.19 .003 1.22 .083 1.28 .083 1.28 .167 1.31 .333 1.33 .417 1.43 .520 1.43 .520 1.43 .523 1.52</td> <td>15</td> <td>-</td> <td></td> <td>•</td> <td></td> <td></td> <td>•</td>	750 1.1699 4.12 0.00 1.2495 3.85 0.0 1.2495 3.85 0.0 1.2495 3.85 0.0 2.247 1.2249 3.85 0.0 2.247 1.2331 1.462 0.0 2.247 1.2331 1.462 0.0 2.250 1.3450 4.62 0.0 1.47312 6.26 0.0 2.20 1.4732 7.16 0.0 2.20 0.0 2.20 1.7722 7.16 0.0 2.20 0.0 2.250 1.5722 7.16 0.0 2.20 0.0 2.250 1.6772 7.99 0.0 2.250 1.9712 8.98 0.0 2.250 1.9712 7.99 0.0 2.250 1.9712 7.99 0.0 2.250 1.9712 7.99 0.0 2.250 1.9712 7.99 0.0 2.250 1.9722 7.99 0.0 2.250 1.9722 8.11 0.30 0.0 2.250 1.9722 8.11 0.30 0.0 2.250 1.9722 8.11 0.30 0.0 2.250 1.9722 8.11 0.30 0.0 2.250 1.9722 0.303 0.0 2.2515 7.55 0.2 0 2.2532 0.733 0.772 0.0 0.0 2.2633 2.7936 8.11 0.30 0.0 2.263 2.7936 0.0 0.0 2.263 2.7936 8.10 0.0 0.0 2.263 2.7739 8.10 0.0 0.0 2.265 2.3333 3.6147 7.72 0.00 2.772 0.0 0.0 2.265 2.3333 2.7739 0.00 0.0 2.2773 2.6167 0.00 2.772 0.00 0.0 2.267 0.00 3.36145 5.85 0.0 0.0 2.2733 3.6145 5.85 0.0 0.0 2.267 0.00 3.37515 5.85 0.0 0.0 2.273 3.6145 5.85 0.0 0.0 2.269 0.0 0.0 2.273 0.000 3.2775 0.0 0.0 2.260 0.0 0.0 0.0 2.260 0.0 0.0 0.0 2.261 0.000 0.0 0.0 2.261 0.000 0.0 0.0 0.0 2.261 0.000 0.000 0.0 0.0 0.0 2.261 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000000000	.750 1.16 .833 1.19 .833 1.19 .003 1.22 .083 1.28 .083 1.28 .167 1.31 .333 1.33 .417 1.43 .520 1.43 .520 1.43 .523 1.52	15	-		•			•
833 1.1964 3.85 0 V 917 1.2230 3.85 0 V 1667 1.3131 4.62 0 V .303 1.3450 4.62 0 V .3150 1.2313 4.62 0 V .303 1.3450 4.62 0 V .303 1.3450 6.26 0 V .500 1.4312 6.26 0 V .750 1.6722 7.16 0 V .751 1.7322 7.99 0 0 .833 1.6491 8.98 0 0 V .1667 1.772 7.99 0 0 0 .333 2.1413 7.72 9 0 0 0 .333 2.1413 7.72 9 0<	833 1.1964 3.85 0 v 917 1.2230 3.85 0 v .167 1.3450 4.62 0 v .1167 1.23131 4.62 0 v .253 1.3450 4.62 0 v .385 0 v 0 v .301 1.3450 6.26 0 v .303 1.2322 7.16 0 v .303 1.5729 7.16 0 v .303 1.5729 7.16 0 v .313 1.7722 7.99 0 v .313 1.7722 7.99 0 v .313 2.14413 7.72 0 0 v .313 2.14413 7.72 0 0 v .333 2.14413 7.72 0 0 v .333 2.14413 7.72 0 0 v		66	Ξ.		0 .V		•	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.917 1.22 .000 1.24 .083 1.28 .167 1.31 .250 1.34 .333 1.38 .417 1.47 .583 1.52	64	œ.	•	۷. و	•	•	•
		.000 1.24 .083 1.28 .167 1.31 .250 1.34 .333 1.38 .417 1.47 .500 1.47 .583 1.52	02 1		•	0 : 0			•
		.083 1.28 .167 1.31 .250 1.34 .333 1.38 .417 1.43 .500 1.47 .583 1.52	0 0 0					•	•
		.16/ 1.34 .250 1.34 .333 1.38 .417 1.43 .500 1.47 .583 1.52	С 1 С 1	e''				•	•
333 1.3381 6.26 0.20 417 1.4412 6.26 0.20 563 1.5236 7.16 0.00 3756 1.5222 7.16 0.00 3833 1.5723 7.99 0.00 3833 1.6772 7.99 0.00 3833 1.6772 7.99 0.00 1667 1.9110 8.98 0.00 333 1.9110 8.98 0.00 333 1.9110 8.98 0.00 333 1.9110 8.98 0.00 333 1.9110 8.98 0.00 333 1.9110 8.98 0.00 333 2.1948 10.30 0.00 333 2.1948 10.30 0.00 333 2.1948 10.30 0.00 333 2.1944 7.72 0.00 333 2.1944 7.72 0.00 333 2.1948 10.30 0.00 333 2.1944 <t< td=""><td>3333 1.338.0 6.26 0.20 417 1.412 6.26 0.20 563 1.5239 7.16 0.0 5756 1.5236 7.16 0.0 883 1.5723 7.19 0.0 917 1.7322 7.99 0.0 883 1.6772 7.99 0.0 1.167 1.7322 7.99 0.0 1.167 1.772 7.99 0.0 1.167 1.9110 8.98 0.0 2.500 1.9710 8.98 0.0 2.515 1.9712 0.979 0.0 3.11677 2.1148 10.30 0.0 3.333 2.2532 9.79 0.0 3.333 2.14413 7.72 0.0 3.333 2.14413 7.72 0.0 3.333 2.3515 7.55 0.2 3.333 2.3515 7.72 0.0 3.333 2.9266 7.55 0.0 3.3317 2.9216</td><td>.230 1.38 .333 1.38 .417 1.43 .500 1.47 .583 1.52</td><td>α Γ</td><td>e ب</td><td></td><td></td><td></td><td></td><td>•</td></t<>	3333 1.338.0 6.26 0.20 417 1.412 6.26 0.20 563 1.5239 7.16 0.0 5756 1.5236 7.16 0.0 883 1.5723 7.19 0.0 917 1.7322 7.99 0.0 883 1.6772 7.99 0.0 1.167 1.7322 7.99 0.0 1.167 1.772 7.99 0.0 1.167 1.9110 8.98 0.0 2.500 1.9710 8.98 0.0 2.515 1.9712 0.979 0.0 3.11677 2.1148 10.30 0.0 3.333 2.2532 9.79 0.0 3.333 2.14413 7.72 0.0 3.333 2.14413 7.72 0.0 3.333 2.3515 7.55 0.2 3.333 2.3515 7.72 0.0 3.333 2.9266 7.55 0.0 3.3317 2.9216	.230 1.38 .333 1.38 .417 1.43 .500 1.47 .583 1.52	α Γ	e ب					•
1.1.300 1.1.301 6.26 0.20 0.20 5.67 1.4743 6.26 0.20 0.716 0.20 5.83 1.5723 7.16 0.20 0.00 917 1.5723 7.16 0.00 0.716 0.00 917 1.7322 7.99 0.00 0.793 0.00 917 1.7322 7.99 0.00 0.793 0.00 918 1.7722 7.99 0.00 0.00 0.00 .333 2.0439 10.30 0.00 0.00 0.00 0.00 .333 2.0439 10.30 0.00 0.00 0.00 0.00 .333 2.0439 10.30 0.00 0.00 0.00 0.00 .333 2.1148 10.30 0.00 0.00 0.00 0.00 .333 2.1148 10.30 0.00 0.00 0.00 0.00 .333 2.1926 7.72 0.72 0.00 0.00 0.00 .331	501 1.47312 6.26 0.20 0.20 567 1.5723 7.16 0.20 0.7 583 1.5722 7.16 0.20 0.0 917 1.5723 7.16 0.0 0.0 917 1.5723 7.16 0.0 0.0 917 1.7322 7.99 0.0 0.0 917 1.7322 7.99 0.0 0.0 917 1.9110 8.98 0.0 0.0 2560 1.9729 8.98 0.0 0.0 .333 2.0439 10.30 0.0 0.0 .417 2.1144 1.772 0.0 0.0 .5667 2.3207 9.79 0.0 0.0 .772 0.72 0.72 0.72 0.0 0.0 .773 2.3207 9.79 0.72 0.0 0.0 .775 2.3207 2.792 8.11 0.72 0.0 .775 2.3207 2.792 0.13	.417 1.43 .500 1.47 .583 1.52	00	é c		•			•
1111.4742 6.26 667 1.5729 7.16 0.20 750 1.5729 7.16 0.20 0000 1.7372 7.99 0.20 0000 1.7373 7.99 0.20 1.677 1.7322 7.99 0.20 0001 1.7373 7.99 0.20 0001 1.7373 7.99 0.20 0001 1.7373 7.99 0.20 0001 1.7373 7.99 0.20 0002 1.9110 8.98 0.20 0003 1.9110 8.98 0.20 0013 1.9110 8.98 0.20 0013 1.9110 8.98 0.20 0013 2.1148 10.30 0.20 0013 2.13831 9.79 0.20 0013 2.14413 7.72 0.20 0013 2.14413 7.72 0.20 0133 2.14413 7.72 0.20 0133 2.14413 7.72 0.20 0133 2.14413 7.72 0.20 0133 2.14413 7.72 0.20 0133 2.14413 7.72 0.20 0133 2.14413 7.72 0.20 0133 2.14413 7.72 0.20 0133 2.14413 7.72 0.20 0133 2.14413 7.72 0.20 0133 2.14413 7.72 0.20 0133 2.14413 7.72	1111.4742 6.26 667 1.5729 7.16 0.00 1.5729 7.16 0.00 1.6772 7.99 0.00 1.6772 7.99 0.00 1.6772 7.99 0.00 1.6772 7.99 0.00 1.6772 7.99 0.00 1.6772 7.99 0.00 1.6772 7.99 0.00 1.7372 7.99 0.00 1.7372 7.99 0.00 1.7372 7.99 0.00 1.7372 7.99 0.00 1.7372 7.99 0.00 0.000 1.9110 8.98 0.001 2.1858 10.30 0.001 2.1858 10.30 0.001 2.1858 10.30 0.001 2.1858 10.30 0.001 2.1858 10.30 0.001 2.1858 10.30 0.001 2.1858 10.30 0.001 2.1858 10.30 0.001 2.1858 10.30 0.001 2.1858 10.30 0.001 2.14413 7.72 0.001 2.14413 7.72 0.001 2.14413 7.72 0.001 2.14413 7.72 0.001 2.14413 7.72 0.001 2.14413 7.72 0.001 2.14413 7.72 0.001 2.14413 7.72 0.001 2.14413 7.72 0.011 2.14	.500 1.47 .583 1.52	10	. c			•	•	•
		.583 1.52	71	4 C	•		•	•	•
		70.1 C0C.		7.	•	> ~~ > ~	•	•	•
	1.000 1.0722 7.16 0.000 1.7322 7.99 0.000 1.7322 7.99 0.000 1.7322 7.99 0.000 1.7322 7.99 0.000 1.7322 7.99 0.000 1.7322 7.99 0.000 1.7322 7.99 0.000 1.7322 7.99 0.988 0.000 2.1148 10.30 0.000 0.000 2.1148 10.30 0.000 0.000 2.1148 10.30 0.000 0.000 2.1148 10.30 0.000 0.000 5.83 2.0439 10.30 0.000 5.83 2.14413 7.72 0.000 5.83 2.14413 7.72 0.000 5.83 2.14413 7.72 0.000 5.833 2.44413 7.72 0.000 5.833 2.9266 8.111 0.000 0.000 5.833 2.9266	[],	000		•				•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/C.T /00.	אר ער	1.			•	•	•
		./50 I.62	77		•	а' •	•	•	•
11.1322 1.99 2.91 1167 11.322 1.99 2.94 1167 11.9110 8.98 2.94 1167 11.9110 8.98 2.94 250 11.9729 8.98 2.94 21148 10.30 2.0439 10.30 2.94 3333 2.0439 10.30 2.94 2.94 500 2.1148 10.30 2.94 2.94 500 2.1858 10.30 2.94 2.94 500 2.1858 10.30 2.94 2.94 500 2.1381 9.79 0.79 0.97 500 2.172 0.72 0.72 0.72 500 2.772 2.772 0.97 0.97 500 2.7944 7.72 0.97 0.97 500 2.7946 8.11 0.79 0.97 500 2.755 7.55 0.97 0.97 500 2.793 2.9114	11.1732 7.99 2.91 11.7873 7.99 2.91 11.7873 7.99 2.92 1167 11.9110 8.98 2.92 2500 11.9729 8.98 2.92 21148 10.30 2.972 2.9413 1.9729 8.98 10.30 2.972 2000 1.9729 8.98 2.0439 10.30 2101 2.1148 10.30 2.924 2.924 5000 2.1381 9.79 2.2327 9.79 2.924 5101 2.1333 2.2444 7.72 2.9246 8.11 2.924 687 2.2327 9.79 7.72 2.9246 8.11 2.9246 2.9266	.833 L.6/	71	<u>،</u> د	•		•	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.91/ T.13	77	<u>,</u>		•	•		•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.000 I.78	5.13	5.0	•	•		•	•
.1671.9110 8.98 0.0 .2501.9729 8.98 0.0 .3332.1043910.30 0.2 .5005.1031.9729 8.98 0.7 .5172.1145810.30 0.7 .5102.135110.30 0.7 .5102.13519.79 0.7 .5112.14447.72 0.79 0.7 .5112.14447.72 0.79 0.7 .6672.3381 9.79 0.7 0.7 .1672.59967.55 0.7 0.7 .1672.59157.55 0.2 0.7 .1672.65157.55 0.2 0.7 .1672.75337.97 0.7 0.7 .1672.8711 8.11 0.7 0.7 .1672.8711 8.11 0.7 0.7 .3332.7594 8.11 0.7 0.7 .3332.9266 8.06 0.7 0.7 .3332.9716 8.06 0.7 0.7 .3332.9733 7.97 0.7 0.7 .3333.1474 7.97 0.7 0.7 .3333.5611 6.76 0.7 0.7 .3333.5612 7.39 0.7 0.7 .3333.5612 7.72 0.7 0.7 .3333.5612 7.72 0.7 0.7 .3333.662 0.7	.1671.9110 8.98 0.0^{V} .2501.9729 8.98 0^{V} .3332.1043910.30 0^{V} .5002.185810.30 0^{V} .5112.114810.30 0^{V} .5012.185810.30 0^{V} .5032.185810.30 0^{V} .5112.11437.72 0^{V} 0^{V} .6672.3321 9.79 0^{V} 0^{V} .7502.34137.72 0^{V} 0^{V} .8332.44137.72 0^{V} 0^{V} .9172.54767.55 0^{V} 0^{V} .9172.51548.11 0^{V} 0^{V} .9172.755 0^{V} 0^{V} 0^{V} .9172.75948.11 0^{V} 0^{V} .9172.81528.11 0^{V} 0^{V} .9172.81528.11 0^{V} 0^{V} .9172.81518.16 0^{V} 0^{V} .9172.81528.11 0^{V} 0^{V} .9172.81533.03267.97 0^{V} .9173.1447.72 0^{V} 0^{V} .8333.5611 6.76 0^{V} 0^{V} .8333.5612 6.76 0^{V} 0^{V} .9173.7448 7.72 0^{V} 0^{V} .9173.7448 5.85 0^{V} 0^{V} <td>.083 1.84</td> <td>91</td> <td>5.</td> <td>•</td> <td></td> <td>ъv.</td> <td></td> <td>•</td>	.083 1.84	91	5.	•		ъv.		•
		.167 1.91	10	<u>о</u> .	•	•	QV .	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.250 1.97	29	ۍ. م	•	•	Ων.	•	•
417 2.1148 10.30 $$ $$ 0.30 $$ 0.30	.417 2.1148 10.30 . .583 2.2532 9.79 . 0.79 .583 2.32532 9.79 . 0.79 .583 2.32532 9.79 . 0.79 .500 2.1858 10.30 . 0.79 .583 2.32514 7.72 0.72 0.72 .917 2.4944 7.72 0.72 0.72 .917 2.4944 7.72 0.72 0.72 .917 2.4944 7.72 0.755 0.7 0.7 .917 2.4914 7.72 0.755 0.7 0.7 .917 2.55996 7.55 0.7 0.7 0.7 .917 2.8152 8.11 0.7 0.7 0.7 .933 2.7594 8.11 0.7 0.7 0.7 .917 2.8111 0.76 0.7 0.7 0.7 .933 2.9266 8.06 0.772 0.7 0.7 .917 2.93148	.333 2.04	99	0.3		•	Ø	•	•
.5002.185810.306672.32079.798832.25529.798932.23079.799172.38117.729172.38117.729172.44137.729172.39967.550002.54767.7201672.59967.5501672.65157.5501672.70357.5501672.70357.550172.7118.110172.811101832.759468.1101012.81118.1101172.81528.1101232.75948.1101332.92668.0601172.81528.1101233.03768.0601332.92168.0601332.92168.0601333.03257.9701013.25116.7601333.56116.7601333.6455.8501333.6455.8501333.6455.8501333.6455.8501333.6455.8501333.6455.8501333.6455.85 <td>.5002.185810.306672.32079.796672.33019.799172.34137.729.79.9132.44137.72$0.0$.9172.39967.55$0.0$.9172.49447.72$0.0$.9172.49447.72$0.0$.9172.59967.55$0.0$.91672.59967.55$0.0$.91672.70357.55$0.0$.91672.70357.55$0.0$.93332.575948.11$0.0$.93332.759468.11$0.0$.9002.87118.11$0.0$.9172.92668.06$0.0$.9172.92168.06$0.0$.9173.14747.97$0.0$.9173.14747.97$0.0$.9173.14747.97$0.0$.9173.14747.97$0.0$.9173.14747.97$0.0$.9173.14747.97$0.0$.9173.14747.97$0.0$.9173.14747.97$0.0$.9173.14747.97$0.0$.93333.51457.97$0.0$.93333.51457.39$0.0$.93333.51457.39$0.0$.9173.7485.85$0.0$.9173.7485.85$0.0$.9173.7751$0.0$$0.0$<!--</td--><td>.417 2.11</td><td>48</td><td>0.3</td><td>•</td><td>•</td><td>Ø</td><td></td><td>•</td></td>	.5002.185810.306672.32079.796672.33019.799172.34137.729.79.9132.44137.72 0.0 .9172.39967.55 0.0 .9172.49447.72 0.0 .9172.49447.72 0.0 .9172.59967.55 0.0 .91672.59967.55 0.0 .91672.70357.55 0.0 .91672.70357.55 0.0 .93332.575948.11 0.0 .93332.759468.11 0.0 .9002.87118.11 0.0 .9172.92668.06 0.0 .9172.92168.06 0.0 .9173.14747.97 0.0 .9173.14747.97 0.0 .9173.14747.97 0.0 .9173.14747.97 0.0 .9173.14747.97 0.0 .9173.14747.97 0.0 .9173.14747.97 0.0 .9173.14747.97 0.0 .9173.14747.97 0.0 .93333.51457.97 0.0 .93333.51457.39 0.0 .93333.51457.39 0.0 .9173.7485.85 0.0 .9173.7485.85 0.0 .9173.7751 0.0 0.0 </td <td>.417 2.11</td> <td>48</td> <td>0.3</td> <td>•</td> <td>•</td> <td>Ø</td> <td></td> <td>•</td>	.417 2.11	48	0.3	•	•	Ø		•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.500 2.18	58	0.3		•	δV		•
667 2.3207 9.79 $$ 750 2.3881 9.79 $$ 750 2.3881 7.72 $$ 833 2.4443 7.72 $$ 833 2.4944 7.72 $$ 833 2.4944 7.72 $$ 833 2.5946 7.55 $$ 0 933 2.5476 7.72 $$ 0 933 2.5946 7.55 $$ 0 933 2.7554 8.11 0 0 933 2.7594 8.11 0 0 933 2.7554 8.11 0 0 9333 2.7754 8.11 0 0 9333 2.9266 8.06 0 0 9333 2.9226 8.06 0 0 9333 2.9226 8.06 0 0 9333 3.0225 7.97 0 0 9333 3.0225 7.97 0 0 9333 3.1474 7.97 0 0 9467 3.33265 7.72 0 0 9333 3.4636 7.72 0 0 9333 3.5611 6.76 0 0 9465 3.3618 7.72 0 0 9765 3.3618 7.72 0 0 93		.583 2.25	32	Γ.					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.667 2.32	07	L .					
.833 2.4413 7.72 0 .917 2.4944 7.72 0 .167 2.5996 7.55 0 v .167 2.51596 7.55 0 v v .167 2.51596 7.55 7.55 0 v v .333 2.51594 8.11 0 v v v .333 2.7594 8.11 0 v v v .583 2.7755 8.11 8.11 0 0 v v .583 2.9266 8.11 9.06 0 0 v v .583 2.9216 8.11 0 0 0 v v .563 2.9321 8.06 9.06 0 0 0 v .510 2.811 2.91 0 0 0 0 v .513 2.921 8.06 9.06 0 0 0 0	 333 333 3413 7.72 917 2.4944 7.72 000 2.5976 7.55 2.703 2.811 8.11 2.8152 8.11 8.11 9 <	.750 2.38	81	L.		•			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	833 2.44		5			4		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$) <	- r	•	•	•		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.91/ Z.49	י ו ד	<u> </u>	•	•	·	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PC.2 UUU.	~ 0	. '	•		·	•	•
.1b/ 2.6515 7.55 2.7335 7.55 2.7335 7.55 2.7335 .417 2.8112 8.111 2.8112 2.7944 8.111 2.9266 8.06 2.9266 8.06 2.9266 8.06 2.9266 8.066 2.9266 8.066 2.9266 8.066 2.9266 8.066 2.9266 8.066 2.9266 8.066 2.9266 8.066 2.9266 8.066 2.9266 8.066 2.9266 8.066 2.9266 8.066 2.9256 3.03776 8.066 2.9266 8.066 2.9266 8.066 2.9266 8.066 2.9266 8.066 2.9266 8.066 2.9266 3.03776 2.9266 3.03776 2.9266 3.0257 7.97 2.92666 2.92666 2.92666	.1b/ 2.6515 7.55 2.7035 7.55 2.7035 7.55 2.7334 8.11 2.8122 8.11 2.9712 2.8112 2.9712 2.9266 8.06 2.9266 8.06 2.9266 8.06 2.9266 8.06 2.9266 8.06 2.9266 8.06 2.9212 2.9212 7.972 2.9212 7.722 2.9222 7.722 2.9222 7.722 2.9222 7.722 2.9222 7.722 2.9222 2.9223 3.34127 7.722 2.9222 2.9223 3.34127 7.722 2.9222 2.92222	22.2 280. 22.2 280.	, הכ	<u>،</u>	•		·	•	•
		.167 2.65	-	<u>.</u>	•	•	•	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.250 2.70	\sim	ം	•	•	•		•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.417 2.8152 8.11 0 0 .583 2.9266 8.06 0 0 .583 2.9266 8.06 0 0 .750 3.0376 8.06 0 0 .917 3.0376 8.06 0 0 .917 3.1474 7.97 0 0 0 .917 3.1474 7.97 0 0 0 .917 3.1474 7.97 0 0 0 .917 3.1474 7.97 0 0 0 .917 3.1474 7.97 0 0 0 .917 3.3618 7.72 0 0 0 .333 3.4456 7.72 0 0 0 .933 3.5611 6.76 0 0 0 .933 3.5455 7.39 0 0 0 .933 <td>.333 2.75</td> <td>0</td> <td>Ξ.</td> <td>•</td> <td></td> <td>•</td> <td>v</td> <td>•</td>	.333 2.75	0	Ξ.	•		•	v	•
.500 2.8711 8.11 . 0 .567 2.9266 8.06 . 0 0 .567 3.0325 8.06 . 0 0 0 .667 3.0325 7.97 . 0 0 0 .833 3.0325 7.97 . 0 0 0 .917 3.1474 7.97 . 0 0 0 .913 3.1474 7.97 . 0 0 0 .917 3.1474 7.97 . 0 0 0 .917 3.2555 7.72 . 0 0 0 .167 3.3618 7.72 . 0 0 0 .167 3.3618 7.72 . 0 0 0 .333 3.4127 7.39 . 0 0 0 .3333 3.4127 7.39 . 0 0 0 .3333 3.4545 7.39 . 0 0 0 <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.417 2.81	S	Ξ.	•		·		•
.583 2.9266 8.06 . 2 .667 2.9921 8.06 . 0 .150 3.0376 8.06 . 0 .813 3.1925 7.97 . 0 .813 3.1925 7.97 . 0 .813 3.1925 7.97 . 0 .813 3.1944 7.97 . 0 .816 7.72 . 0 0 .167 3.2555 7.72 . 0 .333 3.4127 7.39 . 0 0 .167 3.3618 7.72 . 0 0 .333 3.4127 7.39 . 0 0 .167 3.5614 6.76 . 0 0 .583 3.5614 6.76 . 0 0 .667 3.6545 5.85 . 0 0 .833 3.5645 5.85 . 0 0 .000 3.7751 5.85 <td< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>.500 2.87</td><td><u> </u></td><td>Ξ.</td><td></td><td></td><td>•</td><td>. v</td><td>•</td></td<>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.500 2.87	<u> </u>	Ξ.			•	. v	•
.667 2.9821 8.06 0 .750 3.0376 8.06 0 .8133 3.0225 7.97 0 .8174 7.97 0 0 .8173 3.0225 7.97 0 .917 3.1474 7.97 0 .9133 3.2023 7.72 0 .933 3.2255 7.72 0 .167 3.3086 7.72 0 .157 3.3455 7.72 0 .167 3.3465 7.39 0 .550 3.5445 7.39 0 .5667 3.6541 6.76 0 .563 3.6541 6.76 0 .833 3.6545 5.85 0 .833 3.6545 5.85 0 .917 3.7751 5.85 0 .933 3.662<	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.583 2.92	6	0.		•	•	ν.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.667 2.98	\sim	0				ν.	
333 3.0255 7.97 0 917 3.1474 7.97 0 917 3.1474 7.97 0 000 3.2555 7.97 0 167 3.2086 7.72 0 167 3.3086 7.72 0 167 3.31086 7.72 0 3.317 7.39 0 0 417 3.4636 7.39 0 .333 3.4127 7.39 0 .333 3.4126 7.39 0 .333 3.4126 7.39 0 .35611 6.76 0 0 .563 3.5511 6.76 0 .563 3.6542 6.76 0 .563 3.6545 5.85 0 .917 3.7751 5.85 0 .000 3.7751 5.85 0 .913 3.7751 5.85 0 .913 3.8062 4.51 0	333 3.0225 7.97 0 917 3.1474 7.97 0 000 3.2555 7.97 0 167 3.2026 7.72 0 167 3.3066 7.72 0 250 3.3618 7.72 0 251 7.72 0 0 255 7.72 0 0 250 3.3618 7.72 0 3.3618 7.72 0 0 2550 3.3618 7.72 0 3.4127 7.39 0 0 2500 3.5145 7.39 0 583 3.5611 6.76 0 583 3.5611 6.76 0 583 3.5614 5.85 0 917 3.7748 5.85 0 917 3.7748 5.85 0 083 3.8062 4.51 0 083 3.8062 4.51 0	750 3 03		C				17	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- c		•	•	×	~ * *	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		V E			•	•	> :	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• AL / 3• L4	~ ·	<u>ر</u>			•	>	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.000 3.20	\sim	o.		•	•	Δ	•
.167 3.3086 7.72 2 .250 3.3618 7.72 2 .333 3.4127 7.39 2 .417 3.4636 7.72 2 .417 3.4436 7.39 2 .5145 7.39 2 2 .5133 3.5145 7.39 2 .583 3.5611 6.76 2 .667 3.6542 6.76 2 .670 3.6545 5.85 2 .17 3.7348 5.85 2 .000 3.7751 5.85 2 .017 3.7751 5.85 2 .000 3.7751 5.85 2 .000 3.7751 5.85 2	.167 3.3086 7.72 2 .250 3.3618 7.72 2 .333 3.4127 7.39 2 .417 3.4436 7.39 2 .5145 7.39 2 2 .5511 6.76 2 2 .5633 3.5614 6.76 2 .5833 3.5614 6.76 2 .667 3.5642 6.76 2 .750 3.5544 5.85 2 .751 3.5634 5.85 2 .0333 3.6945 5.85 2 .0303 3.7751 5.85 2 .000 3.7751 5.85 2 .000 3.7751 5.85 2	.083 3.25	S	٢.		•		^ .	•
.250 3.3618 7.72 . <t< td=""><td>.250 3.3618 7.72 . 0 .333 3.4127 7.39 . 0 .417 3.4636 7.39 . 0 .5145 7.39 . 0 0 .500 3.5145 7.39 . 0 .583 3.5611 6.76 . 0 .667 3.6542 6.76 . 0 .750 3.5545 5.85 . 0 .750 3.6542 6.76 . 0 .750 3.6945 5.85 . 0 .833 3.6945 5.85 . 0 .0000 3.7751 5.85 . 0 .0010 3.7751 5.85 . 0</td><td>.167 3.30</td><td>00</td><td>5</td><td>•</td><td>•</td><td></td><td>Δ.</td><td></td></t<>	.250 3.3618 7.72 . 0 .333 3.4127 7.39 . 0 .417 3.4636 7.39 . 0 .5145 7.39 . 0 0 .500 3.5145 7.39 . 0 .583 3.5611 6.76 . 0 .667 3.6542 6.76 . 0 .750 3.5545 5.85 . 0 .750 3.6542 6.76 . 0 .750 3.6945 5.85 . 0 .833 3.6945 5.85 . 0 .0000 3.7751 5.85 . 0 .0010 3.7751 5.85 . 0	.167 3.30	00	5	•	•		Δ.	
333 3.4127 7.39 .417 3.4636 7.39 .500 3.5145 7.39 .5145 7.39 .500 3.5145 7.39 .583 3.5611 6.76 .667 3.6542 6.76 .750 3.5542 6.76 .833 3.6945 5.85 .833 3.6945 5.85 .917 3.7748 5.85 .000 3.7751 5.85 .001 3.7751 5.85	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	250 336	-	5		: C		Δ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	222 222			•	·		•	•
.41/ 5.4636 7.39 2.40 .500 3.5145 7.39 2 .513 3.5511 6.76 2 .667 3.6542 6.76 2 .750 3.5542 6.76 2 .670 3.6542 6.76 2 .750 3.6542 6.76 2 .833 3.6945 5.85 2 .917 3.7348 5.85 .0 .917 3.7751 5.85 .0 .917 3.7751 5.85 .0 .917 3.7751 5.85 .0 .913 3.8062 4.51 .0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.0 17.0 17.0				•		· ·	•
.500 3.5145 7.39 583 3.5611 6.76 50 3.6542 6.76 750 3.6542 6.76 833 3.6945 5.85 917 3.7348 5.85 000 3.7751 5.85 013 3.8062 4.51 . . .	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97.7 9.40	9	n.	•	а		>	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.500 3.51	45	с.	•	•	•	. ⊳	•
.667 3.6077 6.76 . 2 .750 3.6542 6.76 . 2 .833 3.6945 5.85 . 2 .933 3.6945 5.85 . 2 .917 3.7348 5.85 . 2 .000 3.7751 5.85 . 2 .013 3.7751 5.85 . 2 .083 3.8062 4.51 . 2	.667 3.6077 6.76	.583 3.56		Γ.	•	0			•
.750 3.6542 6.76 Q .833 3.6945 5.85 0 .917 3.7348 5.85 0 .000 3.7751 5.85 0 .083 3.8062 4.51 . Q.	.750 3.6542 6.76 2	.667 3.60		٢.		0			. 1
.833 3.6945 5.850 917 3.7348 5.850 .000 3.7751 5.850 .083 3.8062 4.51 . Q.	.833 3.6945 5.850 .917 3.7348 5.850 .000 3.7751 5.850 .083 3.8062 4.51 . Q.	.750 3.65		٢.	•	0			^
.917 3.7348 5.850 000 3.7751 5.850 .083 3.8062 4.51 . 0.	.917 3.7348 5.850 000 3.7751 5.850 083 3.8062 4.51 . Q.	.833 3.69		~~					A
.000 3.7751 5.85	.000 3.7751 5.85 . .083 3.8062 4.51 . Q.	917 3.73	48	œ		i C			Δ
083 3.8062 4.51 Q.	.083 3.8062 4.51 . Q.	77 8 77	1	œ					
• # • • • • • • • • • • • • • • • • • •	. # . # . # . # 	083 3.80	22	2					
						ł			
	Date: 07/03/2019 File name: E10_B9AA.RES Page	Date: U//U3/	2019	Ī	e name:	E10_B9AA.KES		Рад	

15.0 20.0	. V.	· · ·		· ⊳	. v	. V.	· ^	• •	• •	· · · · · · · · · · · · · · · · · · ·	LOW RATE:																		
10.0	•		•						•	· · · · · · · · · · · · · · · · · · ·	OF PERCENTILES OF ESTIMATED PEAK FLOW RATE	d to have	20	ites)	-0.	0,0		0.	0.0.	0	30.0								
5.0			•						•		ILES OF ESTI	ımate assume	Diretion	(minutes)	1500.0	510.0	405.0	345.0	225.0 210.0	165.0	30								
Q(CFS) 0.		0.07 0						0.01 0				'Low Rate est: duration)	τ α	5									IG ANALYSIS						
VOLUME (AF)	4.0293	4.029/	4.0304	4.0306 4.0307	4.0308	4.0309	4.0310	4.0311	4.0311 4 0312		TIME DURATION (minutes)	(Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)	lo of ⊡stimatod			10%	zu% 30%	40%	20% 60%	~02 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	° %06		FLOODSCX ROUTING ANALYSIS						
TIME (HRS)	24.083	4.100 4.250	24.333	24.416 24 500	24.583	24.666	24.750	24.833	016.12 010 75		TIME DUR	(Note: L an insta	Darcantila of	Peak									END OF FL						
TIME	24	5 7								i																 		 	
	. V. 24			• •			. v.		•••••••••••••••••••••••••••••••••••••••		. v.	v.	. v.	· ^ · · ·	. ^ V.		· ^ · · ·	·	· ^ · ·	. V .	· ^ · ·	. Δ.	A	·^ ·					
. V.			. v.	. v.	V.	. v.			•	· · · · · · · · · · · · · · · · · · ·			•			·						•		·^ ·					
· · V.	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	. v.	· · ·		. v.			•				•							•									
· · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	2 · · · V.	· · · ·	× · · · · · · · · · · · · · · · · · · ·	Q · · · · V·				 	•	 		· · ·	 		· · ·	· ·	 		•••			· ·					
0.11 Q V.			0.11 Q V.		0.11 0 · · · · · ·	0.11 Q V.	0.11 Q			0.10 0	0.11 0		0.10 Q			0.09 p	0.09 Q	0.09 Q	0.09 Q		· · · · · · 0 60.0		 	· · · · ō 60.0					

1. THE CONTRACTOR SHALL CONSTRUCT THE FLOOD CONTROL IMPROVEMENTS SHOWN ON THE DRAWINGS IN CONFORMANCE WITH THE REQUIREMENTS OF THE RIVERSIDE COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICTS M.O. J STANDARD SPECIFICATIONS, DATED JUNE 24, 2008, AND RCFC&WCD STANDARD MANUAL. FOR THE LATEST DRAWINGS OF THE STANDARD MANUAL, PLEASE REFER TO THE "PUBLICATIONS AND RECORDS" PAGE FOUND ON THE DISTRICT'S WEB SITE.

CONTACT THE ENCROACHMENT PERMIT ENGINEER AT (951) 955-1266 IF ANENCROACHMENT PERMIT IS REQUIRED FROM RIVERSIDE COUNTY FLOOD CONTROL. AFTER THE PERMIT IS ISSUED THE DISTRICT MUST BE NOTIFIED ONE WEEK PRIOR TO CONSTRUCTION.

CONTACT CONTRACT ADMINISTRATOR AT (351) 955-1288 IF CONSTRUCTION INSPECTION WILL BE PERFORMED BY RIVERSIDE COUNTY FLOOD CONTROL. THE DISTRICT MUST BE NOTIFIED TWENTY DAYS (20) PRIOR TO COSTRUCTION.

4. ALL STATIONING REFERS TO THE CENTERLINE OF CONSTRUCTION UNLESS OTHERWISE NOTED.

STATIONING FOR LATERALS AND CONNECTOR PIPE REFER TO THE CENTERLINE INTERSECTION STATION

6. FORTY-EIGHT HOURS BEFORE EXCAVATION, CALL UNDERGROUND SERVICE ALERT -800-227-2600

7. ALL ELEVATIONS SHOWN ARE IN FEET AND DECIMALS THEREOF BASED ON NATIONAL GEODETIC VERTICAL DATUM (NGVD 1929).

ALL COORDINATES ARE SHOWN IN FEET AND DECIMALS THEREOF BASED ON THE NORTH AMERICAN DATUM (NAD 83), CALIFORNIA COORDINATE SYSTEM (CCS), ZONE 6. EPOCH 1991.35

9. ALL CROSS SECTIONS ARE TAKEN LOOKING DOWNSTREAM.

10. ELEVATIONS AND LOCATIONS OF UTILITIES SHOWN ARE APPROXIMATE UNLESS OTHERWISE NOTED.

11. UNLESS OTHERWISE SPECIFIED, MINIMUM STREET RECONSTRUCTION SHALL BE 4" TYPE "B" HOT MIX ASPHALT OVER 6" CLASS 2 AGGREGATE BASE OR AS SPECIFIED BY THE ENGINEER.

12. OPENINGS RESULTING FROM THE CUTTING OR PARTIAL REMOVAL OF EXISTING CULVERTS, PIPES OR SIMILAR TRUCTURES TO BE ABANDONED SHALL BE SEALED WITH 6 INCHES OF CLASS "B" CONCRETE.

PIPE CONNECTED TO THE MAINLINE PIPE SHALL CONFORM TO JUNCTION STRUCTURE NO. 4 (JS 229) UNLESS OTHERWISE NOTED.

14. PIPE BEDDING SHALL CONFORM TO RCFC&WCD STD. DWG. MB15, EXCEPT FOR COVER <2 FEET. FOR COVER <2 FEET, CONCRETE SLURRY (2000 PSI-2 SACK) SHALL BE USED. THE ENTIRE TRENCH SHALL BE SLURRY EXTENDING 4 INCHES MINIMUM AND 12 INCHES MAXIMUM ABOVE THE TOP OF THE PIPE.

15. BH-1 INDICATES SOIL BORING LOCATIONS BASED ON THE SOILS REPORT DATED JUNE 1, 2011. LOCATIONS SHOWN ARE APPROXIMATE.

16. "V" IS THE DEPTH OF INLET AND CATCH BASINS MEASURED FROM THE TOP OF CURB TO INVERT OF CONNECTOR PIPE.

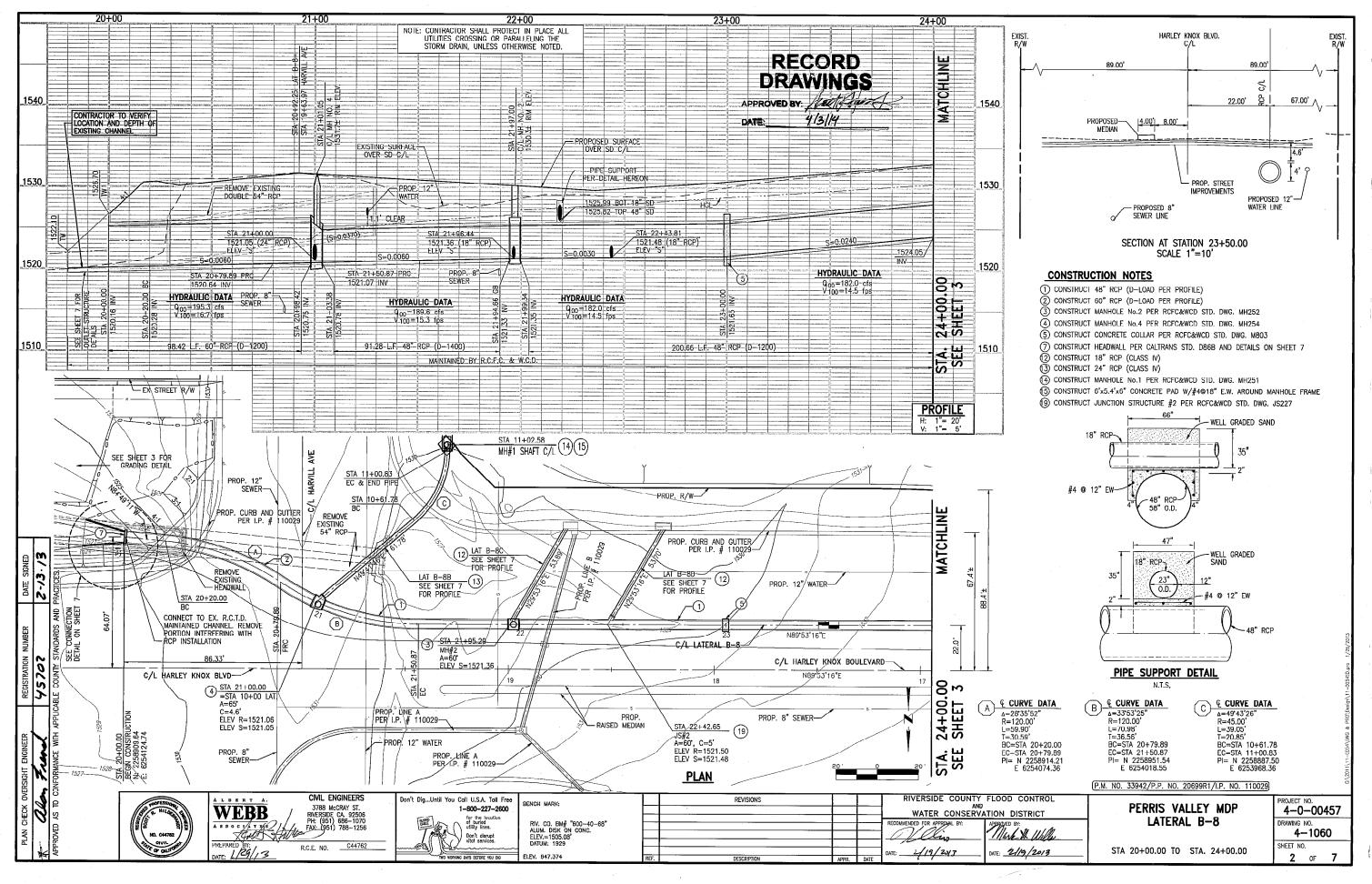
17. CATCH BASINS SHALL BE LOCATED SO THAT LOCAL DEPRESSIONS SHALL BEGIN AT EXISTING CURB RETURN JOINT, UNLESS OTHERWISE SPECIFIED.

18. ALL CURBS, GUTTERS, SIDEWALKS, DRIVEWAYS AND OTHER EXISTING IMPROVEMENTS TO BE RECONSTRUCTED IN KIND AND AT THE SAME ELEVATION AND LOCATION AS THE EXISTING IMPROVEMENTS UNLESS OTHERWISE NOTED.

 STANDARD DRAWINGS CALLED FOR ON THE PLAN AND PROFILE SHALL CONFORM TO DISTRICT STANDARD DRAWINGS UNLESS OTHERWISE NOTED.
 THE CONTRACTOR IS REQUIRED TO CALL ALL UTILITY AGENCIES REGARDING TEMPORARY SHORING AND SUPPORT REQUIREMENTS FOR THE VARIOUS UTILITY LINES SHOWN ON THESE

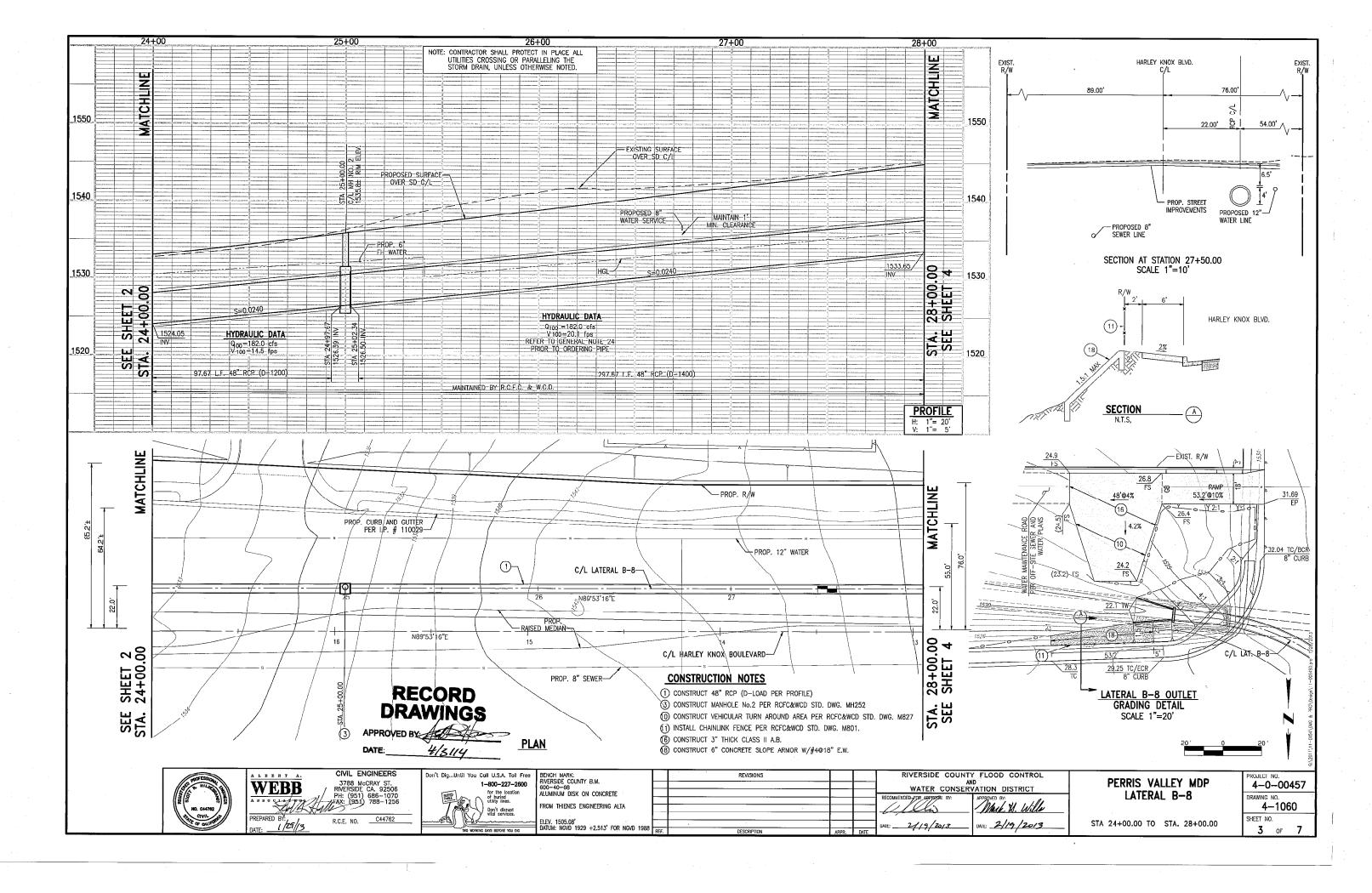
21. DURING ROUGH GRADING OPERATIONS AND PRIOR TO CONSTRUCTION OF PERMANENT DRAINAGE STRUCTURES, TEMPORARY DRAINAGE CONTROL SHOULD BE PROVIDED TO PREVENT PONDING WATER AND DAMAGE TO ADJACENT PROPERTIES.

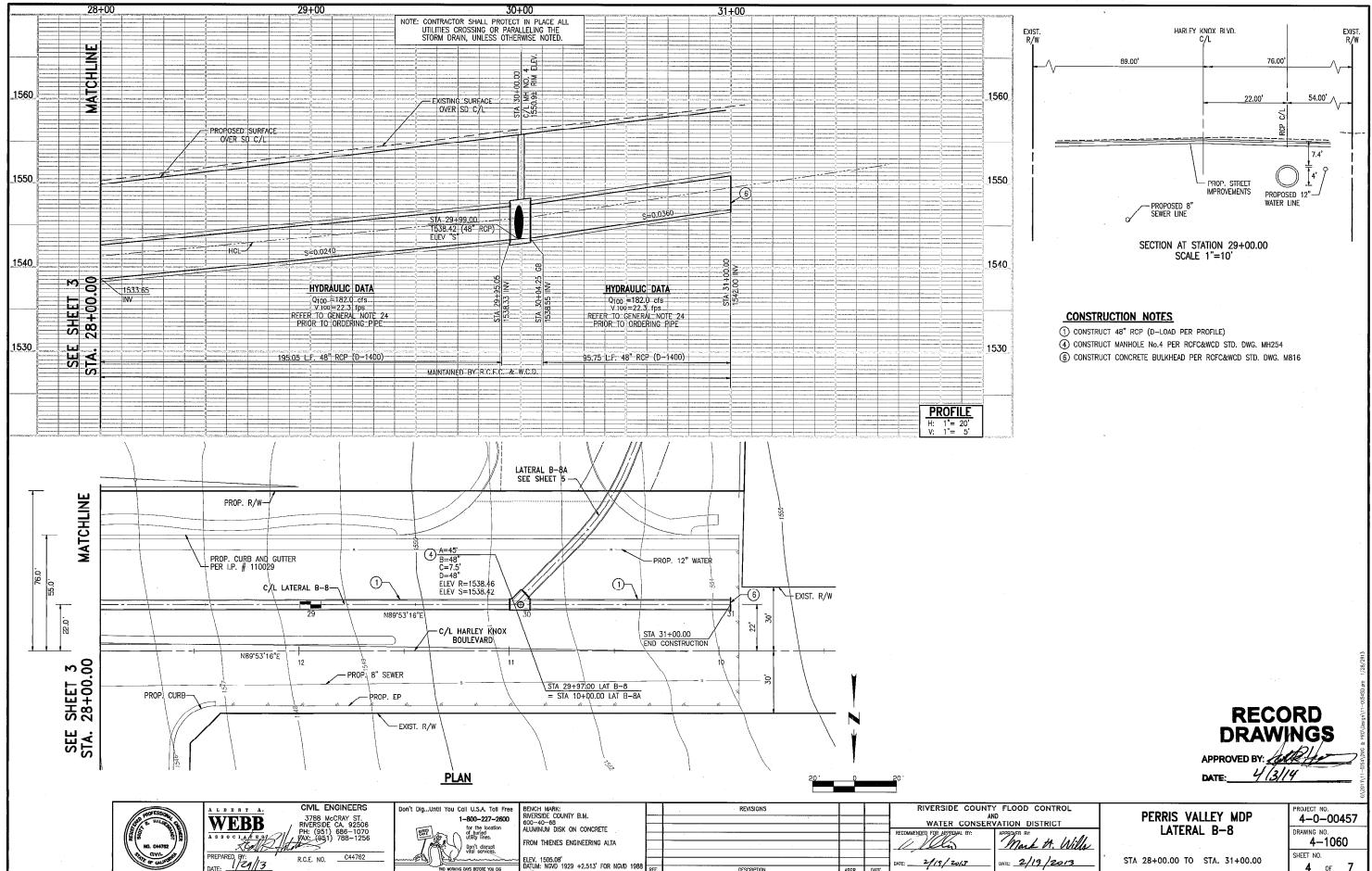
22. APPROVAL OF THESE PLANS BY THE RIVERSIDE COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT DOES NOT RELIEVE THE DEVELOPER'S ENGINEERS OF RESPONSIBILITY FOR THE ENGINEERING DESIGN. IF FIELD CHANGES ARE REQUIRED, IT WILL BE THE RESPONSIBILITY OF THE DESIGN ENGINEER TO MAKE NECESSARY CORRECTIONS

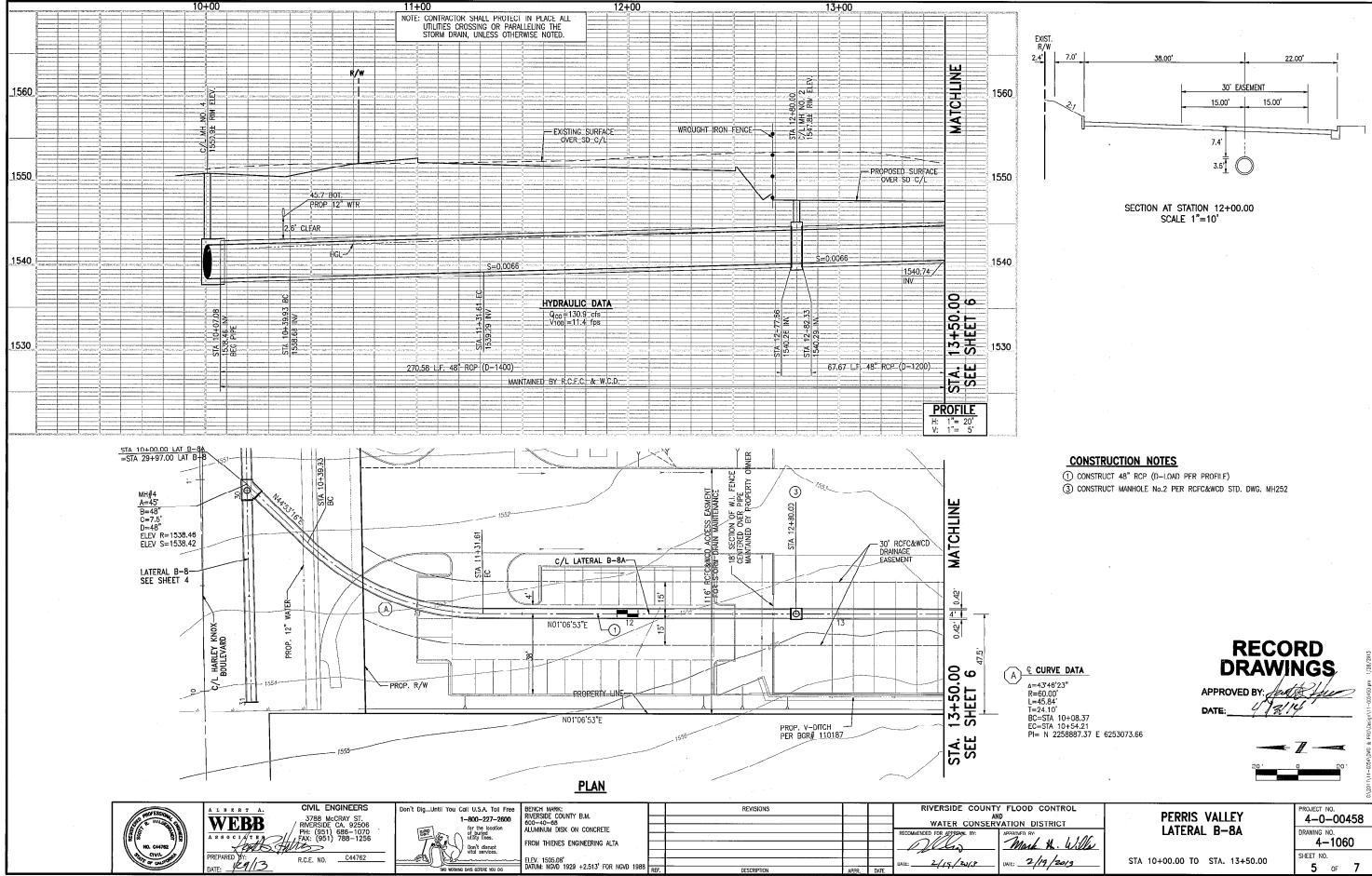

23. THE CONTRACTOR OR DEVELOPER SHALL SECURE ALL REQUIRED ENCROACHMENT AND/OR STATE AND FEDERAL REGULATORY PERMITS PRIOR TO ALL COMMENCEMENT OF ANY WORK.

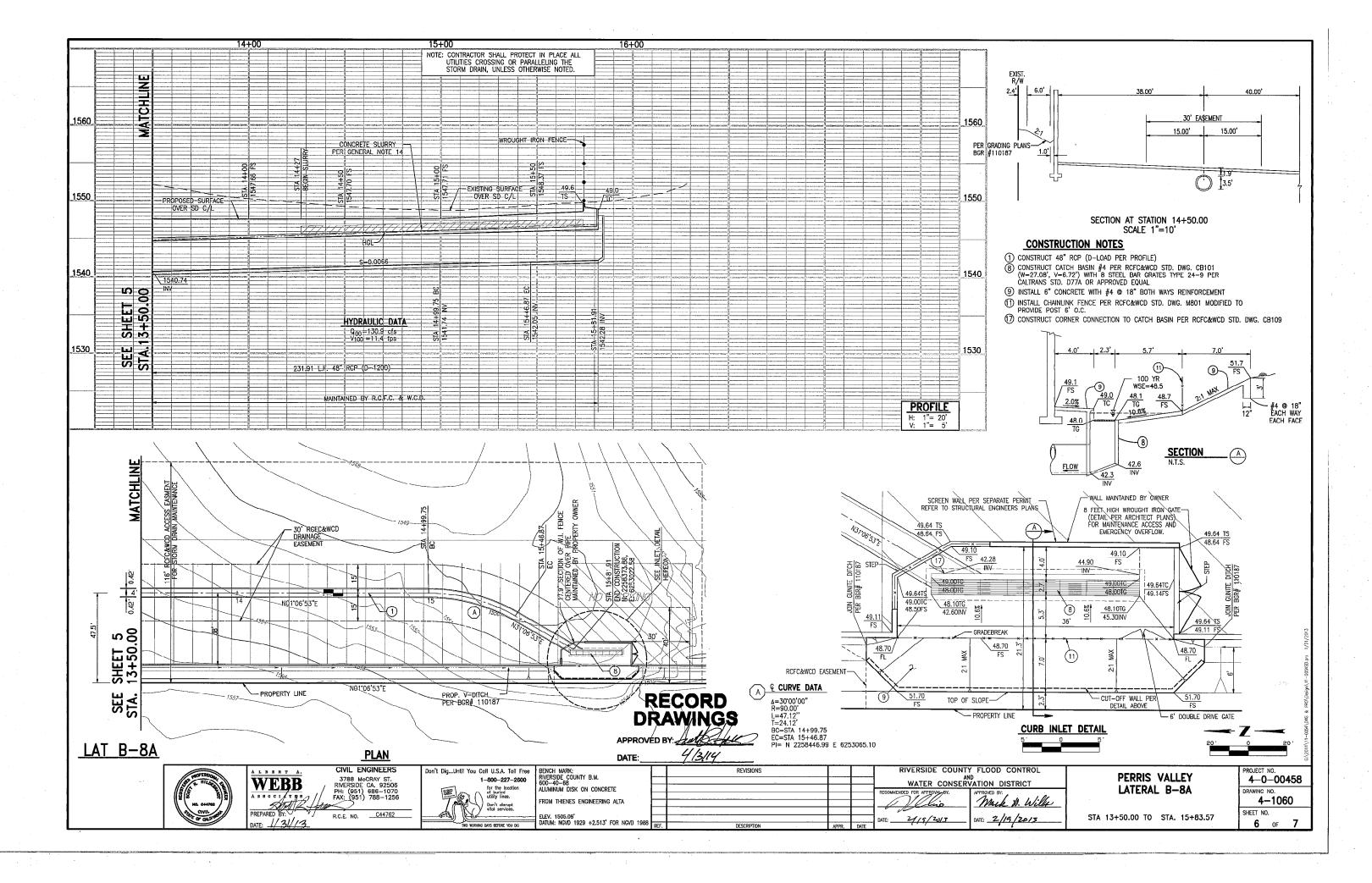
24. THE CONCRETE COATING ON THE INSIDE OF ALL REINFORCED CONCRETE PIPES The concrete coaling on the inside of all reinforced concrete pipes MUST BE INGREASED TO PROVIDE A MINIMUM OF 1-1/2 INCHES OVER THE REINFORCING AND INCREASED TO A MINIMUM OF 3-1/2 INCHES OVER THE REINFORCING FOR BOX CULVERT, WHEN DESIGN VELOCITIES EXCEED 20 FEET PER SECOND. THE CONCRETE DESIGN STRENGTH IN THESE REACHES SHALL BE FC=5,000 PSI FOR VELOCITIES EXCEEDING 20 FEET PER SECOND AND FC=6,000 PSI FOR VELOCITIES PORTENDED FOR CONCRETE OF CONCRETE EXCEEDING 30 FEET PER SECOND.

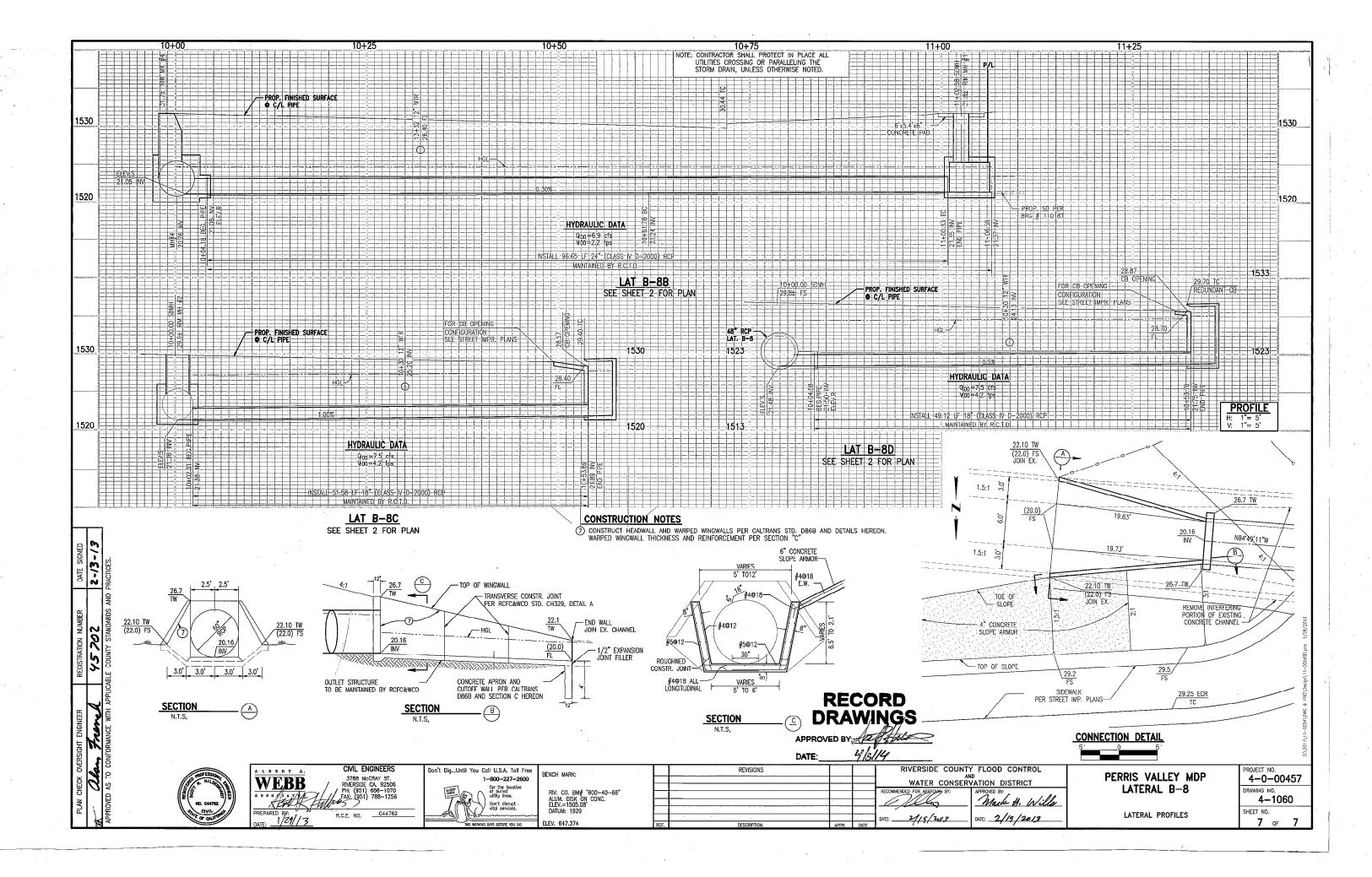
25. CONSTRUCTION JOINT FOR CALTRANS STANDARD REINFORCED CONCRETE BOX SHALL BE ACCORDING TO RCFC&WCD STD DWG. NO. BX 401.


P.M. NO. 33942/P.P. NO. 20699R1/I.P. NO. 110029


		PROJECT NO. 4-0-00457 4-0-00458
Q.m.ll_	PERRIS VALLEY LATERAL B-8A	DRAWING NO. 4-1060
R/22/13	TITLE SHEET	SHEET NO. 1 OF 7


.....





	APPROVED BY:	bi l
	PERRIS VALLEY MDP LATERAL B-8	PROJECT NO. 4-0-00457 DRAWING NO.
4. Wills 12013	STA 28+00.00 TO STA. 31+00.00	4-1060 SHEET NO. 4 OF 7

CURVE DATA =43*46'23" =60.00' =45.84' =24.10' IC=STA 10+08.37 CC=STA 10+54.21 PI= N 2258887.37 E	APPROVED BY:	
O CONTROL DISTRICT	PERRIS VALLEY LATERAL B-8A	PROJECT NO. 4-0-00458 DRAWING NO.
K. H. Wille		4-1060
119/2013	STA 10+00.00 TO STA. 13+50.00	SHEET NO. 5 OF 7

GENERAL NOTES

- IT SHALL BE THE RESPONSIBILITY OF THE DEVELOPER/OWNER CONTRACTOR TO APPLY TO THE RIVERSIDE COUNTY TRANSPORTATION DEPARTMENT, PERMIT SECTION, FOR AN ENCROACHMENT PERMIT FOR ALL WORK PERFORMED WITHIN PUBLIC RIGHT-OF-WAY, DEDICATED AND ACCEPTED FOR PUBLIC USE; AND TO BE RESPONSIBLE FOR SATISFACTORY COMPLIANCE FOR ALL CURRENT ENVIRONMENTAL RECULATIONS DURING THE LIFE OF CONSTRUCTION ACTIVITIES FOR THIS PROJECT, ADDITIONAL STUDIES AND/OR PERMITS MAY BE REQUIRED.
- THE CONTRACTOR/DEVELOPER SHALL BE RESPONSIBLE FOR THE CLEARING OF THE WORK AREA, AND RELOCATION COSTS OF ALL EXISTING UTILITIES. THIS INCLUDES UNDERCROUNDING OF EXISTING OVERHEAD LINES ALONG THE PROJECT FRONTAGE AS REQUIRED BY THE CONDITIONS OF APPROVAL. PERMITEE MUST INFORM COUNTY OF CONSTRUCTION SCHEDULE AT LEAST 48 HOURS PRIOR TO BEGINNING OF CONSTRUCTION. PHONE: (951) 955-6790.
- THE DEVELOPER WILL INSTALL STREET NAME SIGNS CONFORMING TO COUNTY STANDARD NO. 1220 AND 1221. 3.
- ALL WORK SHALL CONFORM TO THE REQUIREMENTS OF THE RIVERSIDE COUNTY TRANSPORTATION DEPARTMENT IMPROVEMENT STANDARDS AND SPECIFICATIONS, LATEST EDITION, COUNTY ORDINANCE NO. 461 AND SUBSEQUENT AMENDMENTS.
- IT SHALL BE THE RESPONSIBILITY OF THE DEVELOPER TO NOTIFY THE ENGINEER TO INSTALL STREET CENTERLINE MONUMENTS AS REQUIRED BY RIVERSIDE COUNTY ORDINANCE NO. 461. IF CONSTRUCTION CENTERLINE DIFFERS, PROVIDE A TE TO EXISTING CENTERLINE OF RIGHT-OF-WAY. PRIOR TO ROAD CONSTRUCTION, SURVEY MONUMENTS INCLUDING CENTERLINE MONUMENTS, THE POINTS, PROPERTY CORRERS AND BENCH MARKS SHALL BE REFERENCED OUT AND CORRER RECORDS FILED WITH THE COUNTY SURVEYOR PURSUANT TO SECTION 8771 OF THE BUSINESS & PROFESSIONAL CODE. SURVEY POINTS DESTROYED DURING CONSTRUCTION SHALL BE RESET, AND A SECOND CORNER RECORD FILED FOR THOSE POINTS PRIOR TO ACCEPTANCE OF THE IMPROVEMENTS
- ALL UNDERGROUND FACILITIES, WITH LATERALS, SHALL BE IN PLACE PRIOR TO PAVING THE STREET, INCLUDING, BUT NOT LIMITED TO, THE FOLLOWING: SEWER, WATER, ELECTRIC, GAS, STORM DRAINS.
- CURB DEPRESSIONS AND DRIVEWAY APPROACHES WILL BE INSTALLED AND CONSTRUCTED ACCORDING TO COUNTY STANDARD NO. 207A, AS DIRECTED IN THE FIELD.
- IT SHALL BE THE RESPONSIBILITY OF THE DEVELOPER OR CONTRACTOR TO INSTALL AND MAINTAIN ALL CONSTRUCTION, REGULATORY, CUIDE AND WARNING SIGNS WITHIN THE PROJECT LIMITS AND ITS SURROUNDINGS TO PROVIDE SAFE PASSAGE FOR THE TRAVELING PUBLIC AND WORKERS UNTIL THE FINAL COMPLETION AND ACCEPTANCE OF THE PROJECT BY THE COUNTY, A TRAFFIC CONTROL FLAN MUST BE SUBMITTED FOR REVIEW TO THE PERMITS SECTION OR INSPECTION SECTION (FOR MAP CASES) PRIOR TO OBTAINING AN ENCROACHMENT PERMIT.
- ALL STREET SECTIONS ARE TENTATIVE. ADDITIONAL SOIL TESTS MAY BE TAKEN BY THE COUNTY AFTER ROUCH GRADING TO DETERMINE THE EXACT STREET SECTION REQUIREMENTS. USE STANDARD NO. 401 IF EXPANSIVE SOILS ARE ENCOUNTERED.
- 10. ASPHALTIC EMULSION (FOG SEAL) SHALL BE APPLIED NOT LESS THAN FOURTEEN DAYS FOLLOWING PLACEMENT OF THE ASPHALT SURFACING. FOG SEAL AND PAINT BINDER SHALL BE APPLIED AT A RATE OF 0.05 AND 0.03 GALLON PER SQUARE YARD RESPECTIVELY. ASPHALTIC EMULSION SHALL CONFORM TO SECTION 37, 39 AND 94 OF THE STATE STANDARD SPECIFICATIONS.
- 11 PRIME COAT IS REQUIRED PRIOR TO PAVING ON ALL GRADES IN EXCESS OF TEN PERCENT
- 12. INSTALL STREET TREES IN ACCORDANCE WITH ORDINANCE NO. 461 AND THE COMPREHENSIVE LANDSCAPING GUIDELINES (SEE SEPARATE LANDSCAPE PLANS)
- 13. STREET LIGHTS SHALL BE INSTALLED IN ACCORDANCE WITH THE APPROVED STREET LIGHTING PLAN.
- 14. AS DETERMINED BY THE TRANSPORTATION DIRECTOR, THE DEVELOPER IS RESPONSIBLE AS A MINIMUM FOR ROAD IMPROVEMENTS TO CENTERLINE, AND MAY BE REQUIRED TO RECONSTRUCT EXISTING PAVEMENT, INCLUDING BASE, AND MATCHING OVERLAY REQUIRED TO MEET THE STRUCTURAL STANDARDS FOR THE CURRENT ASSIGNED TRAFFIC INDEX.
- 15. ONLY LANDSCAPING CONSISTING OF GRASS AND PARKWAY TREES MAY BE INSTALLED WITHIN PARKWAYS ON LOCAL RESIDENTIAL STREETS WITHOUT SEPARATE LANDSCAPE PLANS. ALL OTHER TYPES OF LANDSCAPING IN THESE AREAS, AND ALL LANDSCAPING ON ALL OTHER STREETS, SHALL REQUIRE SEPARATE LANDSCAPE PLANS. ALL LANDSCAPING ENCROACHMENTS SHALL CONFORM TO RIVERSIDE COUNTY COMPREHENSIVE LANDSCAPING GUIDELINES DATED OCTOBER 2009.
- 16. ANY PRIVATE DRAINAGE FACILITIES SHOWN ON THESE PLANS ARE FOR INFORMATION ONLY. BY SIGNING THESE IMPROVEMENT PLANS, NO REVIEW OR APPROVAL OF THOSE PRIVATE FACILITIES IS IMPLIED OR INTENDED BY THE RIVERSIDE COUNTY TRANSPORTATION DEPARTMENT.
- 17. a. CONSTRUCTION PROJECTS MUST OBTAIN A NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PERMIT. OWNERS/DEVELOPERS ARE G. UNISTINUTION FINANCIS MUSI USING A INTRODUCE CLUTING DISTURDED ELIMINATION STSTEM (NEUCS) FERMIL UNINERS/DEVELOPERS ARE REQUIRED TO FILE A NOTICE OF INTENT (NOI) WITH THE STATE WALLE RESOURCES CONTROL BOARD (SWRCB), PREPARE A STORM WATER POLLUTION PREVENTION PLAN (SWPPP) AND MONITORING PLAN FOR THE SITE.
- b. PRIOR TO ANY CONSTRUCTION, THE DEVELOPER SHALL PROVIDE THE COUNTY A COPY OF THE NOI WITH A VALID WDID NUMBER.
- 18. THE DEVELOPER SHALL BE RESPONSIBLE FOR THE INSTALLATION OF ADDITIONAL SIGNS AND MARKINGS NOT INCLUDED IN THE SIGNING AND STRIPING PLAN WITHIN THE PROJECT AREAS, OR ON ROADWAYS ADJACENT TO THE PROJECT BOUNDARIES, UPON THE REQUEST OF THE DIRECTOR OF TRANSPORTATION OR HIS DESIGNEE TO IMPROVE TRAFFIC SAFETY ON THE ROADS UNDER THE JURISDICTION OF THE DEVELOPER.
- 19. EXISTING STORM DRAIN PIPES / CULVERTS (WHETHER TO BE CONNECTED TO, EXTENDED, ADJUSTED, DRAINED TO, OR JUST IN THE PROJECT VICINITY) EXISTING STORM DRAIN PIPES / COLVERTS (WHETHER TO BE CONNECTED TO, EXTENDED, ACCOSTED, DRAINED TO, OR SOST IN THE TROS MUST BE REPAIRED, AND/OR CLEANED TO MAKE THEM FUNCTIONAL AND ACCEPTABLE AS DIRECTED BY THE TRANSPORTATION DEPARTMENT
- 20. IT SHALL BE THE RESPONSIBILITY OF THE DEVELOPER/CONTRACTOR TO APPLY TO RIVERSIDE COUNTY FLOOD CONTROL (RCFC) FOR PERMITS WHEN ANY STORM DRAIN PIPE NEEDS TO BE CONNECTED WITH A RCFC FACILITY AND ADD PERMIT #_____ ON THE PLAN.
- 21. IT SHALL BE THE RESPONSIBILITY OF THE DEVELOPER OR CONTRACTOR TO APPLY TO THE CITY AND OR CALIFORNIA DEPARTMENT OF TRANSPORTATION (CALTRANS) FOR AN ENCROACHMENT PERMIT FOR ALL WORK PERFORMED WITHIN THEIR RIGHT-OF-WAY.
- 22. FOR ALL DRIVEWAY RECONSTRUCTION BEYOND RIGHT-OF-WAY, PROOF OF DRIVEWAY OWNER NOTIFICATION IS REQUIRED PRIOR TO CONSTRUCTION.
- 23. BEDDING PIPE SHALL CONFORM TO RCFC&WCD STD. DWG. M815, EXCEPT FOR COVER <2 FEET. FOR COVER <2 FEET, CONCRETE SLURRY (2000) PSI-2 SACK) SHALL BE USED. THE ENTIRE TRENCH SHALL BE SLURRY EXTENDING 4 INCHES MINIMUM AND 12 INCHES MAXIMUM ABOVE THE TOP OF THE FIRE.

24. ALL CATCH BASINS SHALL BE STENCILED WITH "NO DUMPING - ONLY RAIN IN THE DRAIN" PER R.C.F.C. & W.C.D. STANDARDS.

UNDERGROUND UTILITIES NOTE

ALL UNDERGROUND STRUCTURES OR UTILITIES REPORTED BY THE OWNER OR OTHERS AND THOSE SHOWN ON THE RECORDS EXAMINED ARE INDICATED WITH THEIR APPROXIMATE LOCATION AND EXTENT.

THE OWNER, BY ACCEPTING THESE PLANS OR PROCEEDING WITH THE IMPROVEMENTS PURSUANT THERETO AGREES TO ASSUME LIABILITY AND TO HOLD THE UNDERSIGNED HARMLESS FOR ANY DAMAGES RESULTING FROM THE FXISTENCE OF UNDERGRORUND UTILITIES OR STRUCTURES NOT REPORTED TO THE UNDERSIGNED, NOT INDICATED DO THE PUBLIC RECORDS EXAMINED, LOCATED AT VARIANCE WITH THAT REPORTED OR SHOWN ON THE RECORDS EXAMINED.

THE CONTRACTOR IS REQUIRED TO TAKE DUE PRECAUTIONARY MEASURES TO PROTECT THE UTILITIES OR STRUCTURES SHOWN AND ANY OTHER UTILITIES OR STRUCTURES FOUND AT THE STE. IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO NOTIFY THE OWNERS OF THE UTILITIES OR STRUCTURES CONCERNED BEFORE STARTING WORK

CALL UNDERGROUND SERVICE ALERT (U.S.A.) 1-800-227-2600 AT LEAST 2 WORKING DAYS PRIOR TO EXCAVATION.

YOU DIG

1-800-227-2600

A PUBLIC SERVICE BY

POUND SERVICE ALER

UTILITY COMPANIES

DIAL

BEFORE

in.

6 3

AS T

PRAC

Ę5

EASTERN MUNICIPAL WATER DISTRICT EASTERN MUNICIPAL WATER DISTRICT SOUTHERN CALIFORNIA EDISON GEOTECHNICAL REPORT BY: MATRIX GEOTECHNICAL CONSULTING INC. PROJECT NO.: M1103-006 WATER: SEWER:

PRELIMINARY R-VALUE: DATED: 25 01-21-2016 TELEPHONE: VERIZON GAS: SOUTHERN CALIFORNIA GAS COMPANY

GEOTECHNICAL

ENGINEER OF RECORD NOTE

WEBB ASSOCIATES WAS RETAINED AS THE ENGINEER OF RECORD FOR THE DEVELOPMENT AND PROCESSING OF THESE PLANS FOR CONSTRUCTION PURPOSES. SAND PLANS HAVE BEEN REVIEWED AND APPROVED BY THE LOCAL GOVERNING AGENCY TO BE CONSTRUCTIOLE DASED ON LOCAL INDUSTRY STANDARDS. THIS DOES NOT MEAN, HOWEVER, THAT EVERY HORIZONTAL DIMENSION FOR VERTICAL ELEVATION NECESSARY FOR CONSTRUCTION IS DELINEATED ON SAND DRAWINGS. ANY PART OF THESE DRAWINGS THAT IS TO BE USED IN STAKING THE PROPERTY HAS BEEN REPARED BY WEBB WITH THE EXPERIMENTS ANY DRAWINGS THAT IS TO BE USED IN STAKING THE PROPERTY HAS BEEN REPARED BY WEBB WITH THE EXPERIMENTS AND ADDITION THAT ANY STAKING, WHETHER BY WEBB, OWNER OR A THIRD PARTY, WILL BE PERFORMED UNDER THE SUPERVISION AND CONSTOL OF A LICENSED LAND SURVEYOR AND WILL INCLUDE ON-STE INTERPRETATION, VERIFICATION, CROSS-CHECKING AND FIELD CORRECTORS OF PLANS, DRAWINGS, SURVEY INFORMATION AND ELECTRONIC DATA AT THE TIME OF ACTUAL STAKING OF THE PROPERTY PRIOR TO CONSTRUCTION.

NOTE:

WORK CONTAINED WITHIN THESE PLANS SHALL NOT

THE PRIVATE ENGINEER SIGNING THESE PLANS IS RESPONSIBLE FOR ASSURING THE ACCURACY AND ACCEPTABILITY OF THE DESIGN HEREON

IN THE EVENT OF DISCREPANCIES ARISING AFTER COUNTY APPROVAL OR DURING CONSTRUCTION, THE PRIVATE ENGINEER SHALL BE

RESPONSIBLE FOR DETERMINING AN ACCEPTABLE SOLUTION AND

REVISING THE PLANS FOR APPROVAL BY THE COL

COMMENCE UNTIL AN ENCROACHMENT PERMIT

AND/OR A GRADING PERMIT HAS BEEN ISSUED

NOTICE TO CONTRACTORS CONTRACTOR AGREES THAT HE SHALL ASSUME COMPLETE AND SOLE RESPONSIBILITY FOR JOB SITE CONDITIONS DURING THE COURSE OF

RESPONSIBILITY FOR JOB SITE CONDITIONS DURING THE COURSE AND PROPERTY. THAT THIS REQUIREMENT SHALL CONTINUOUSLY AND NOT BE LIMITED TO NORMAL WORKING HOURS; AND THAT THE CONTRACTOR SHALL DEFEND, INDEMNIFY AND HOLD THE OWNER AND ENGINEET HARMLESS FROM ANY AND ALL LIABILITY. REAL OR ALLEGED, IN CONNECTION WITH THE PERFORMANCE OF WORK ON THIS PROJECT, EXCEPTING FROM LIABILITY ARISING FROM THE SOLE NEGLIGENCE OF THE OWNER OR ENGINEER.

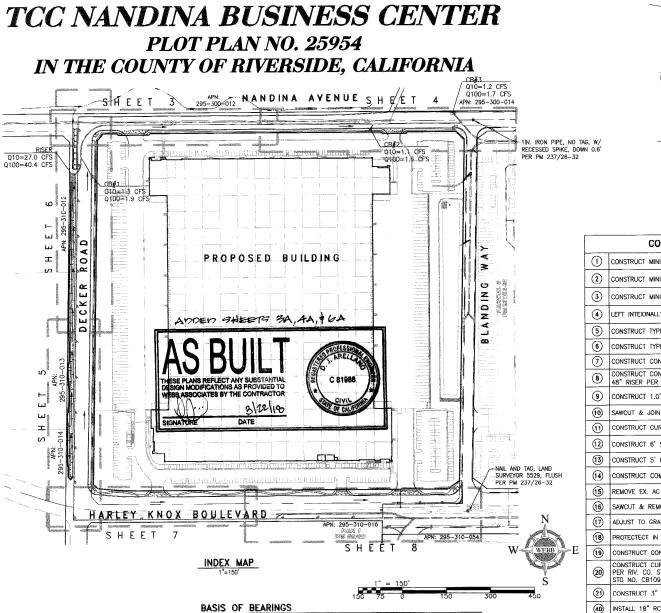
THE EXISTENCE AND LOCATION OF ANY UNDERGROUND UTILITY PIPES OR STRUCTURES SHOWN ON THESE PLANS WERE OBTAINED BY A SEARCH OF AVAILABLE RECORDS. THESE LOCATIONS ARE APPROXIMATE AND SHALL BE CONFIRMED IN FIELD BY THE CONTRACTOR, SO THAT ANY NECESSARY ADJUSTMENT CAN BE MADE IN ALIGNMENT AND/OR GRADE OF THE PROPOSED IMPROVEMENT. THE CONTRACTOR IS RECOVINED TO TAKE DUE PRECAUTIONARY MEASURES TO PROTECT ANY UTILITY LINES SHOWN AND ANY OTHER LINES NOT SHOWN ON THESE PLANS

MAJOR HEMS TO BE REMOVED HAVE BEEN NOTED ON THESE PLANS, HOWEVER THE CONTRACTOR IS TO WALK THE SITE FOR VERIFICATION OF ADDITIONAL SURFACE FEATURES REQUIRING REMOVAL. THE CONTRACTOR IS RESPONSIBLE TO ELEV. = 1535.16, (NAVD 88) NAVD88–2.38=NGVD29 ETC.) THAT ARE IN CONFLICT WITH THE NEW PROPOSED IMPROVEMENTS WHETHER CALLE-OUT OR NOT ON THE PLANS AND DISPOSE OF LEGALLY. CONTRACTOR IS TO BACKFILL ACCORDINGLY AND LEAVE STIE IN A RELATIVELY LEVEL CONDITION.

 $\mathbf{\Lambda}$

MARK BY DAT

THE BASIS OF BEARINGS FOR THIS SURVEY IS THE CALIFORNIA STATE PLANE COORDINATE SYSTEM, CCS83, ZONE 6, BASED LOCALLY ON CONTROL STATIONS "MLFP", "CNPP" AND "PPBF NAD 83(NSRS2007) AS SHOWN HEREON, ALL BEARINGS SHOWN ON THIS MAP ARE GRID. QUIOTED BEARINGS AND DISTANCES FROM REFERENCE MAPS OR DEEDS ARE AS SHOWN PER UUDIED BEARINGS AND UDSAARES FROM THEFERENCE MARS ON DELEUS AIRC AS STOWN FLO THAT RECORD REFERENCE. ALL DISTANCES SHOWN ARE ROUND DISTANCES UNLESS SPECIFIED OTHERWISE. GRID DISTANCES, MAY BE OBTINNED BY MULTIPLYING THE GROUND DISTANCE BY A COMBINATION FACTOR OF 1.00000283. CALULATIONS ARE MADE AT FOUND MONUMENT OCATED AT THE CENTERI INF INTERSECTION OF NANDINA AVENUE AND DECKER ROAD WITH COORDINATES OF: N: 2260304.10, E: 6252014.28, USING AN ELEVATION OF 1564.87(NAVD88).


1143 1961 (PID #DX2103) + 3¹/₄" BRASS DISK, SET IN TOP OF A CONCRETE

STATION IS NEAR THE INTERSECTION OF INTERSTATE 215 AND VAN BUREN BLVD. ABOUT 0.10 MILE N OF AVE. A, ABOUT 0.35 S DIRT PATROL ON THE E SIDE OF ATSF RAILROAD TRACKS, 15 FEET SE OF MILEPOST 11, 183 FEET SE OF A SWITCH STAND, 25 FEET E 0.67 TRACKS, 5.4 FEET W OF 215 FWY RIGHT OF WAY, AND 5 INCHES ABOUT GROUND. MARK IS METROPOLITAN WATER DISTRICT OF SOUTHERN CALIFORNIA STANDARD DISK MARK IS METROPOLITAN STAMPED Z 1143 1961

AN AMOUNT OF \$16,200 AND \$13,600 FOR CUMULATIVE IMPACTS TO HARLEY KNOX BLVD. AT THE I-215 SOUTHBOUND RAMPS AND I-215 NORTHBOUND RAMPS, RESPECTIVELY, HAS BEEN PLACED IN ACCOUNT# 20000-3130100000-230106; RECEIPT NO: 29087-13,29087-14, DATE: 1-4-17

CASH IN-LIEU FOR TRAFFIC SIGNAL

RCFC PERMIT NO: SEAL - ENGINEER BENCHMA BERT ENGINEERING CONSULTANTS WEBB SEE SHEET 3788 McCRAY STREET RIVERSIDE CA. 92506 PH. (951) 686-1070 ASSOCIATES DESIGNED BY: MS CHECKED BY: S REPARED UNDER JPERVISION~QF: NO. 81968 R.C.E. NQ .: 81988 MM 4-5-19 11 1110 SCALE:

BASIS OF BEARINGS

STREET IMPROVEMENT PLANS FOR

BENCHMARK

USC & GS BENCHMARKS

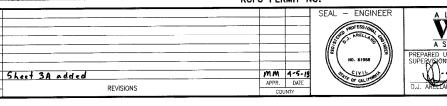
LEGEND GRIND AND OVERLAY EXISTING PAVEMENT

20000	COMPACTED NATIVE	
BCR BC CB	BEGIN CURB RETURN BEGIN CURVE CATCH BASIN	

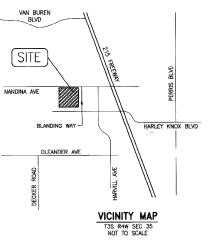
(41) INSTALL 30" RC

(42) INSTALL 36" R

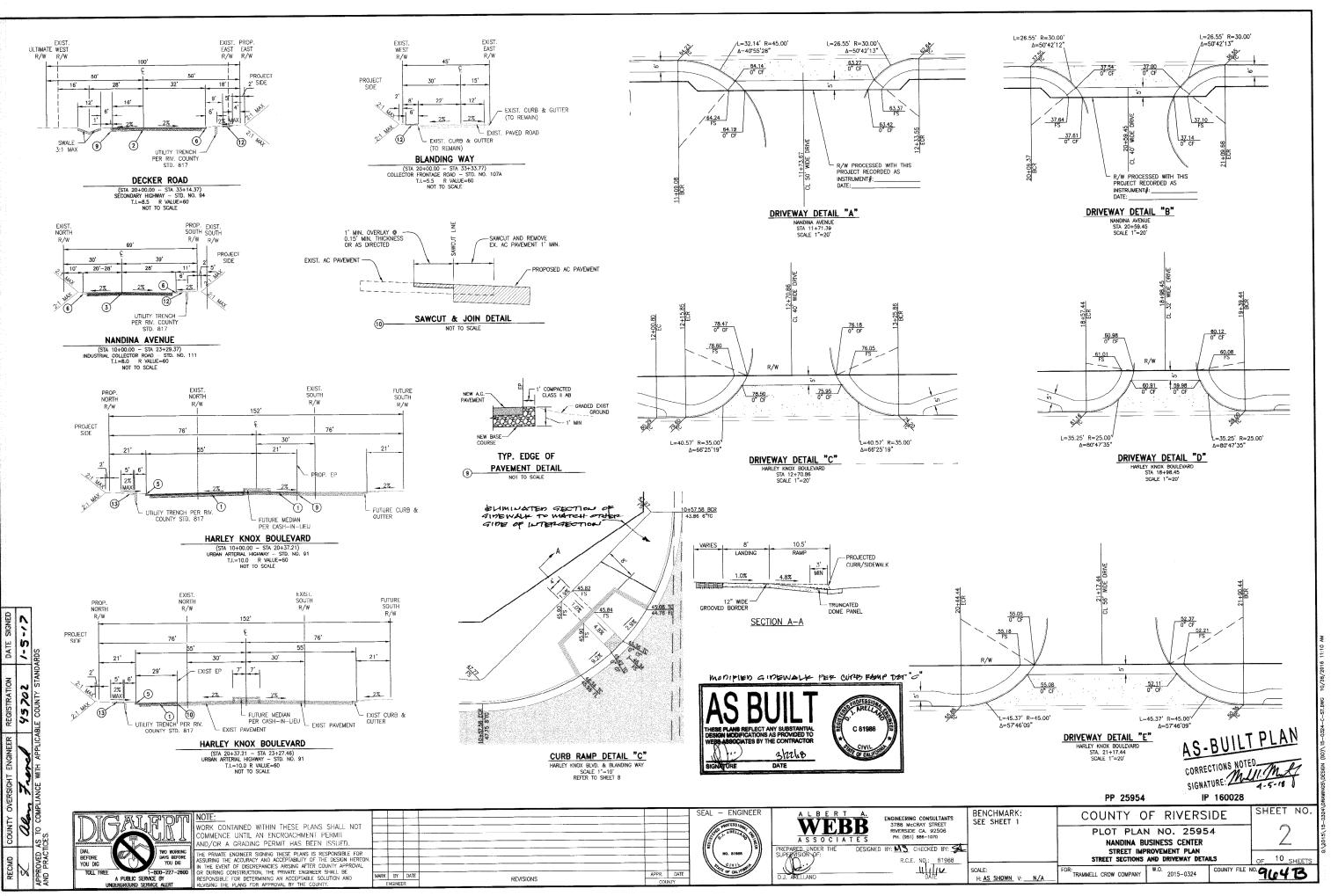
(43) CONSTRUCT MA

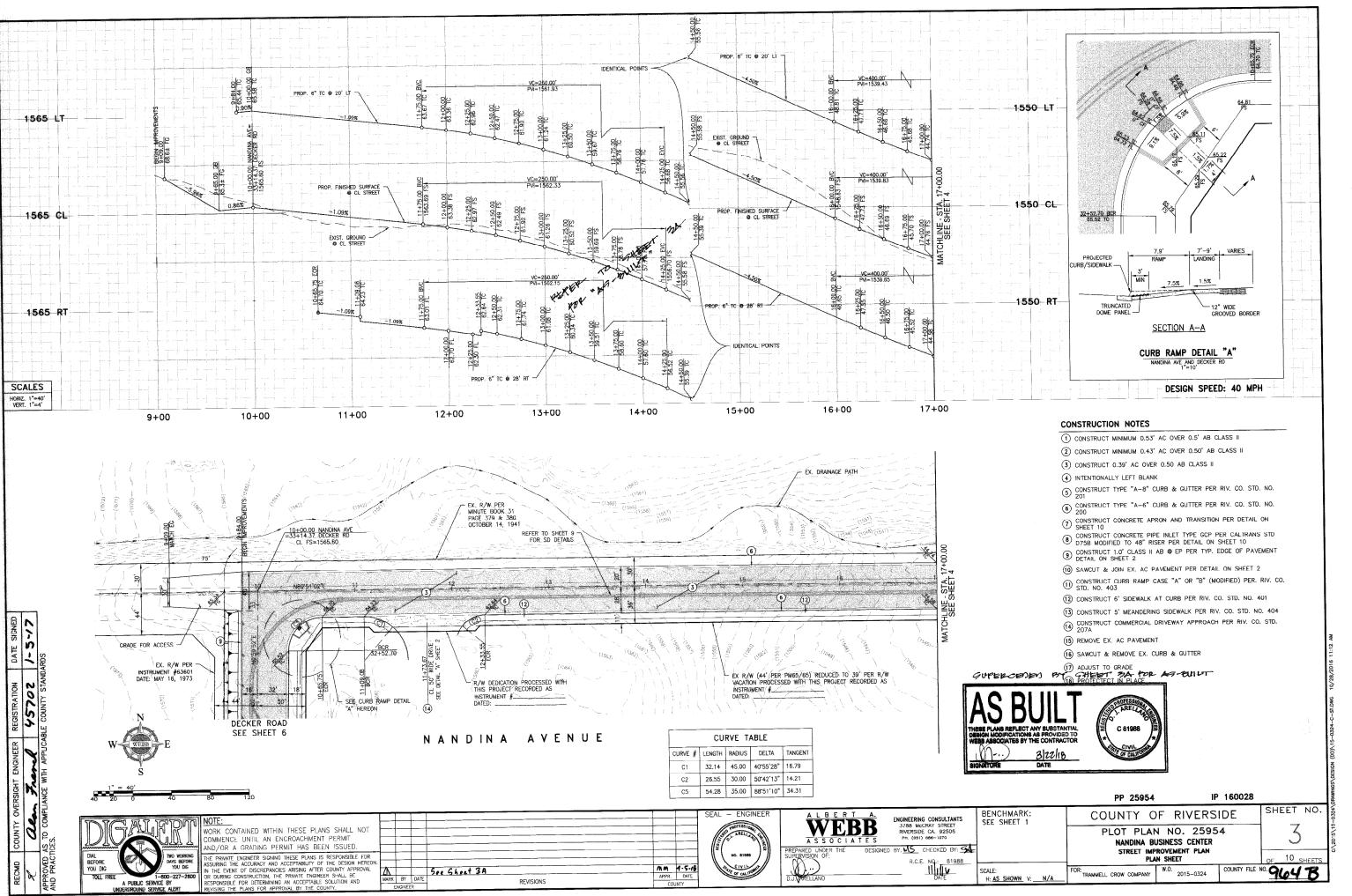

(44) CONSTRUCT MA

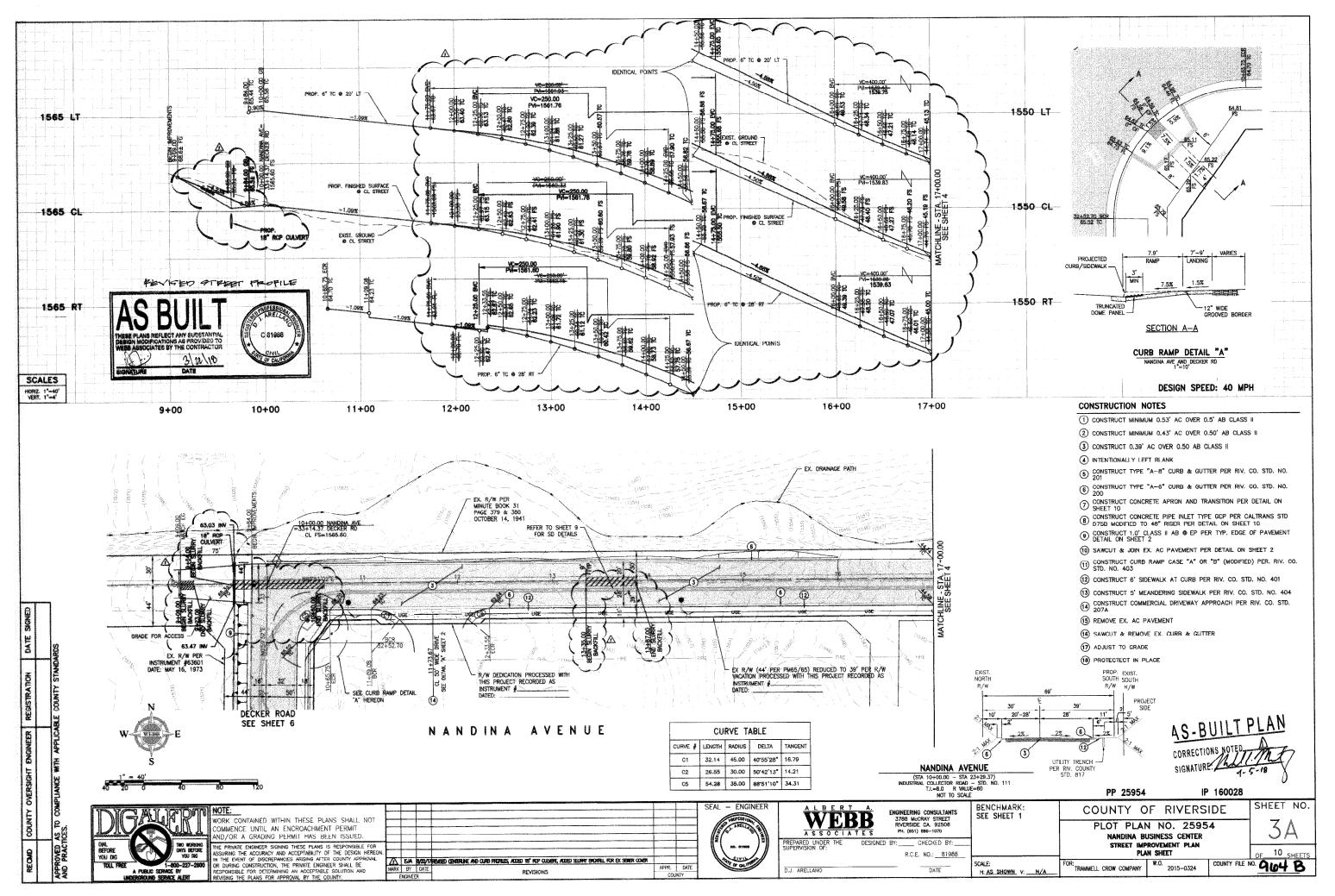
(45) DEMOLISH EXIS

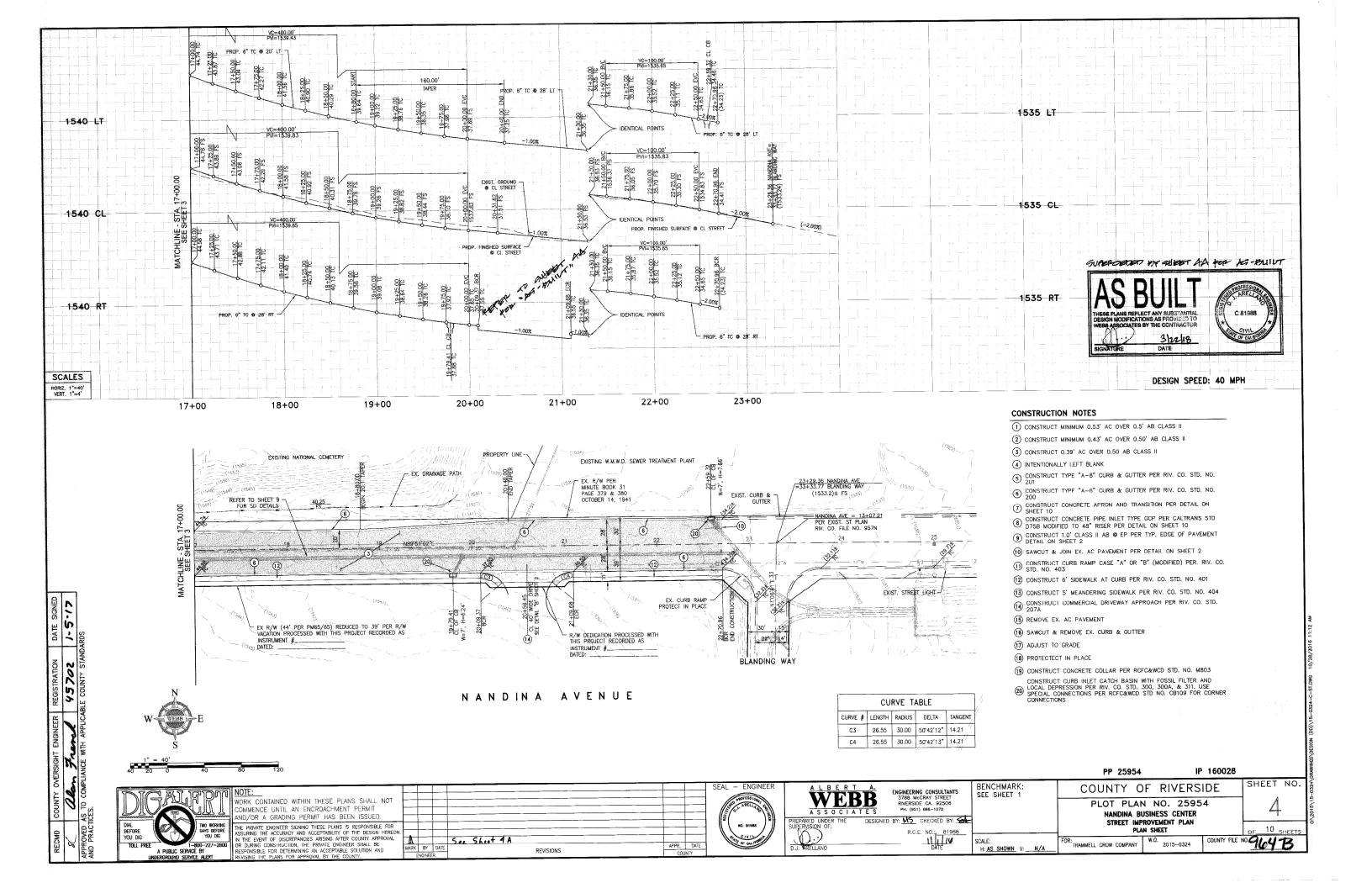

THE QUANTITY EST

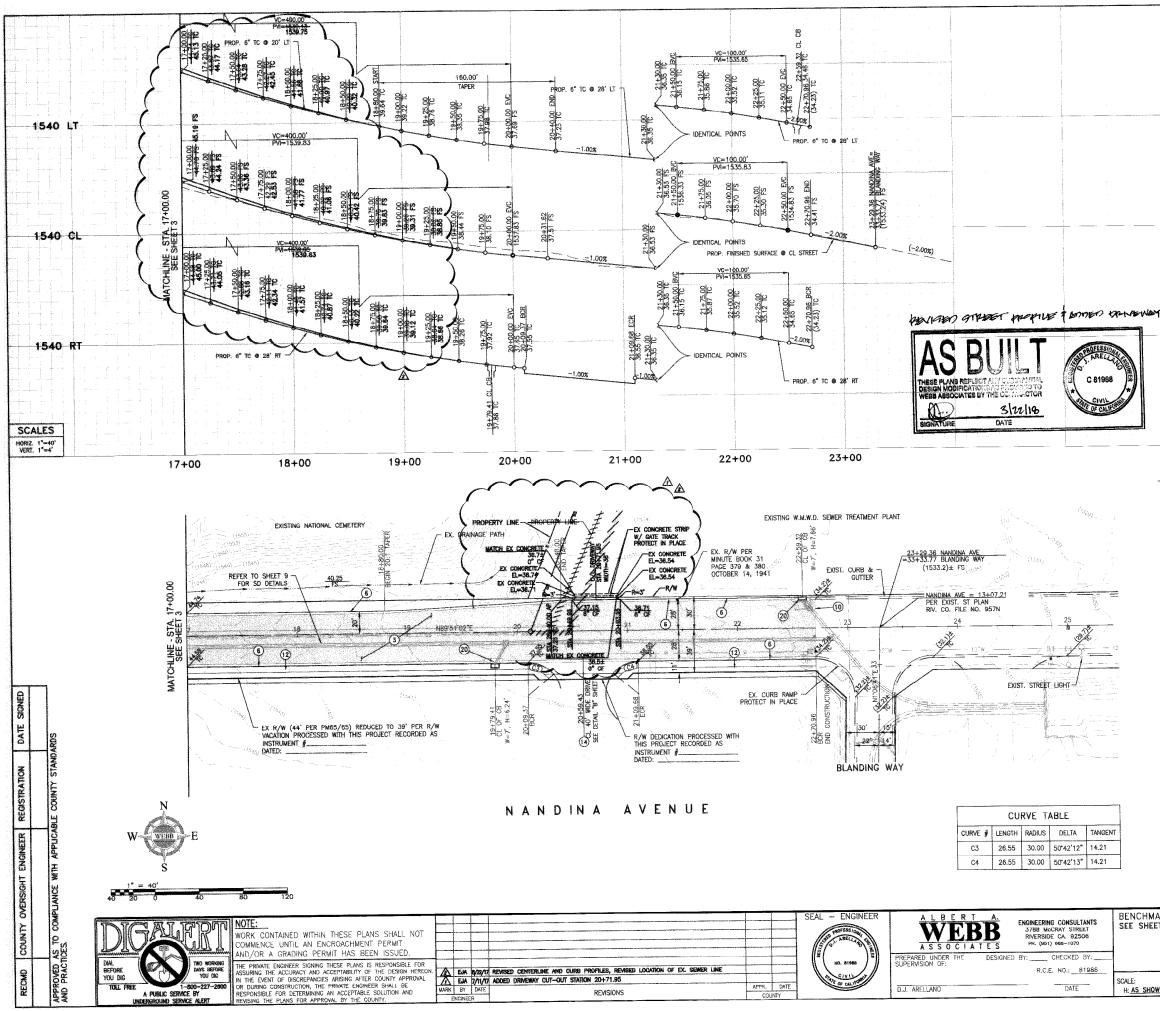
BOND AMOUNT AN


ĊĹ	CENTER LINE
DWY	DRIVE WAY
EC	END OF CURVE
ECR	END OF CURB RETURN
EG	EXISTING GROUND
EP	EDGE OF PAVEMENT
FG	FINISHED GRADE



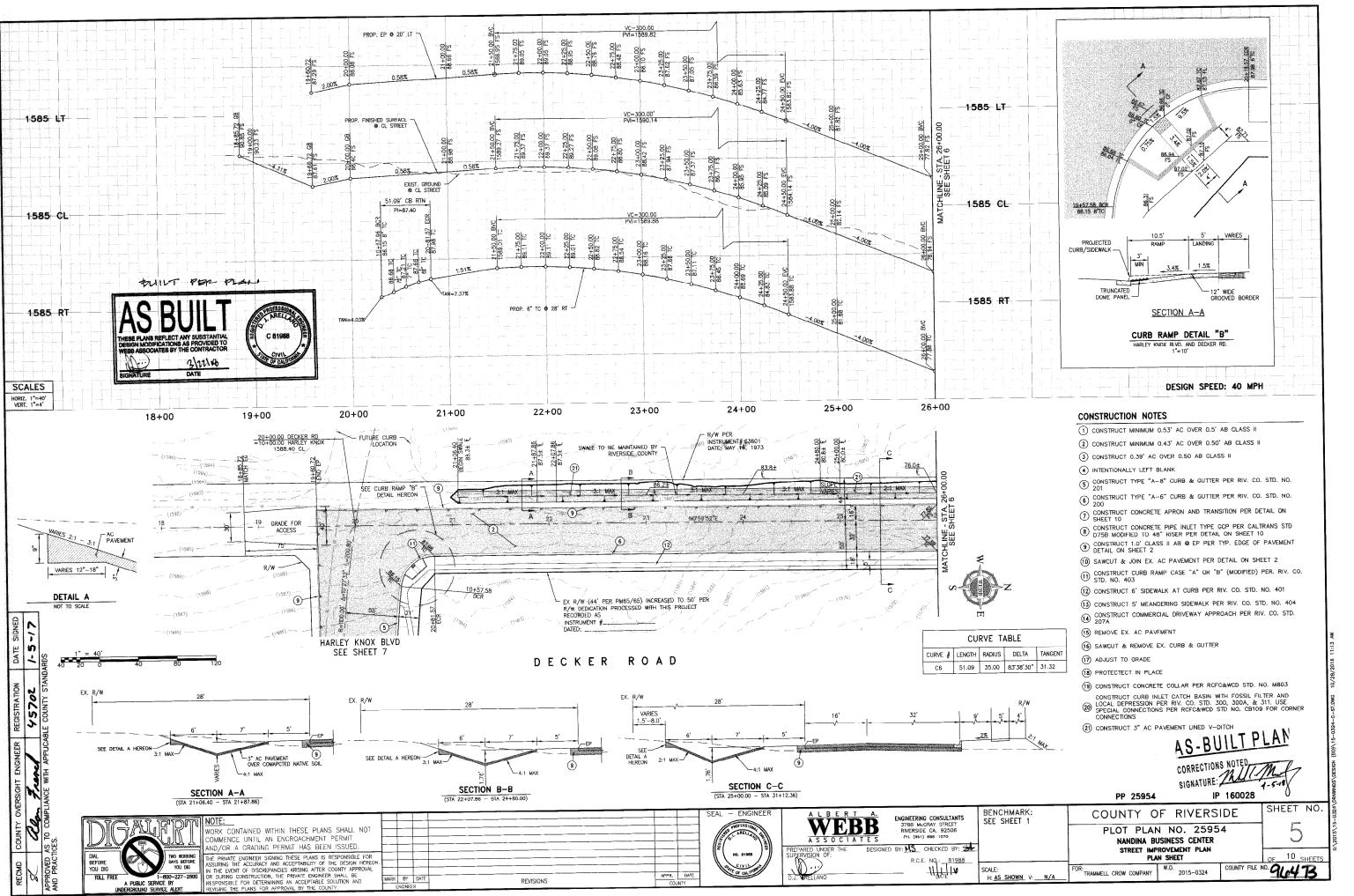

CASH-IN-LIEU NOTE FOR MEDIAN AN AMOUNT OF § 108,457.42 HAS REEN PLACED INTO ACCOUNT \sharp 2000–3130100000–230106 FOR THE FUTURE CONSTRUCTION OF MEDIAN LOCATED ON HARLEY KNOX BLVD, WHICH IS NOT FEASIBLE TO BUILD AT THIS TIME. RECEIPT NO: 24087-12 , DATE: 1-4-17

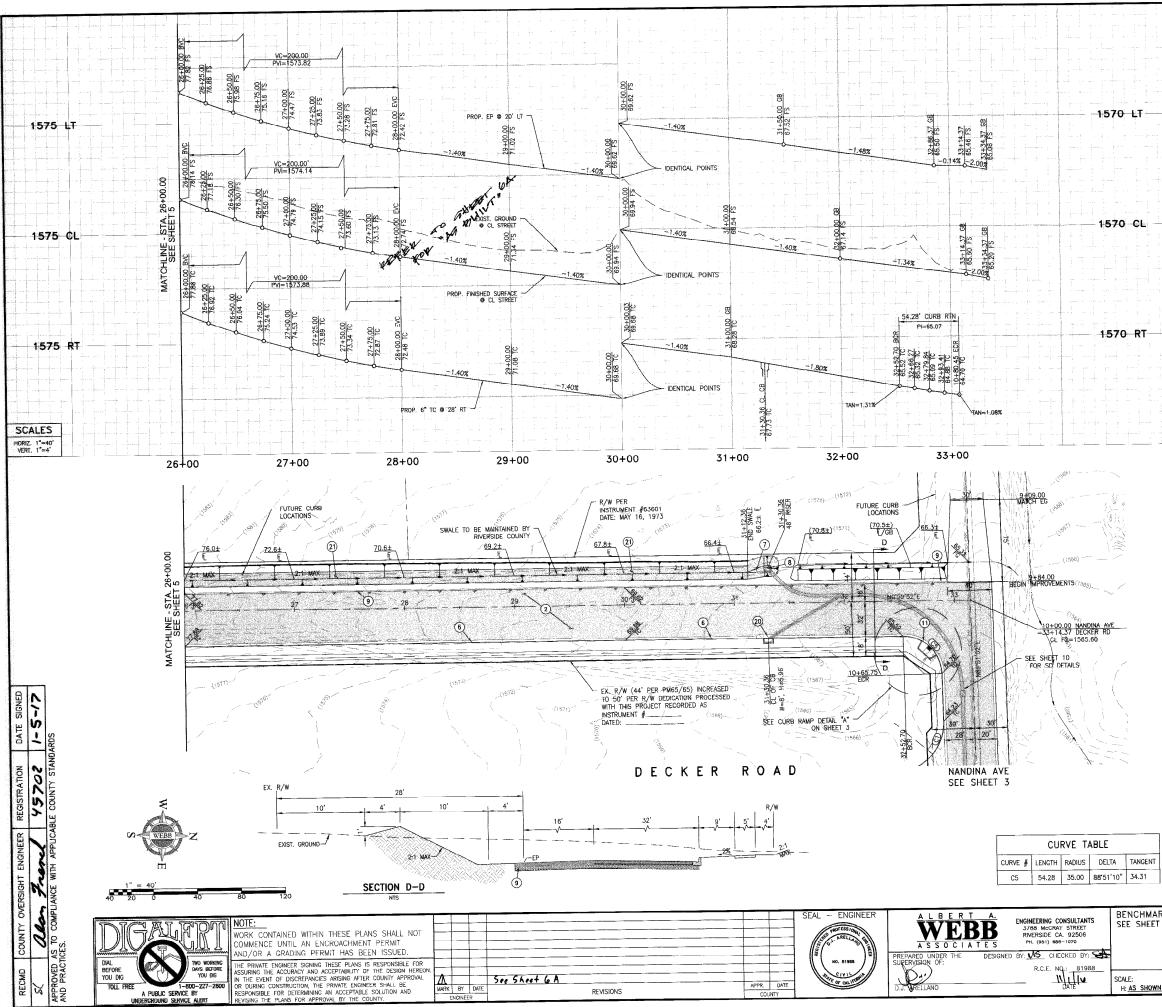

CONSTRUCTION	NOTES AND C	JUANTI	TY ESTIMATE*			50
i i i			(86,970 SF)	3,320	TONS	
ONSTRUCT MINIMUM 0.53' AC 0				1,610	CY TONS	
ONSTRUCT MINIMUM 0.43' AC O			(57,850 SF)	1.070	CY	ÿ
ONSTRUCT MINIMUM 0.39' AC O	VER 0.50' AB CLASS II		(59,060 SF)	1,660	CY	
EFT INTEIONALLY BLANK				<u> </u>		
CONSTRUCT TYPE "A-8" CURB &	GUTTER PER RIV. CO.	. STD. NO.	. 201	1,300	UF	18 11
CONSTRUCT TYPE "A-6" CURB &	GUTTER PER RIV. CO.	. STD. NO.	. 200	3,760	LF	· · · ·
CONSTRUCT CONCRETE APRON A				330	SF	
CONSTRUCT CONCRETE PIPE INLE 18" RISER PER DETAIL ON SHEE		IRANS STD	075B MODIFIED TO	1	EA	
CONSTRUCT 1.0' CLASS II AB @		F PAVEMEN	NT DETAIL ON SHEET 2	80	СҮ	
CAWCUT & JOIN EX. AC PAVEMEN	NT PER DETAIL ON SHE	EET 2		450	ហ	
CONSTRUCT CURB RAMP CASE "	A" OR "B" (MODIFIED)	PER. RIV.	CO. STD. NO. 403	3	EA	
CONSTRUCT 6' SIDEWALK AT CUR	B PER RIV. CO. STD.	NO. 401		132,000	SF	
CONSTRUCT 5' MEANDERING SIDE	WALK PER RIV. CO. ST	FD. NO. 40	04	27,500	SF	
CONSTRUCT COMMERCIAL DRIVEW				5 6,000	EA SF	
REMOVE EX. AC PAVEMENT				50	SY	
SAWCUT & REMOVE EX. CURB &	GUTTER			160	LF]
ADJUST TO GRADE				1	EA]
PROTECTECT IN PLACE				1	EA	
CONSTRUCT CONCRETE COLLAR F				1	EA]
CONSTRUCT CURB INLET CATCH PER RIV. CO. STD. 300, 300A, 4 STD NO. CB109 FOR CORNER C	& 311. USE SPECIAL C	TER AND	LOCAL DEPRESSION NS PER RCFC&WCD	3	EA	
CONSTRUCT 3" AC PAVEMENT LI			(12,125 SF)	220 110	TONS	
NSTALL 18" RCP STORM DRAIN				65	LF]
NSTALL 30" RCP STORM DRAIN	(D-LOAD PER PLAN)			1,500	UF]
NSTALL 36" RCP STORM DRAIN	(D-LOAD PER PLAN)			15	LF	
CONSTRUCT MANHOLE NO. 4 PE	R RCFC&WCD STD. NO.	. MH254		1	EA	
CONSTRUCT MANHOLE NO. 1 PE	R RCFC&WCD STD. NO.	. MH251		4	EA	1
Demolish exisitng catch basin				1	EA	
IE QUANTITY ESTIMATE SHOWN HERE OND AMOUNT AND/OR FEES AND IS	NOT TO BE USED FOR I	BID PURPOS		NG		NO NOTED AL
STING PAVEMENT FL FLOW FS FINISH GB GRAD	LINE H SURFACE E BREAK	NOTE:	FOT IC DOUDER	. d	BU	11- An
GB GRADI HP HIGH INV INVER	E BREAK POINT	THIS PROJI BE INSPEC DEPARTMEN	IECT IS BONDED AND WI TED BY COUNTY PERMIT	AD	مر سر ا	NS NOTED MA
LS LANDS LP LOW	SCAPE AREA L	JERNARIMEN		CORR	ection	1.5-18
MAX MAXIN MIN MINIM	AUM IUM 📷	SHEET	INDEX	eiGi	NATURI	ci+ 4
PL PROP RL RIDGE	ERTY LINE	SHEET 1	TITLE SHEET			
R/W RIGHT SD STORI STA STATI	OF WAY M DRAIN	SHEET 2 SHEET 3	4 PLAN AND PRO	NS & DRIV FILE - NA	(EWAY D	IETAILS AVENUE
TC TOP	OF CURB	SHEET 5- SHEET 7-	-6 PLAN AND PRO -8 PLAN AND PRO)FILE HØ	ARLEY K	NOX BLVD
TWR TOP TYP TYPIC		SHEET 9				
		25954		P 1600	in the second	<u></u>
BENCHMARK: SEE SHEET 1	COUNT	TY O	F RIVERS	IDE	T	SHEET NO.
SEE SHEET 1	PLOT	PLAN	N NO. 2595	4		1
	NAN	IDINA BL	USINESS CENTER			Contraction of the second
	STR		ROVEMENT PLAN LE SHEET		807	OF 10 SHEETS
scale: H: AS_SHOWN_V:N/A	FOR: TRAMMELL CROW C		w.o. 2015-0324	COUNTY	FILE NO	9643
		ايسبيب ا	L	d		



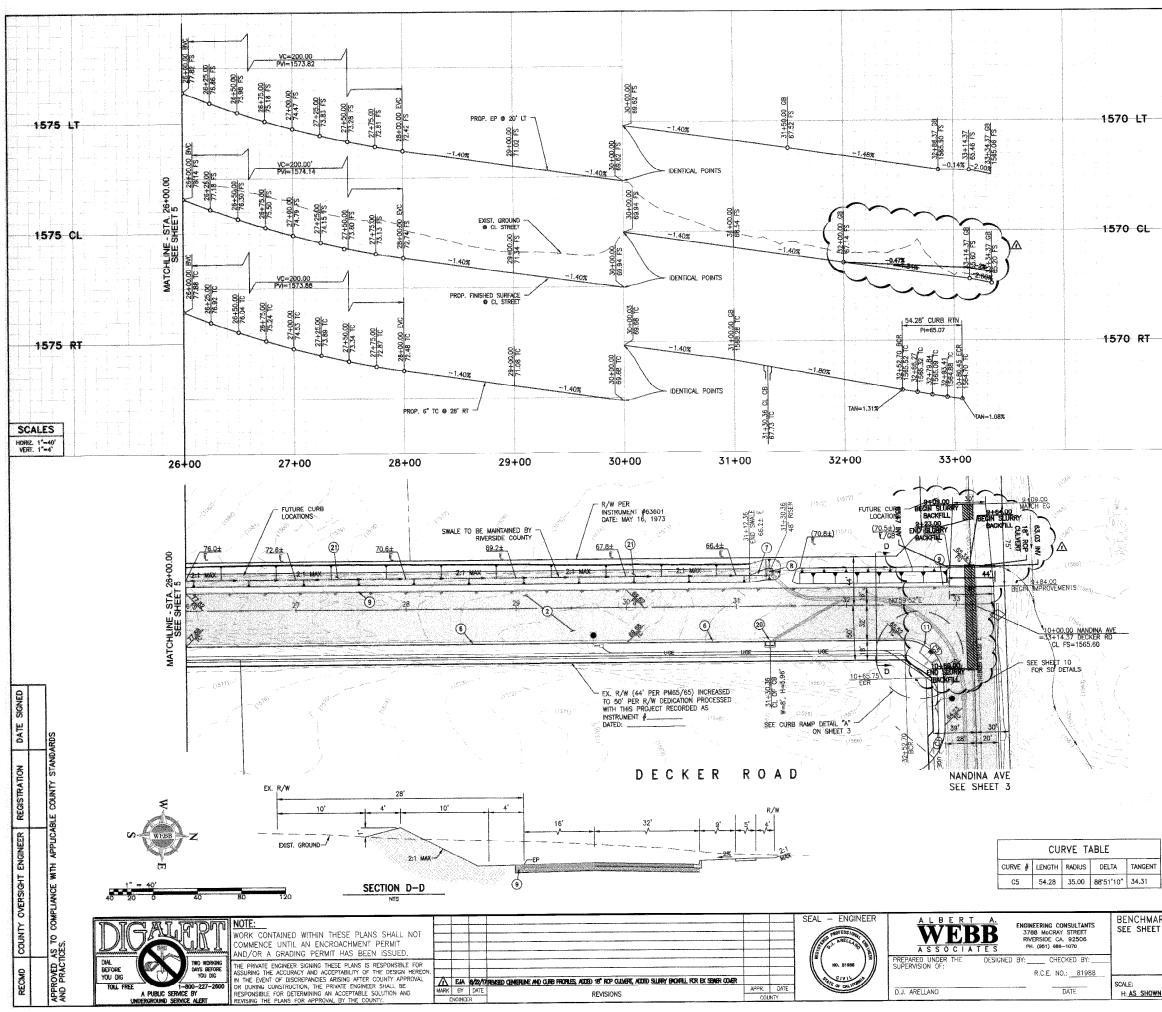
.

1535 LT 1535 CL 1535 RT 1535 RT DESIGN SPEED: 40 MPH						
1535 CL				a a sura		
1535 CL				and the second		
1535 CL						
1535 CL						
1535 CL						eres e e 🕂
1535 CL						
1535 CL						
1535 CL		1 A 1				i ha i i i
1535 CL					· · · · · · · · · · · ·	
1 535 RT	-1535 LT			· · · · · · · · · · · · · · · · · · ·		·
1 535 RT						en ann a chuire
1 535 RT				·		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
1 535 RT		1997 - 19		t i kanan 🕴 🔭 🗖		in a second s
1 535 RT						
1 535 RT						
1 535 RT						
1 535 RT		1.1.1				
1 535 RT						
1 535 RT						
1535 RT	1535 CL -					
1535 RT						
1535 RT		-				
1535 RT						
1535 RT						
1535 RT					in the second second	
1535 RT			· · · · · · ·			
1535 RT						
	1				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	1575 DT					
	1333 KI					
				·	1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
						1.24
DESIGN SPEED: 40 MPH						
DESIGN SPEED: 40 MPH						14 p 4 m
DESIGN SPEED: 40 MPH						the states
DESIGN SPEED: 40 MPH				i i sha a	· · · · · · · · · · · · · · · · · · ·	
DESIGN SPEED: 40 MPH						1
			DE	SIGN SPEED:	40 MPH	
	CONSTRUCTION NO	TES				
CONSTRUCTION NOTES						
CONSTRUCTION NOTES	(1) CONSTRUCT MINIMUM	1 0.53' AC (OVER 0.5 AB 0	LASS II		
ONSTRUCTION NOTES	2 CONSTRUCT MINIMUM	1 0.43' AC (OVER 0.50' AB	CLASS II		
	(3) CONSTRUCT 0.39' A	C OVER 0.5) AB CLASS II			
CONSTRUCT MINIMUM 0.53' AC OVER 0.5' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II	-					
CONSTRUCT MINIMUM 0.53' AC OVER 0.5' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT 0.39' AC OVER 0.50 AB CLASS II	CONSTRUCT TYPE "/		& GUTTER PER	RIV. CO. STD. N	0.	
CONSTRUCT MINIMUM 0.53' AC OVER 0.5' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II SONSTRUCT 0.39' AC OVER 0.50 AB CLASS II INTENTIONALLY LEFT BLANK CONSTRUCT TYPE "A-8" CURB & GUTTER PER RIV. CO. STD. NO.		4-6" CURB	& GUTTER PER	RIV. CO. STD. N	0.	
 CONSTRUCT MINIMUM 0.53' AC OVER 0.5' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT 0.39' AC OVER 0.50 AB CLASS II INTENTIONALLY LEFT BLANK CONSTRUCT TYPE "A-8" CURB & GUTTER PER RIV. CO. STD. NO. 201 		TE APRON	AND TRANSITIO	N PER DETAIL ON		
 CONSTRUCT MINIMUM 0.53' AC OVER 0.5' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT 0.39' AC OVER 0.50 AB CLASS II INTENTIONALLY LEFT BLANK CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 201 CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 200 	D CONSTRUCT CONCRE					

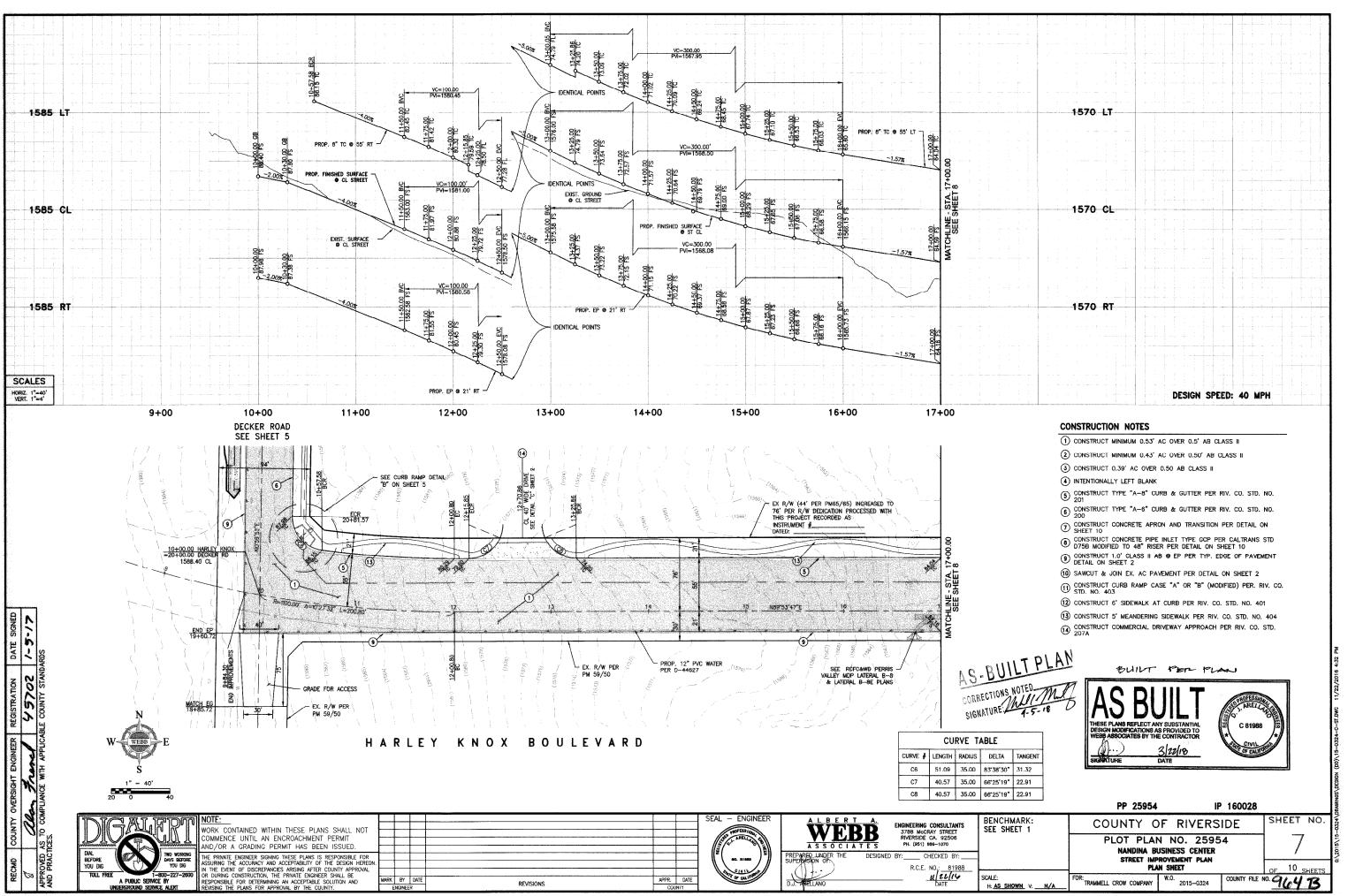

 CONSTRUCT CONCRETE PIPE INLET TYPE GCP PER CALTRANS STD D75B MODIFIED TO 48" RISER PER DETAIL ON SHEET 10 CONSTRUCT 1.0' CLASS II AB @ EP PER TYP. EDGE OF PAVEMENT
 DETAIL ON SHEET 2

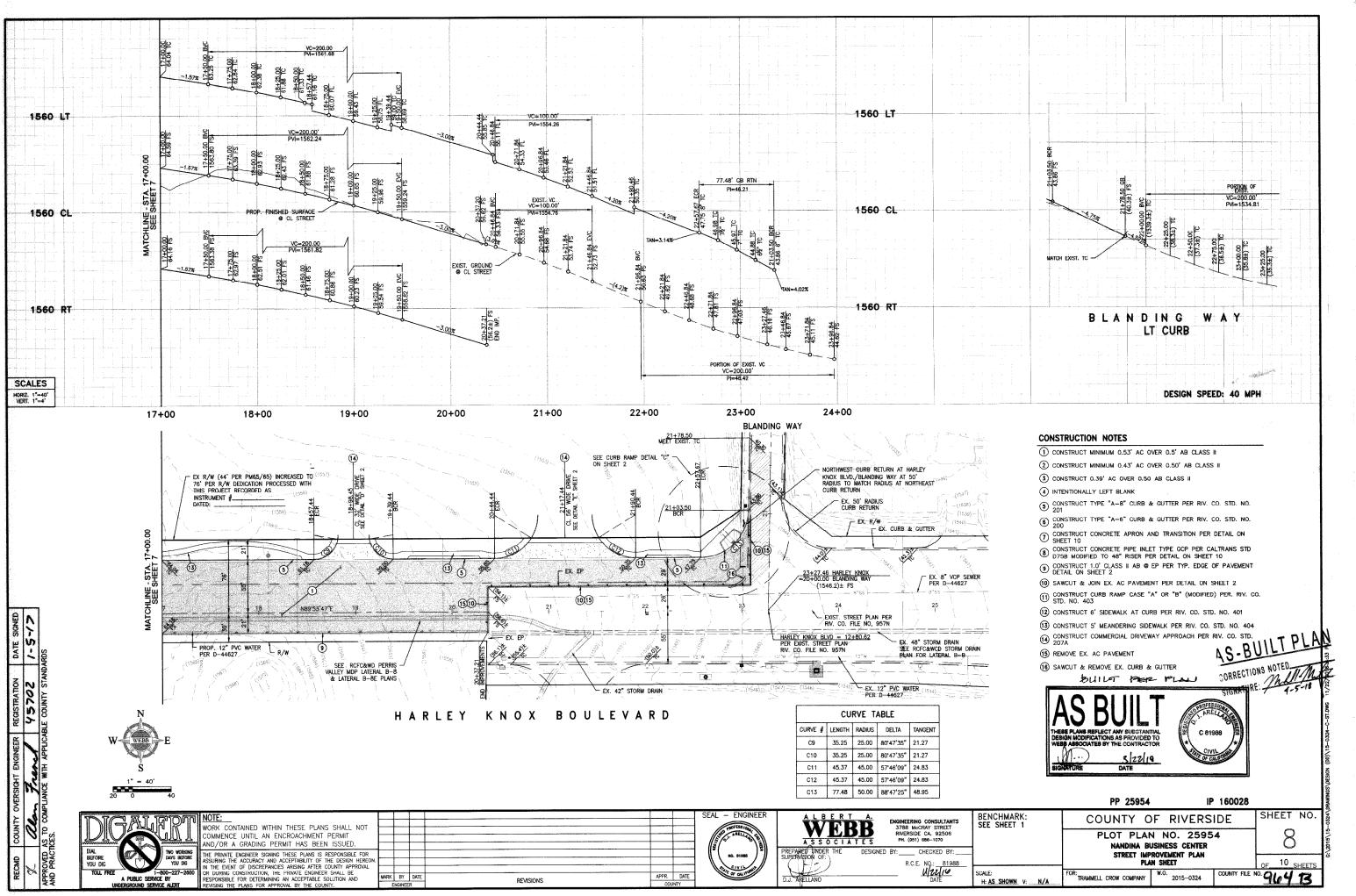

- (1) SAWCUT & JOIN EX. AC PAVEMENT PER DETAIL ON SHEET 2
- (1) CONSTRUCT CURB RAMP CASE "A" OR "B" (MODIFIED) PER. RIV. CO. STD. NO. 403
- (12) CONSTRUCT 6' SIDEWALK AT CURB PER RIV. CO. STD. NO. 40'
- (13) CONSTRUCT 5' MEANDERING SIDEWALK PER RIV. CO. STD. NO. 404
- 0 construct commercial driveway approach per Riv. co. std. 0 207A
- (15) REMOVE EX. AC PAVEMENT
- (16) SAWCUT & REMOVE EX. CURB & GUTTER
- (17) ADJUST TO GRADE
- (18) PROTECTECT IN PLACE

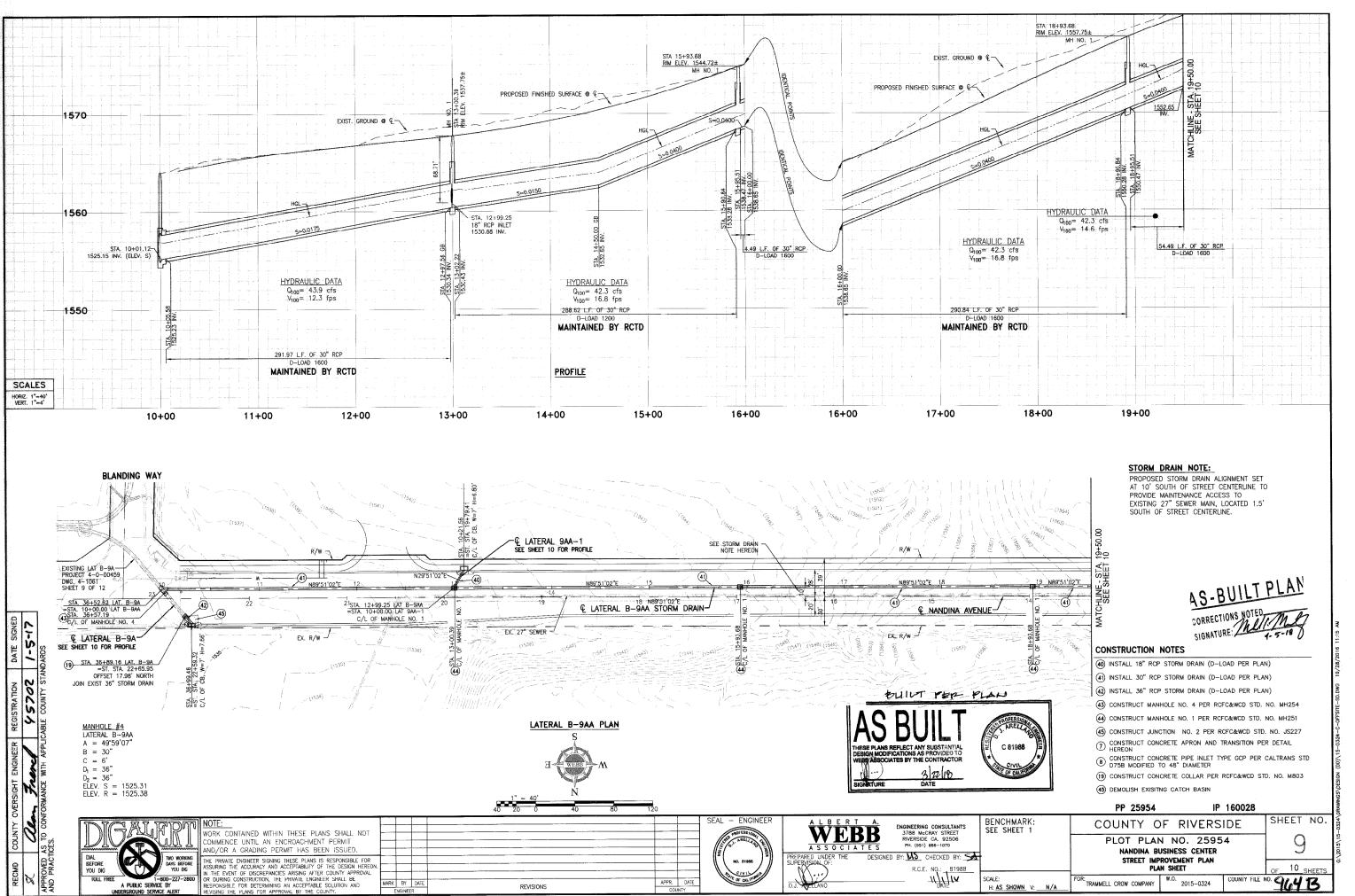
(19) CONSTRUCT CONCRETE COLLAR PER RCFC&WCD STD. NO. M803 CONSTRUCT CURB INLET CATCH BASIN WITH FOSSIL FILTER AND LOCAL DEPRESSION PER RIV. CO. STD. 300, 300A, & 311. USE SPECIAL CONNECTIONS PER RCFC&WCD STD NO. CB109 FOR CORNER CONNECTIONS

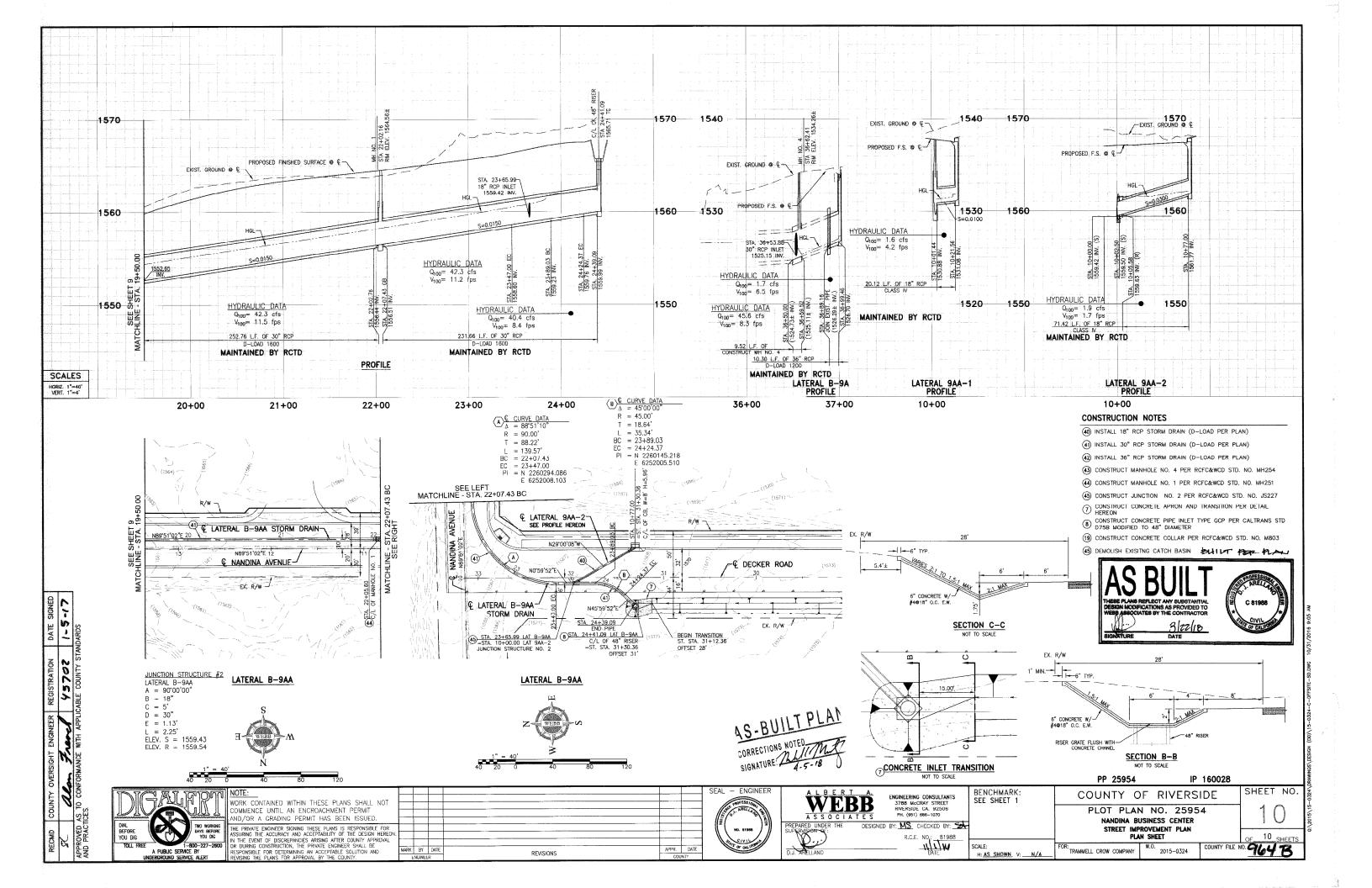

AS-BUI	LT_	PLA	N
CORRECTIONS N	OTED	A &	A
SIGNATURE:		5-18	X

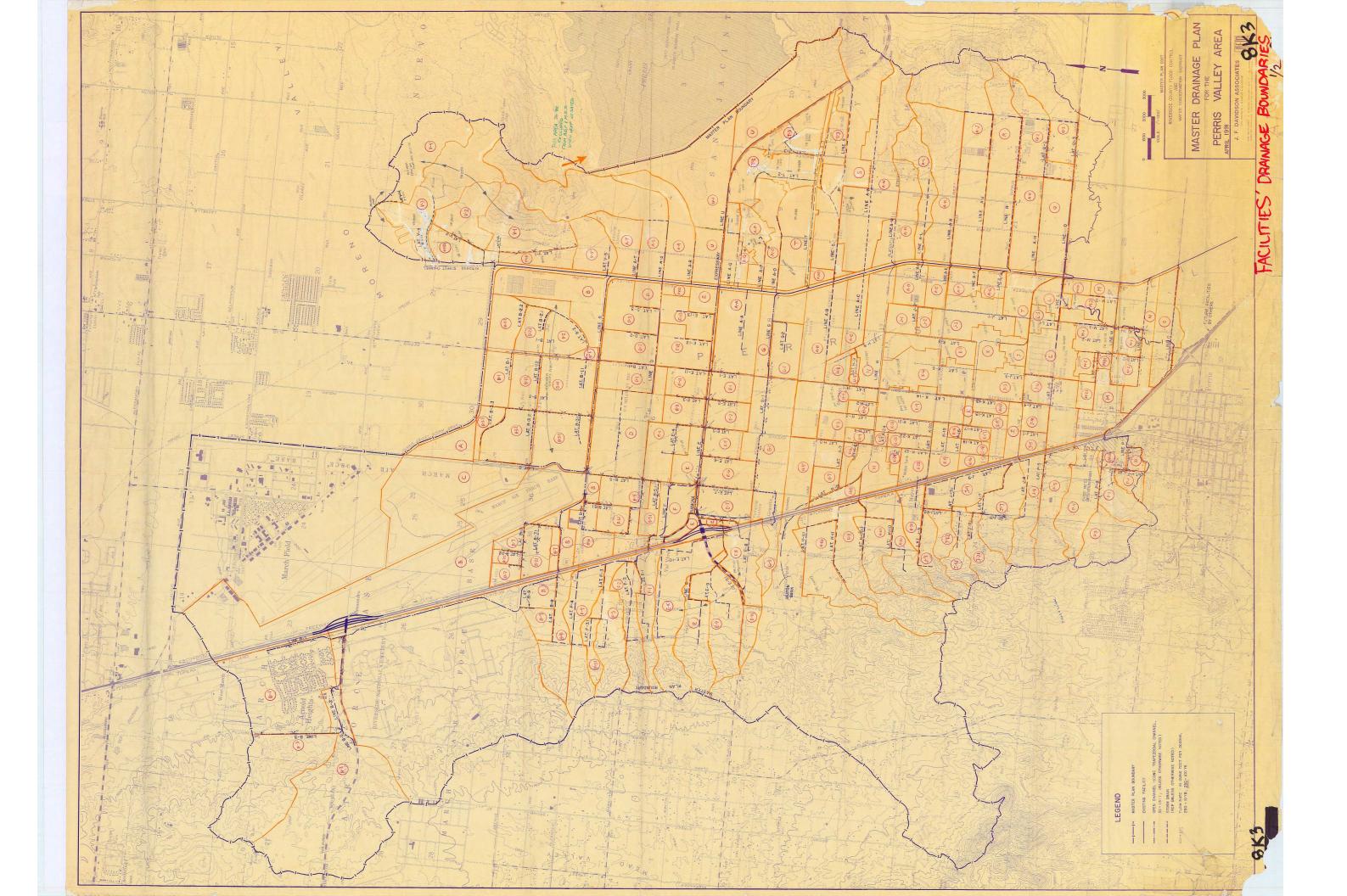
	PP 25954	IP	160028	U			
ARK: ET 1	COUNTY O	F RIVERS	IDE	SHEET NO.			
	NANDINA BU	PLOT PLAN NO. 25954 NANDINA BUSINESS CENTER					
	STREET IMP	OF 10 SHEETS					
	FOR: TRAMMELL CROW COMPANY	₩.0. 2015-0324	COUNTY FILE	[№] 964B			

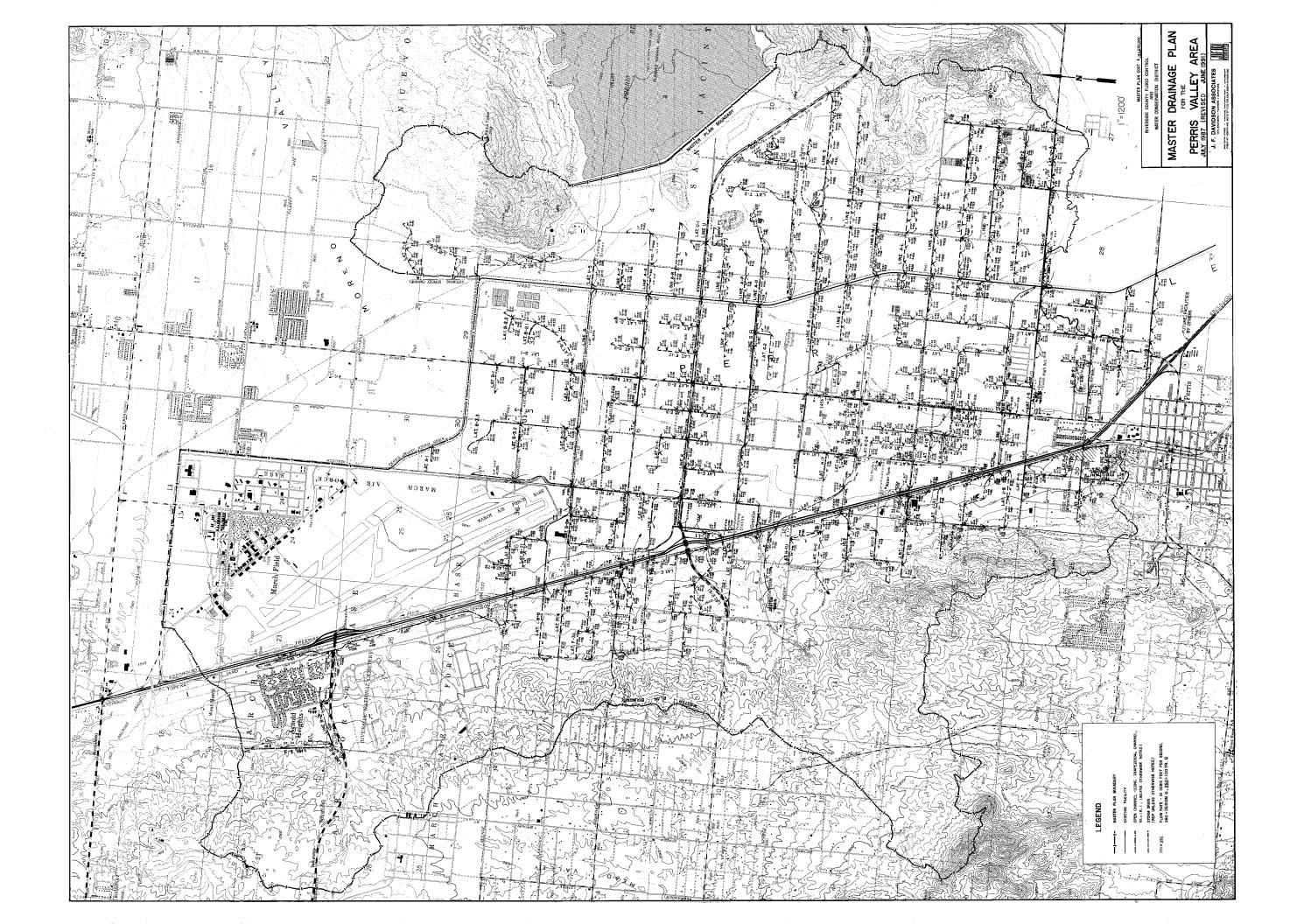


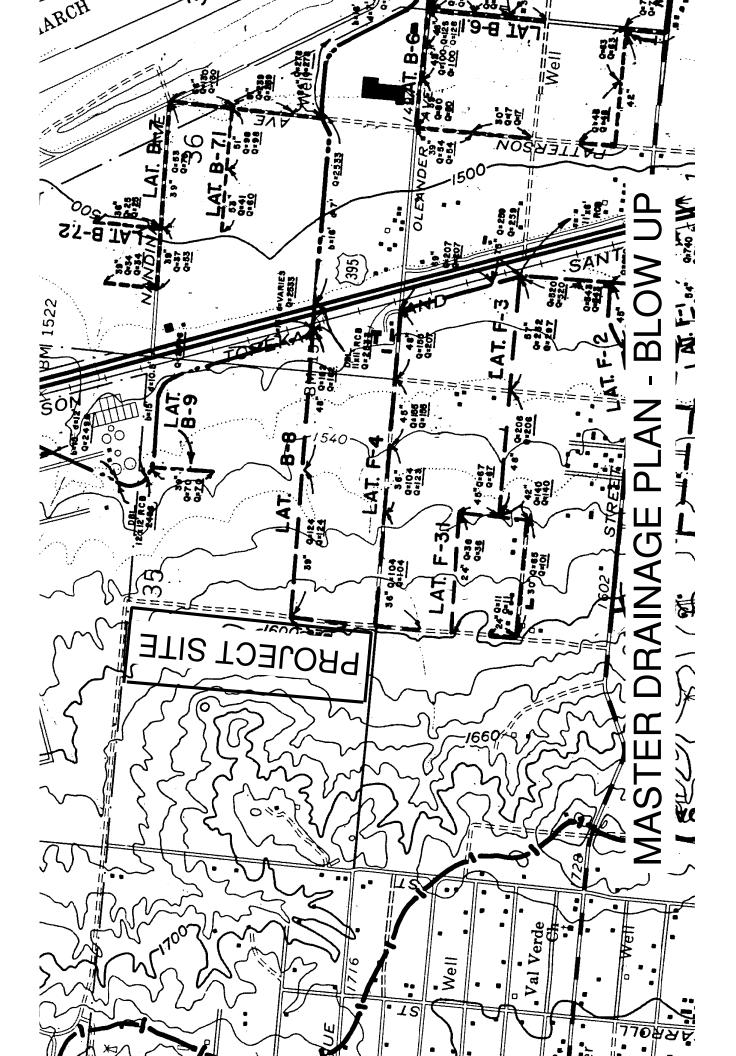


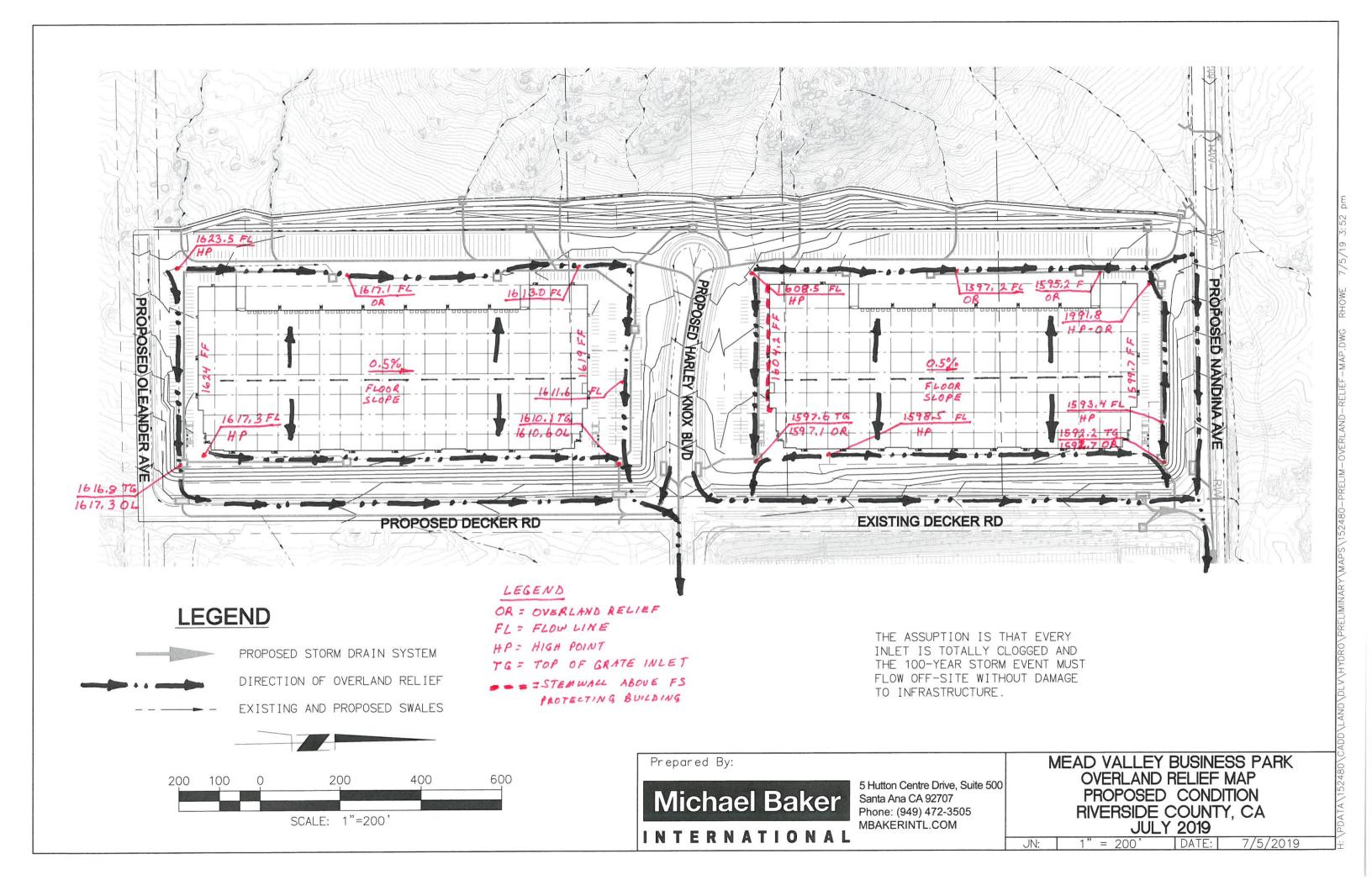

AVERATOR OF A WARE DA FAR PAR MUTT AND AND AND AND AND AND AND AND AND AND	· · · · · · ·		
ASS BUILT THESE PLANS REFLECT ANY SUBSTANTIAL DESIGN MODIFICATIONS AS PROVIDED TO BERNATIONE SAY THE CONTRACTOR <u>31721(78)</u> <u>3000000000000000000000000000000000000</u>			
ASS BUILT THESE PLANS REFLECT ANY SUBSTANTIAL DESIGN MODIFICATIONS AS PROVIDED TO BERNATIONE SAY THE CONTRACTOR <u>31721(78)</u> <u>3000000000000000000000000000000000000</u>			
ASS BUILT THESE PLANS REFLECT ANY SUBSTANTIAL DESIGN MODIFICATIONS AS PROVIDED TO BERNATIONE SAY THE CONTRACTOR <u>31721(78)</u> <u>3000000000000000000000000000000000000</u>			
ASS BUILT THESE PLANS REFLECT ANY SUBSTANTIAL DESIGN MODIFICATIONS AS PROVIDED TO BERNATIONE SAY THE CONTRACTOR <u>31721(78)</u> <u>3000000000000000000000000000000000000</u>			
ASS BUILT THESE PLANS REFLECT ANY SUBSTANTIAL DESIGN MODIFICATIONS AS PROVIDED TO BERNATIONE SAY THE CONTRACTOR <u>31721(78)</u> <u>3000000000000000000000000000000000000</u>			
ASS BUILT THESE PLANS REFLECT ANY SUBSTANTIAL DESIGN MODIFICATIONS AS PROVIDED TO DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH			
ASS BUILT THESE PLANS REFLECT ANY SUBSTANTIAL DESIGN MODIFICATIONS AS PROVIDED TO SIDNATORE DATE DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH	4 m 1 m		
ASS BUILT THESE PLANS REFLECT ANY SUBSTANTIAL DESIGN MODIFICATIONS AS PROVIDED TO SIDNATORE DATE DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH	-		
ASS BUILT THESE PLANS REFLECT ANY SUBSTANTIAL DESIGN MODIFICATIONS AS PROVIDED TO SIDATORE DATE DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH			
ASS BUILT THESE PLANS REFLECT ANY SUBSTANTIAL DESIGN MODIFICATIONS AS PROVIDED TO SIDATORE DATE DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH			
ASS BUILT THESE PLANS REFLECT ANY SUBSTANTIAL DESIGN MODIFICATIONS AS PROVIDED TO SIDNATORE DATE DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH			
ASS BUILT THESE PLANS REFLECT ANY SUBSTANTIAL DESIGN MODIFICATIONS AS PROVIDED TO DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH			
ASS BUILT THESE PLANS REFLECT ANY SUBSTANTIAL DESIGN MODIFICATIONS AS PROVIDED TO DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH		SUBSECTOR OF SUBSECT LA FOR AS- BUILT	
Design Moderication as Provided to Contractors 3/22/(6) SignATURE SignATURE DESIGN SPEED: 40 MPH OCONSTRUCT INIMUM 0.53' AC OVER 0.5' AB CLASS II © CONSTRUCT MINIMUM 0.53' AC OVER 0.50' AB CLASS II © CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II © CONSTRUCT IMPE #A OVER 0.50' AB CLASS II © CONSTRUCT IMPE #A OVER 0.50' AB CLASS II © CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 201 © CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 201 © CONSTRUCT CONCRETE PIPE INLET TYPE CCP PER CALTRANS STD D759 MODIFIED T0 48" RISER PER DETAIL ON SHEET 10 © CONSTRUCT CONCRETE PIPE INLET TYPE CCP PER CALTRANS STD D759 MODIFIED 70 48" RISER PER DETAIL ON SHEET 10 © CONSTRUCT CORETE APAPC PARE TIPE DETAIL ON SHEET 10 © CONSTRUCT CURB RAMP CASE "A" OR "B" (MODIFIED) PER RIV. CO. STD. NO. 403 © CONSTRUCT CURB RAMP CASE "A" OR "B" (MODIFIED) PER RIV. CO. STD. NO. 404 © CO			
Design Moderication as Provided to Contractors 3/22/(6) SignATURE SignATURE DESIGN SPEED: 40 MPH OCONSTRUCT INIMUM 0.53' AC OVER 0.5' AB CLASS II © CONSTRUCT MINIMUM 0.53' AC OVER 0.50' AB CLASS II © CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II © CONSTRUCT IMPE #A OVER 0.50' AB CLASS II © CONSTRUCT IMPE #A OVER 0.50' AB CLASS II © CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 201 © CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 201 © CONSTRUCT CONCRETE PIPE INLET TYPE CCP PER CALTRANS STD D759 MODIFIED T0 48" RISER PER DETAIL ON SHEET 10 © CONSTRUCT CONCRETE PIPE INLET TYPE CCP PER CALTRANS STD D759 MODIFIED 70 48" RISER PER DETAIL ON SHEET 10 © CONSTRUCT CORETE APAPC PARE TIPE DETAIL ON SHEET 10 © CONSTRUCT CURB RAMP CASE "A" OR "B" (MODIFIED) PER RIV. CO. STD. NO. 403 © CONSTRUCT CURB RAMP CASE "A" OR "B" (MODIFIED) PER RIV. CO. STD. NO. 404 © CO			
DESIGN MACOFICATION & AS PROVIDED TO SIGNATORE DATE DATE DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH CONSTRUCT MINIMUM 0.53' AC OVER 0.5' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT ID.39' AC OVER 0.50' AB CLASS II CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 201 CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 201 CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 200 CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE PIPE INLET TYPE COP PER CALTRANS STD D758 MODIFIED 10 4% RISER PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 SAWCUT & JOIN EX. AC PAVEMENT PER DETAIL ON SHEET 2 SAWCUT & JOIN EX. AC PAVEMENT PER DETAIL ON SHEET 2 CONSTRUCT CURB RAMP CASE "A" OR "B" (MODIFIED) PER. RIV. CO. STD. NO. 403 CONSTRUCT COMBERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. NO. 401 CONSTRUCT COMBERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. NO. 404 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. 30 REMOVE EX. AC PAVEMENT 31 REMOVE EX. AC PAVEMENT 32 ADJUST TO GRADE 32 CONSTRUCT CONCRETE COLLAR PER REFEC&WCD STD. NO. M803 CONSTRUCT CONCRETE	<u> </u>		
BIGWATURE DATE DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH ① CONSTRUCT MINIMUM 0.53' AC OVER 0.5' AB CLASS II ③ CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II ③ CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II ③ CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II ④ CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II ④ CONSTRUCT I.0' OVER 0.50 AB CLASS II ④ CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 200 ⑦ CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 200 ⑦ CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 200 ⑦ CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 200 ⑦ CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 ③ CONSTRUCT 1.0' CLASS II AB ⊕ EP PER TYP. EDGE OF PAVEMENT DETAIL ON SHEET 10 ③ CONSTRUCT CONCRETE PER INLET TYPE COP PER CALTRANS STD DT56 MODIFIED TO 46% RISER PER DETAIL ON SHEET 12 ④ CONSTRUCT COLCAS II AB ⊕ EP PER TYP. EDGE OF PAVEMENT DETAIL ON SHEET 12 ④ CONSTRUCT CONCRETE APRON CASE "A" OR "B" (MODIFIED) PER. RIV. CO. STD. NO. 403 ④ SAWCUT & JOIN EX. AC PAVEMENT PER RIV. CO. STD. NO. 401 ⑤ CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. 207A ④ CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. 207A ⑤ REMOVE EX. AC PAVEMENT ④ SAWCUT & REMOVE EX. CURD		DESIGN MODIFICATIONS AS PROVIDED TO	
BOONATURE DESIGN SPEED: 40 MPH DESIGN SPEED: 40 MPH ONSTRUCT MINIMUM 0.53' AC OVER 0.5' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.5' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT TYPE "A-8" CURB & GUTTER PER RIV. CO. STD. NO. CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE APRON AND TRANSITION PER CALTRANS STD D758 MODIFED TO 48" RISER PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE APRON AND TRANSITION PER CALTRANS STD D758 MODIFED TO 48" RISER PER DETAIL ON SHEET 12 CONSTRUCT CONCRETE APRON AND TRANSITION PER CALTRANS STD D758 MODIFED TO 48" RISER PER DETAIL ON SHEET 12 CONSTRUCT CURB RAMP CASE "A" OR "B" (MODIFIED) PER. RIV. CO. STD. NO. 403 CONSTRUCT CONGRETE APRONE CASE "A" OR "B" (MODIFIED) PER. RIV. CO. STD. NO. 403 CONSTRUCT COMMERCIAL DRIVEWALK PER RIV. CO. STD. NO. 404 CONSTRUCT COMMERCIAL DRIVEWALK PER RIV. CO. STD. NO. 404 CONSTRUCT COMMERCIAL DRIVEWALK PER RIV. CO. STD. NO. 404 CONSTRUCT COMMERCIAL DRIVEWALK PER RIV. CO. STD. NO. 404 CONSTRUCT CONGETE COLLAR PER RCFC&WCD STD. NO. M803 CONSTRUCT CONCRETE FOR COLLAR PER RCFC&WCD STD. NO. M803 CONSTRUCT CONCRETE COLLAR PER RCFC&WCD STD. NO. M803 CONSTRUCT CONCRETE COLLAR PER RCFC&WCD STD. NO. M803 CONSTRUCT CONCRETE COLLAR PER RCFC&WCD STD. NO. M803 CONSTR			
CONSTRUCTION NOTES 1 CONSTRUCT MINIMUM 0.53' AC OVER 0.5' AB CLASS II 2 CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II 3 CONSTRUCT 0.39' AC OVER 0.50' AB CLASS II 3 CONSTRUCT 10.39' AC OVER 0.50' AB CLASS II 4 INTENTIONALLY LEFT BLANK 5 CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 201 6 CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 200 7 CONSTRUCT CONCRETE PIPE INLET TYPE GCP PER CALTRANS STD 200 8 CONSTRUCT CONCRETE PIPE INLET TYPE GCP PER CALTRANS STD 2056 MODIFIED TO 48" RISER PER DETAIL ON SHEET 10 9 CONSTRUCT CLASS II AB @ EP PER TYP. EDGE OF PAVEMENT DETAIL ON SHEET 2 10 CONSTRUCT CURB RAMP CASE "A" OR "B" (MODIFIED) PER. RIV. CO. STD. NO. 403 10 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. NO. 404 11 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. NO. 404 12 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. 207A 13 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. 207A 14 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. 207A <td></td> <td></td> <td></td>			
CONSTRUCTION NOTES 1 CONSTRUCT MINIMUM 0.53' AC OVER 0.5' AB CLASS II 2 CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II 3 CONSTRUCT 0.39' AC OVER 0.50' AB CLASS II 3 CONSTRUCT 10.39' AC OVER 0.50' AB CLASS II 4 INTENTIONALLY LEFT BLANK 5 CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 201 6 CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 200 7 CONSTRUCT CONCRETE PIPE INLET TYPE GCP PER CALTRANS STD 200 8 CONSTRUCT CONCRETE PIPE INLET TYPE GCP PER CALTRANS STD 2056 MODIFIED TO 48" RISER PER DETAIL ON SHEET 10 9 CONSTRUCT CLASS II AB @ EP PER TYP. EDGE OF PAVEMENT DETAIL ON SHEET 2 10 CONSTRUCT CURB RAMP CASE "A" OR "B" (MODIFIED) PER. RIV. CO. STD. NO. 403 10 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. NO. 404 11 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. NO. 404 12 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. 207A 13 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. 207A 14 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. 207A <td></td> <td></td> <td></td>			
 CONSTRUCT MINIMUM 0.53' AC OVER 0.5' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT 0.39' AC OVER 0.50 AB CLASS II CONSTRUCT 1.0:9' AC OVER 0.50 AB CLASS II INTENTIONALLY LEFT BLANK CONSTRUCT TYPE "A-8" CURB & GUTTER PER RIV. CO. STD. NO. 201 CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE PIPE INLET TYPE GCP PER CALTRANS STD D75B MODIFIED TO 48" RISER PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE PIPE INLET TYPE GCP PER CALTRANS STD D75B MODIFIED TO 48" RISER PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE 2 CONSTRUCT CONCRETE 2 CONSTRUCT CONB RAMP CASE "A" OR "B" (MODIFIED) PER. RIV. CO. STD. NO. 403 CONSTRUCT COMBERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. NO. 404 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. 207A REMOVE EX. AC PAVEMENT SAWCUT & REMOVE EX. CURB & GUTTER ADJUST TO GRADE POTECTECT IN PLACE CONSTRUCT CONCRETE COLLAR PER RCFC&WCD STD. NO. M803 CONSTRUCT CONRECTE COLLAR PER RCFC&WCD STD. NO. 404 CONSTRUCT CONCRETE COLLAR PER RCFC&WCD STD. NO. M803 CONSTRUCT CONRECTE COLLAR PER RCFC&WCD STD. NO. 404 		DESIGN SPEED: 40 MPH	<u>}</u>
	(1) (2) (3)	CONSTRUCT MINIMUM 0.53' AC OVER 0.5' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT 0.39' AC OVER 0.50 AB CLASS II INTENTIONALLY LEFT BLANK	
		CONSTRUCT MINIMUM 0.53' AC OVER 0.5' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II INTENTIONALLY LEFT BLANK CONSTRUCT TYPE "A-8" CURB & GUTTER PER RIV. CO. STD. NO. 201 CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 200 CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE PIPE INLET TYPE GCP PER CALTRANS STD D758 MODIFIED TO 48" RISER PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE PIPE INLET TYPE BCP OF PAVEMENT DETAIL ON SHEET 2 CONSTRUCT CONCRETE PIPE INLET TYPE BCP OF PAVEMENT DETAIL ON SHEET 2 CONSTRUCT COLORERTE PIPE INLET TYPE REPORT DETAIL ON SHEET 10 CONSTRUCT COLORERTE PIPE INLET TYPE BCP OF PAVEMENT DETAIL ON SHEET 2 CONSTRUCT COLORERTE PIPE INLET TYPE REPORT DETAIL ON SHEET 10 CONSTRUCT COLORERTE ARM CASE "A" OR "B" (MODIFIED) PER. RIV. CO. STD. NO. 403 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. NO. 401 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. 207A D REMOVE EX. AC PAVEMENT SAWCUT & REMOVE EX. CURB & GUTTER ADJUST TO GRADE PROTECTECT IN PLACE CONSTRUCT CONCRETE COLLAR PER RCFC&WCD STD. NO. M803 CONSTRUCT CONCRETE COLLAR PER RCFC&WCD STD. NO. M803 CONSTRUCT CONNECTIONS PER RIV. CO. STD. NO. M803 CONSTRUCT CONNECTIONS PER RIV. CO. STD. NO. 401 LOCAL DEPRESSION PER RIV. CO. STD. NO. M803 CONSTRUCT CONNECTIONS PER RCFC&WCD STD. NO. M803 CONSTRUCT CONS PER RIV. CO. STD. NO. 60109 FOR CONNER CONNECTIONS	
AS-BUILT PLAN		CONSTRUCT MINIMUM 0.53' AC OVER 0.5' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II INTENTIONALLY LEFT BLANK CONSTRUCT TYPE "A-8" CURB & GUTTER PER RIV. CO. STD. NO. 201 CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 200 CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE PIPE INLET TYPE GCP PER CALTRANS STD D75B MODIFIED TO 48" RISER PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE PIPE INLET TYPE EDGE OF PAVEMENT DETAIL ON SHEET 2 SAWCUT & JOIN EX. AC PAVEMENT PER DETAIL ON SHEET 12 CONSTRUCT CURB RAMP CASE "A" OR "B" (MODIFIED) PER. RIV. CO. STD. NO. 403 CONSTRUCT 6' SIDEWALK AT CURB PER RIV. CO. STD. NO. 401 CONSTRUCT 5' MEANDERING SIDEWALK PER RIV. CO. STD. NO. 404 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. 207A REMOVE EX. AC PAVEMENT SAWCUT & REMOVE EX. CURB & GUTTER ADJUST TO GRADE PROTECTECT IN PLACE CONSTRUCT CONCRETE COLLAR PER REFC&WCD STD. NO. M803 CONSTRUCT CONCRETE COLLAR PER REFC&WCD STD. NO. M803 CONSTRUCT CURB INLET CATCH BASIN WITH FOSSIL FILTER AND LOCAL DEPRESSION PER RIV. CO. STD. NO. CB109 FOR CORNER CONSTRUCT 3" AC PAVEMENT LINED V-DITCH AS BUILT PLACE	
CORRECTIONS NOTED See SK 64	() () () () () () () () () () () () () (CONSTRUCT MINIMUM 0.53' AC OVER 0.5' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT D.39' AC OVER 0.50 AB CLASS II INTENTIONALLY LEFT BLANK CONSTRUCT TYPE "A-8" CURB & GUTTER PER RIV. CO. STD. NO. 200 CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE PIPE INLET TYPE GCP PER CALTRANS STD D75B MODIFIED TO 48" RISER PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE PIPE INLET TYPE GCP PER CALTRANS STD D75B MODIFIED TO 48" RISER PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE PIPE INLET TYPE GCP PER CALTRANS STD D75B MODIFIED TO 48" RISER PER DETAIL ON SHEET 12 CONSTRUCT CONCRETE PIPE INLET TYPE READED TYP. EDGE OF PAVEMENT DETAIL ON SHEET 2 CONSTRUCT COURB RAMP CASE "A" OR "B" (MODIFIED) PER. RIV. CO. STD. NO. 403 CONSTRUCT 6' SIDEWALK AT CURB PER RIV. CO. STD. NO. 401 CONSTRUCT 6' SIDEWALK AT CURB PER RIV. CO. STD. NO. 404 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. SAWCUT & REMOVE EX. CURB & GUTTER ADJUST TO GRADE PROTECTECT IN PLACE CONSTRUCT CONCRETE COLLAR PER RCFC&WCD STD. NO. M803 CONSTRUCT CURB INLET CATCH BASIN WITH FOSSIL FILTER AND LOCAL DEPRESSION PER RIV. CO. STD. 300, 300A, & 311, USE SPECIAL CONNECTIONS PER RIV. CO. STD. NO. CB109 FOR CORNER CONNECTIONS CONSTRUCT 3" AC PAVEMENT LINED V-DITCH CORRECTIONS NOTED SEE SA 6A CORRECTIONS NOTE	
CORRECTIONS NOTED See SA 64 SIGNATURE: MULL. M.J.		CONSTRUCT MINIMUM 0.53' AC OVER 0.5' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT 0.39' AC OVER 0.50 AB CLASS II INTENTIONALLY LEFT BLANK CONSTRUCT TYPE "A8" CURB & GUTTER PER RIV. CO. STD. NO. 201 CONSTRUCT TYPE "A6" CURB & GUTTER PER RIV. CO. STD. NO. 202 CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE PIPE INLET TYPE GCP PER CALTRANS STD D75B MODIFIED TO 48" RISER PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE PIPE INLET TYPE EDGE OF PAVEMENT DETAIL ON SHEET 2 SAWCUT & JOIN EX. AC PAVEMENT PER DETAIL ON SHEET 2 CONSTRUCT CURB RAMP CASE "A" OR "B" (MODIFIED) PER. RIV. CO. STD. NO. 403 CONSTRUCT 6' SIDEWALK AT CURB PER RIV. CO. STD. NO. 401 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. 207A REMOVE EX. AC PAVEMENT SAWCUT & REMOVE EX. CURB & GUTTER ADJUST TO GRADE PROTECTECT IN PLACE CONSTRUCT CONCRETE COLLAR PER RCFC&WCD STD. NO. M803 CONSTRUCT CURB INLET CATCH BASIN WITH FOSSIL FILTER AND LOCAL DEPRESSION PER RIV. CO. STD. NO. CB109 FOR CORNER CONNERCIONS CONSTRUCT 3" AC PAVEMENT LINED V-DITCH CORRECTIONS NOTED See SA 6A SIGNATURE:	
CORRECTIONS NOTED See SA 64 SIGNATURE: Multi-Multi-Super- PP 25954 IP 160028	() 3 4 5 7 9 9 10 11 12 6 6 10 10 10 10 10 10 10 10 10 10 10 10 10	CONSTRUCT MINIMUM 0.53' AC OVER 0.5' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT D.39' AC OVER 0.50 AB CLASS II INTENTIONALLY LEFT BLANK CONSTRUCT TYPE "A-8" CURB & GUTTER PER RIV. CO. STD. NO. 200 CONSTRUCT CONCRETE PARIA & GUTTER PER RIV. CO. STD. NO. 200 CONSTRUCT CONCRETE PIPE INLET TYPE GCP PER CALTRANS STD D758 MODIFIED TO 48" RISER PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE PIPE INLET TYPE GCP PER CALTRANS STD D758 MODIFIED TO 48" RISER PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE PIPE INLET TYPE EDGE OF PAVEMENT DETAIL ON SHEET 2 SAWCUT & JOIN EX. AC PAVEMENT PER DETAIL ON SHEET 12 CONSTRUCT CURB RAMP CASE "A" OR "B" (MODIFIED) PER. RIV. CO. STD. NO. 403 CONSTRUCT C' SIDEWALK AT CURB PER RIV. CO. STD. NO. 401 CONSTRUCT C' SIDEWALK AT CURB PER RIV. CO. STD. NO. 404 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. 207A REMOVE EX. AC PAVEMENT SAWCUT & REMOVE EX. CURB & GUTTER ADJUST TO GRADE PROTECTECT IN PLACE CONSTRUCT CONCRETE COLLAR PER RCFC&WCD STD. NO. M803 CONSTRUCT CURB INLET CATCH BASIN WITH FOSSIL FILTER AND LOCAL DEPRESSION PER RIV. CO. STD. 300, 300A, & 311. USE SPECIAL CONNECTIONS PER RCFC&WCD STD. NO. CB109 FOR CORNER CONNECTIONS CONSTRUCT 3" AC PAVEMENT LINED V-DITCH AS BEDILLT AFTER ADD LOCAL DEPRESSION PER RIV. CO. STD. NO. CB109 FOR CORNER CONNECTIONS CONSTRUCT 3" AC PAVEMENT LINED V-DITCH AS BEDILLT AFTER ADD LOCAL DEPRESSION PER RIV LINED V-DITCH AS BEDILLT AFTER ADD LOCAL DEPRESSION PER RIV LINED V-DITCH AS BEDILLT AFTER ADD LOCAL DEPRESSION PER RIV LINED V-DITCH AS BEDILLT AFTER ADD LOCAL DEPRESSION PER RIV LINED V-DITCH AS BEDILLT AFTER ADD LOCAL DEPRESSION PER RIV LINED V-DITCH AS BEDILLT AFTER ADD LOCAL DEPRESSION PER RIV LINED V-DITCH AS BEDILLT AFTER ADD LOCAL DEPRESSION PER RIV LINED V-DITCH AS BEDILLT AFTER ADD LOCAL DEPRESSION PER RIVE ADD ADD ASTRUCT 3" AC PAVEMENT LINED V-DITCH AS BEDILLT ADVENTIONS NOTED ASTRUCT AT A PAVEMENT LINED V-DITCH ASTRUCT AS A CARE ADVENTENT LINED V-DITCH ASTRUCT AND	0
PP 25954 IP 160028 RK: COUNTY OF RIVERSIDE SHEET NO.	() () () () () () () () () () () () () (CONSTRUCT MINIMUM 0.53' AC OVER 0.5' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT D.39' AC OVER 0.50 AB CLASS II CONSTRUCT 17PE "A8" CURB & GUTTER PER RIV. CO. STD. NO. CONSTRUCT TYPE "A6" CURB & GUTTER PER RIV. CO. STD. NO. CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE PIPE INLET TYPE GCP PER CALTRANS STD D758 MODIFIED TO 48" RISER PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE PIPE INLET TYPE EQCP PER CALTRANS STD D758 MODIFIED TO 48" RISER PER DETAIL ON SHEET 12 CONSTRUCT CONCRETE PIPE INLET TYPE GCP PER CALTRANS STD D758 MODIFIED TO 48" RISER PER DETAIL ON SHEET 12 CONSTRUCT CONCRETE PIPE INLET TYPE REPORT PER DETAIL ON SHEET 2 CONSTRUCT CURB RAMP CASE "A" OR "B" (MODIFIED) PER. RIV. CO. STD. NO. 403 CONSTRUCT 6' SIDEWALK AT CURB PER RIV. CO. STD. NO. 401 CONSTRUCT 6' SIDEWALK AT CURB PER RIV. CO. STD. NO. 404 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. CONSTRUCT 6' SIDEWALK AT CURB PER RIV. CO. STD. NO. 404 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. SAWCUT & REMOVE EX. CURD & GUTTER ADJUST TO GRADE PROTECTECT IN PLACE CONSTRUCT CONCRETE COLLAR PER RCFC&WCD STD. NO. M803 CONSTRUCT GURB INLET CATCH BASIN WITH FOSSIL FILTER AND LOCAL DEPRESSION PER RIV. CO. STD. 300, 300A, & 311. USE SPECIAL CONNECTIONS PER RCFC&WCD STD. NO. CB109 FOR CORNER CONNECTIONS CONSTRUCT 3" AC PAVEMENT LINED V-DITCH ASSEDIATE PER RCFC&WCD STD. NO. TED See GA GA SIGNATURE: PP 25954 PP 25954 PP 160028 SHEET N	0.
RK: COUNTY OF RIVERSIDE SHEET NO. PLOT PLAN NO. 25954	() (2) (3) (4) (5) (6) (7) (9) (9) (11) (12) (12) (12) (12) (12) (12) (12	CONSTRUCT MINIMUM 0.53' AC OVER 0.5' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT 0.39' AC OVER 0.50 AB CLASS II INTENTIONALLY LEFT BLANK CONSTRUCT TYPE "A-8" CURB & OUTTER PER RIV. CO. STD. NO. 200 CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 200 CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE PIPE INLET TYPE GCP PER CALTRANS STD D75B MODIFIED TO 48" RISER PER DETAIL ON SHEET 10 CONSTRUCT 10' CLASS II AB © EP PER TYP. EDGE OF PAVEMENT DETAIL ON SHEET 2 CONSTRUCT GURB RAMP CASE "A" OR "B" (MODIFIED) PER. RIV. CO. STD. NO. 403 CONSTRUCT S' MEANDERING SIDEWALK PER RIV. CO. STD. NO. 404 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. 207A CONSTRUCT CORRETE COLLAR PER REFORMENT PER DETAIL ON SHEET 2 CONSTRUCT CONCRETE COLLAR PER REFORMENT PER RIV. CO. STD. 207A REMOVE EX. AC PAVEMENT SAWCUT & REMOVE EX. CURB & GUTTER ADJUST TO GRADE PROTECTECT IN PLACE CONSTRUCT CORRETE COLLAR PER REFORMED STD. NO. M803 CONSTRUCT CONCRETE COLLAR PER REFORMED STD. NO. GD109 FOR CORNER CONNECTIONS CONSTRUCT 3' AC PAVEMENT LINED V-DITCH ADJUST TO GRADE PP 25954 IP 160028 COUNTY OF RIVERSIDE PP 25954 IP 160028 COUNTY OF RIVERSIDE C	0.
CORRECTIONS NOTED See 54.64 SIGNATURE: 4-5-19 PP 25954 IP 160028 RK: COUNTY OF RIVERSIDE SHEET NO. PLOT PLAN NO. 25954	() (2) (3) (4) (5) (6) (7) (6) (9) (11) (12) (12) (12) (12) (12) (12) (12	CONSTRUCT MINIMUM 0.53' AC OVER 0.5' AB CLASS II CONSTRUCT MINIMUM 0.43' AC OVER 0.50' AB CLASS II CONSTRUCT 0.39' AC OVER 0.50 AB CLASS II INTENTIONALLY LEFT BLANK CONSTRUCT TYPE "A-8" CURB & GUTTER PER RIV. CO. STD. NO. 201 CONSTRUCT TYPE "A-6" CURB & GUTTER PER RIV. CO. STD. NO. 202 CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON SHEET 10 CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON CONSTRUCT CONCRETE APRON AND TRANSITION PER DETAIL ON CONSTRUCT CORE RISER PER DETAIL ON SHEET 2 CONSTRUCT COURB RAMP CASE "A" OR "B" (MODIFIED) PER. RIV. CO. STD. NO. 403 CONSTRUCT COR BRAMP CASE "A" OR "B" (MODIFIED) PER. RIV. CO. STD. NO. 403 CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. CONSTRUCT COMMERCIAL DRIVEWAY APPROACH PER RIV. CO. STD. 207A REMOVE EX. AC PAVEMENT SAWCUT & REMOVE EX. CURB & GUTTER ADJUST TO GRADE PROTECTECT IN PLACE CONSTRUCT CORRETE COLLAR PER RCFC&WCD STD. NO. M803 CONSTRUCT CORRETE CATCH BASIN WITH FOSSIL FILTER AND LOCAL DEPRESSION PER RVC. CO. STD. 300, 300A, & 311. USE SPECIAL CONNECTIONS PER RCFC&WCD STD. NO. CEDIOP FOR CORNER CONNECTIONS CONSTRUCT 3" AC PAVEMENT LINED V-DITCH ASS - BUILLT PLAN PP 25954 IP 160028 COUNTY OF RIVERSIDE PLOT PLAN NO. 25954 NANDINA BUSINESS CENTER STREET IMPROVEMENT PLAN PLAN SHEET OF AND AND SHEET OF AND	

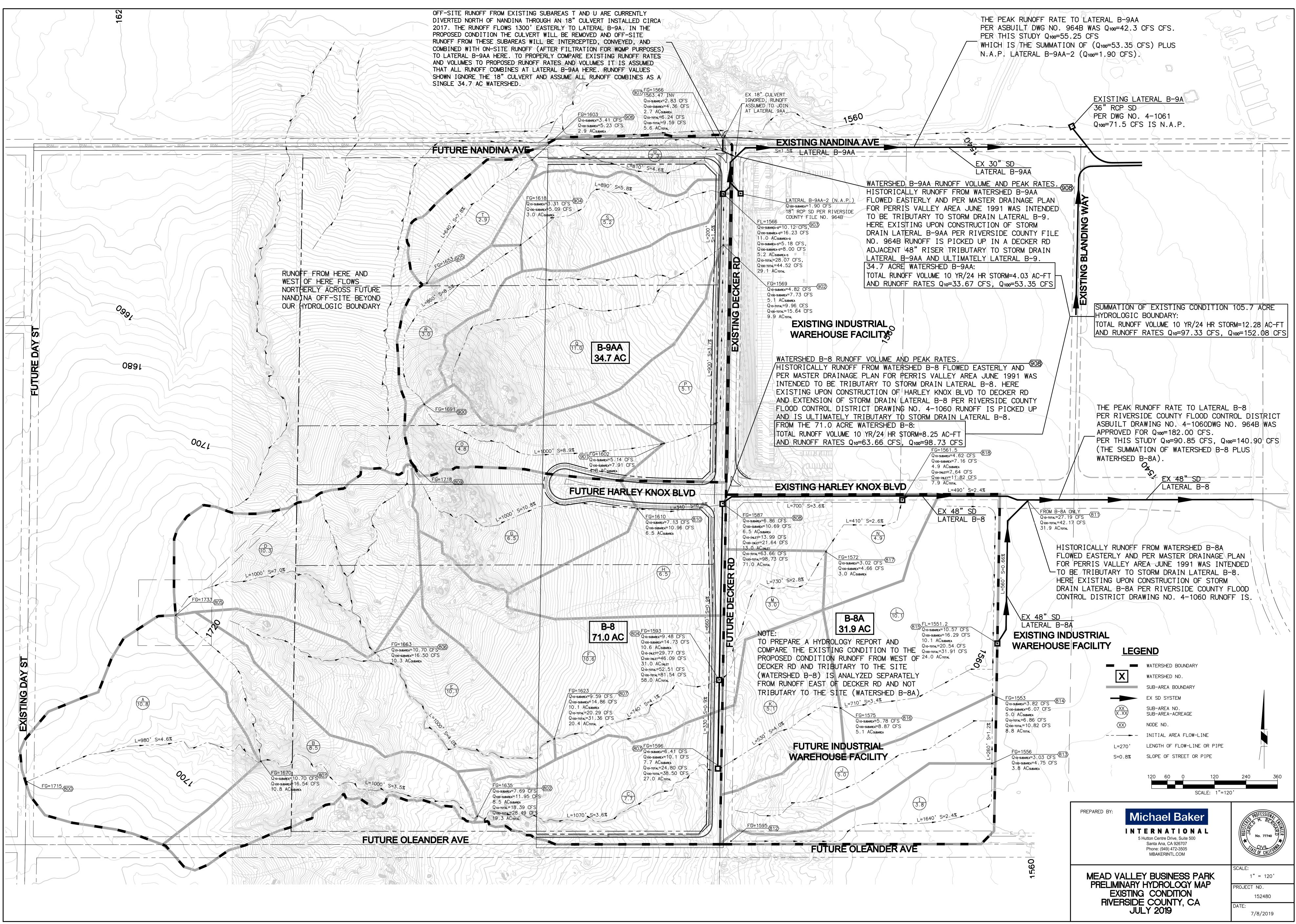


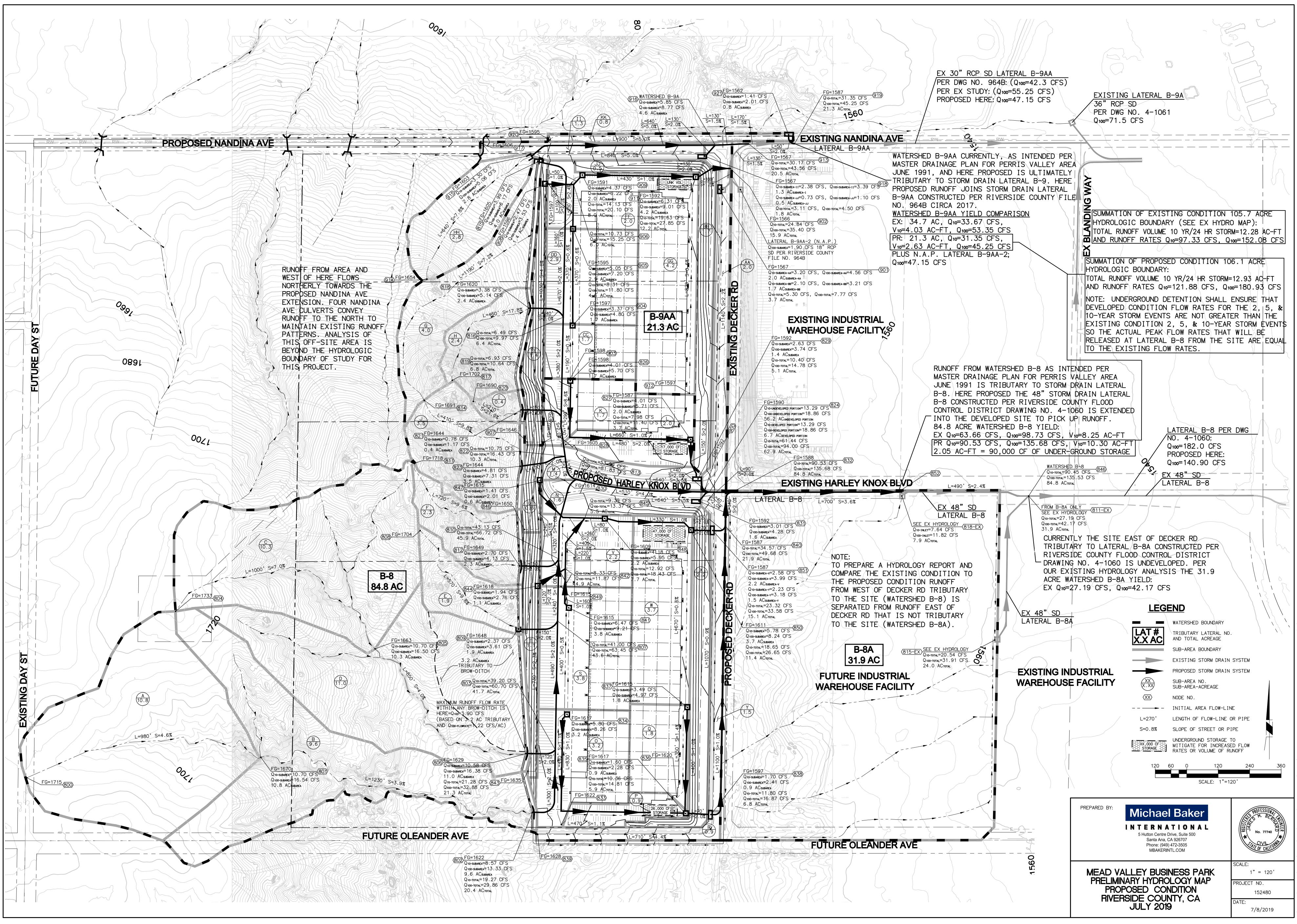

RK:			DUNT PLOT	PLA		10.	259		E	SHE	еет 6 А	NO.
		CC	DUNT	Y	OF	RIV	/ER	SID	E	SHE	ET	NO.
									-	-	_	
			PP	2595	4				50028			V
								NATUR	111	U!!	m	Y
1							CHEST HOME IN	Statistics and the state	ONS NO		Δ	77.
	(21	CONSTRUCT	3" AC P	°A√EME	ENT LIN	ED V-I	итсн	ς.p	UIL	ΤP	LA	N
	20	SPECIAL CO	NNECTION IS	is per	RCFC	&WCD	STD NC). CB10	9 FOR C	ORNER		
	Š	CONSTRUCT CONSTRUCT LOCAL DEPR	CURB IN	LET CA	АТСН В	ASIN V	ATH FC	SSIL F	ILTER AN	D		
	Š	PROTECTECT			1 4 0 0		0.440-	CTA	NO 1100	7		
		SAWCUT & ADJUST TO		LA. UU	n D 66	GUITE						
	õ	REMOVE EX.				CUTTER	,					
	19	CONSTRUCT CONSTRUCT 207A	COMMER	CIAL D	RIVEWA	Y APP	ROACH	PER R	IV. CO. 9	STD.		
	-	CONSTRUCT	6' SIDEW									
	1	CONSTRUCT STD. NO. 40	CURB RA	MP CA	ASE "A'	' OR "	в" (мс	DIFIED)	PER. RI	v. co.		
	-	CONSTRUCT DETAIL ON S								c.N (
	8	CONSTRUCT D75B MODIF	IED TO 4	8" Risi	ER PER	DETA	L ON S	SHEET	10			
	0 7	200 CONSTRUCT SHEET 10										
	(5) (6)	CONSTRUCT 201 CONSTRUCT										
	ĕ	INTENTIONAL	ly left	BLANK				RIV O	د <u>متع</u> 0	NO.		
	2 3	CONSTRUCT						CLASS	II			
	1	CONSTRUCT	MINIMUM	0.53'								
	co	NSTRUCTIO	DN NOT	ES		_	_					
				:	C	ESIG	N SP	EED:	40 MF	°H		{ -
					. : . :	•		-				
		alon	1) Ature		3/2 DATE	2/18	منصور	1	COF DAILY			
		THESE DESIG WEYB	PLANS RE N MODIFIC ASSOCIAT	FLECT / ATIONS ES BY T	ANY GUE AS PRO HE CON	NIDED THACT	AL VÖ XR	-	C 81988	J		-
			5	Ď	IJ	L.		(ARELL	3		
		Â	0	DI		1	ŕ		anunia			:
		Mon	PIEN	ĢN	ueen	- PR	ofil	B /	দ কা	للملاه		
									in de la Generation de la contraction			
											50) - - -	
									· · · · ·			-
		:		·			•					
							· · · · ·				· · · · · · · · · · · · · · · · · · ·	
						: 						
											·····	-





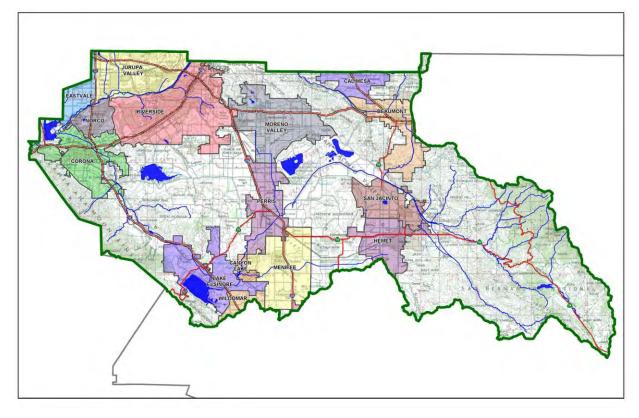






DATA\152480\CADD\LAND\DLV\HYDR0\PRELIMINARY\MAPS\152480-PRELIM-EXIST-HYD-MAP.DWG RHOWE 7/8/19 4:44 pr

A\152480\CADD\LAND\DLV\HYDR0\PRELIMINARY\MAPS\152480-PRELIM-PROP-HYD-MAP.DWG RHOWE 7/8/19 4:45


Project Specific Water Quality Management Plan

A Template for Projects located within the Santa Ana Watershed Region of Riverside County

Project Title: Oleander Business Park (Mead Valley)

Development No: TBD

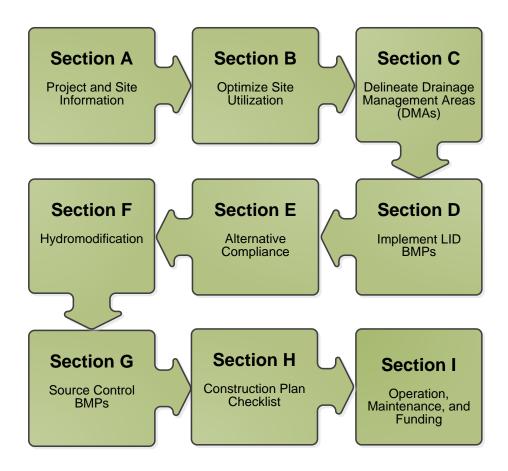
Design Review/Case No: TBD

Preliminary

Original Date Prepared: March 25, 2019

Revision Date(s):

Prepared for Compliance with Regional Board Order No. <u>R8-2010-0033</u> <u>Template revised June 30, 2016</u>


Contact Information:

Prepared for: SRG Perris, L.P. Patrick Russell 18802 Bardeen Ave. Irvine, CA 92612

Prepared by: Michael Baker International Jacqueline Hernandez Civil Engineer 5 Hutton Center Drive, Suite 500 Santa Ana, CA 92707

A Brief Introduction

This Project-Specific WQMP Template for the **Santa Ana Region** has been prepared to help guide you in documenting compliance for your project. Because this document has been designed to specifically document compliance, you will need to utilize the WQMP Guidance Document as your "how-to" manual to help guide you through this process. Both the Template and Guidance Document go hand-in-hand and will help facilitate a well-prepared Project-Specific WQMP. Below is a flowchart for the layout of this Template that will provide the steps required to document compliance.

2

OWNER'S CERTIFICATION

This Project-Specific Water Quality Management Plan (WQMP) has been prepared for SRG Perris, L.P. by Michael Baker International for the Oleander Business Park (Mead Valley) project.

This WQMP is intended to comply with the requirements of The County of Riverside for Water Quality Ordinance (Municipal Code Section 754.1) which includes the requirement for the preparation and implementation of a Project-Specific WQMP.

The undersigned, while owning the property/project described in the preceding paragraph, shall be responsible for the implementation and funding of this WQMP and will ensure that this WQMP is amended as appropriate to reflect up-to-date conditions on the site. In addition, the property owner accepts responsibility for interim operation and maintenance of Stormwater BMPs until such time as this responsibility is formally transferred to a subsequent owner. This WQMP will be reviewed with the facility operator, facility supervisors, employees, tenants, maintenance and service contractors, or any other party (or parties) having responsibility for implementing portions of this WQMP. At least one copy of this WQMP will be maintained at the project site or project office in perpetuity. The undersigned is authorized to certify and to approve implementation of this WQMP. The undersigned is aware that implementation of this WQMP is enforceable under The County of Riverside Water Quality Ordinance (Municipal Code Section754.1).

"I, the undersigned, certify under penalty of law that the provisions of this WQMP have been reviewed and accepted and that the WQMP will be transferred to future successors in interest."

Owner's Signature

Owner's Printed Name

Owner's Title/Position

PREPARER'S CERTIFICATION

"The selection, sizing and design of stormwater treatment and other stormwater quality and quantity control measures in this plan meet the requirements of Regional Water Quality Control Board Order No. **R8-2010-0033** and any subsequent amendments thereto."

Preparer's Signature

Jacqueline Hernandez Preparer's Printed Name

Preparer's Licensure:

Date

Preparer's Title/Position

Date

Table of Contents

Section A: Project and Site Information A.1 Maps and Site Plans A.2 Identify Receiving Waters A.3 Additional Permits/Approvals required for the Project:	6 6
Section B: Optimize Site Utilization (LID Principles)	8
Section C: Delineate Drainage Management Areas (DMAs)	
Section D: Implement LID BMPs D.1 Infiltration Applicability D.2 Harvest and Use Assessment D.3 Bioretention and Biotreatment Assessment D.4 Feasibility Assessment Summaries D.5 LID BMP Sizing	
Section E: Alternative Compliance (LID Waiver Program) E.1 Identify Pollutants of Concern E.2 Stormwater Credits	21 22
E.3 Sizing Criteria E.4 Treatment Control BMP Selection	
	23 24 24
E.4 Treatment Control BMP Selection Section F: Hydromodification F.1 Hydrologic Conditions of Concern (HCOC) Analysis	23 24 24 25
E.4 Treatment Control BMP Selection Section F: Hydromodification F.1 Hydrologic Conditions of Concern (HCOC) Analysis F.2 HCOC Mitigation	23 24 24 24 25 25 26

List of Tables

Table A.1 Identification of Receiving Waters	6
Table A.2 Other Applicable Permits	7
Table C.1 DMA Classifications	10
Table C.2 Type 'A', Self-Treating Areas	11
Table C.3 Type 'B', Self-Retaining Areas	11
Table C.4 Type 'C', Areas that Drain to Self-Retaining Areas	11
Table C.5 Type 'D', Areas Draining to BMPs	11
Table D.1 Infiltration Feasibility	12
Table D.2 LID Prioritization Summary Matrix	17
Table D.3 DCV Calculations for LID BMPs	18
Table E.1 Potential Pollutants by Land Use Type	21
Table E.2 Water Quality Credits	22
Table E.3 Treatment Control BMP Sizing	22
Table E.4 Treatment Control BMP Selection	23
Table F.1 Hydrologic Conditions of Concern Summary	24
Table G.1 Permanent and Operational Source Control Measures	26
Table H.1 Construction Plan Cross-reference	29

List of Appendices

Appendix 1: Maps and Site Plans	31
Appendix 2: Construction Plans	32
Appendix 3: Soils Information	33
Appendix 4: Historical Site Conditions	34
Appendix 5: LID Infeasibility	35
Appendix 6: BMP Design Details	
Appendix 7: Hydromodification	37
Appendix 8: Source Control	
Appendix 9: Operation and Maintenance	
Appendix 10: Educational Materials	40

Section A: Project and Site Information

PROJECT INFORMATION	Commercial		
Type of Project:	Commercial		
Planning Area:			
Community Name:	Oleander Business Park (Mead Valley)		
Development Name:	Oleander Business Park (Mead Valley)		
PROJECT LOCATION			
Latitude & Longitude (DMS):			
-	Watershed: Santa Ana Watershed; San Jacinto Sub-Watershed		
Gross Acres: 39.18			
APN(s): 295-310-012, 295-31	10-013, 295-310-014, 295-310-015		
Map Book and Page No.: The	omas Bros. Map Page 747		
PROJECT CHARACTERISTICS			
Proposed or Potential Land L		Comme	
Proposed or Potential SIC Co			Determined
Area of Impervious Project F		1,738,0	
	ervious Surfaces within the Project Footprint (SF)/or	1,241,6	609.34
Replacement			
Does the project consist of o	ffsite road improvements?	<u></u> ү	🗌 N
Does the project propose to	construct unpaved roads?	□ Y	🖂 N
Is the project part of a larger	common plan of development (phased project)?	_ Υ	🖂 N
EXISTING SITE CHARACTERISTICS			
Total area of <u>existing</u> Imperv	ious Surfaces within the Project limits Footprint (SF)	0	
Is the project located within	any MSHCP Criteria Cell?	🗌 Y	🖂 N
If so, identify the Cell numbe	er:	N/A	
Are there any natural hydrol	ogic features on the project site?	Y	🖂 N
Is a Geotechnical Report atta	ached?	Y	🖂 N
If no Geotechnical Report, lis	st the NRCS soils type(s) present on the site (A, B, C and/or D)	B, C & C	D
What is the Water Quality D	esign Storm Depth for the project?	0.59	
The proposed project site is	located in unincorporated Riverside County, west of Decker		
	nue and Oleander Avenue. The project proposes to develop two		
	king lot and loading docks on existing barren land. In existing		
-	ws from west to east. In the proposed condition, surface runoff		
	on and will enter the storm drain via catch basin inlet and be Ps discussed in Section D.5. Off-site runoff will flow onto the		
site via a terrace drain.			
Oleander Avenue, Decker Ro	ad and Nandina Avenue are public transportation roadways		
	of the project site. These roadways will be built for public use		
	intained by the County of Riverside. Since these roadways are		
	nsidered public transportation projects and are subject to		
	tation Project Guidance, and the Transportation Project		
	oject documentation will be prepared and provided with the		
Tittai wQiviP. Drainage Swale	es that capture runoff from the other half of the public roadway		

will be designed for the adjacent future developments. It will be the responsibility of the adjacent future developments to propose water quality BMPs.

A.1 Maps and Site Plans

When completing your Project-Specific WQMP, include a map of the local vicinity and existing site. In addition, include all grading, drainage, landscape/plant palette and other pertinent construction plans in Appendix 2. At a **minimum**, your WQMP Site Plan should include the following:

- Drainage Management Areas
- Proposed Structural BMPs
- Drainage Path
- Drainage Infrastructure, Inlets, Overflows
- Source Control BMPs
- Buildings, Roof Lines, Downspouts
- Impervious Surfaces
- Standard Labeling
- BMP Locations (Lat/Long)

Use your discretion on whether or not you may need to create multiple sheets or can appropriately accommodate these features on one or two sheets. Keep in mind that the Co-Permittee plan reviewer must be able to easily analyze your project utilizing this template and its associated site plans and maps.

A.2 Identify Receiving Waters

Using Table A.1 below, list in order of upstream to downstream, the receiving waters that the project site is tributary to. Continue to fill each row with the Receiving Water's 303(d) listed impairments (if any), designated beneficial uses, and proximity, if any, to a RARE beneficial use. Include a map of the receiving waters in Appendix 1.

Receiving Waters	EPA Approved 303(d) List Impairments	Designated Beneficial Uses	Proximity to RARE Beneficial Use
Perris Valley MDP Lateral B-9	None*	Perris North (MUN, AGR, IND, PROC) Perris South (MUN, AGR)	No RARE uses identified in receiving waters
Perris Valley MDP Lateral B-8	None*	Perris North (MUN, AGR, IND, PROC) Perris South (MUN, AGR)	No RARE uses identified in receiving waters
Perris Valley Channel Lateral B	None*	Perris North (MUN, AGR, IND, PROC) Perris South (MUN, AGR)	No RARE uses identified in receiving waters
Perris Valley Channel	None*	Perris South (MUN, AGR)	No RARE uses identified in receiving waters
San Jacinto River Reach 3	None	MUN, AGR, IND, PROC	No RARE uses identified in receiving waters
San Jacinto River Reach 2	None	GWR, AGR, WILD, WARM, REC2, REC1, MUN	No RARE uses identified in receiving waters
Canyon Lake	Nutrients	WILD, REC2, WARM, GWR, REC1, AGR	No RARE uses identified in receiving waters
San Jacinto River Reach 1	None	AGR, GWR	No RARE uses identified in receiving waters
Lake Elsinore	DDT, Nutrients, Organic Enrichment/Low Dissolved Oxygen, PCBs (Polychlorinated biphenyls), Toxicity	MUN, REC1, REC2, WARM, WILD	No RARE uses identified in receiving waters

Table A.1 Identification of Receiving Waters

*Requirement for permit is unknown at this time. Determination shall be made and addressed in the Final WQMP.

A.3 Additional Permits/Approvals required for the Project:

 Table A.2 Other Applicable Permits

Agency	Permit F	Required
State Department of Fish and Game, 1602 Streambed Alteration Agreement	□ Y	N
State Water Resources Control Board, Clean Water Act (CWA) Section 401 Water Quality Cert.	□ Y	N
US Army Corps of Engineers, CWA Section 404 Permit	□ Y	N
US Fish and Wildlife, Endangered Species Act Section 7 Biological Opinion	Υ	N
Statewide Construction General Permit Coverage	×Ν	🗌 N
Statewide Industrial General Permit Coverage	×	🗌 N
Western Riverside MSHCP Consistency Approval (e.g., JPR, DBESP)	Y	N
Other (please list in the space below as required)		
County of Riverside Grading Permit	×Ν	🗌 N
County of Riverside Building Permit	×Υ	□ N

If yes is answered to any of the questions above, the Co-Permittee may require proof of approval/coverage from those agencies as applicable including documentation of any associated requirements that may affect this Project-Specific WQMP.

Section B: Optimize Site Utilization (LID Principles)

Review of the information collected in Section 'A' will aid in identifying the principal constraints on site design and selection of LID BMPs as well as opportunities to reduce imperviousness and incorporate LID Principles into the site and landscape design. For example, constraints might include impermeable soils, high groundwater, groundwater pollution or contaminated soils, steep slopes, geotechnical instability, high-intensity land use, heavy pedestrian or vehicular traffic, utility locations or safety concerns. Opportunities might include existing natural areas, low areas, oddly configured or otherwise unbuildable parcels, easements and landscape amenities including open space and buffers (which can double as locations for bioretention BMPs), and differences in elevation (which can provide hydraulic head). Prepare a brief narrative for each of the site optimization strategies described below. This narrative will help you as you proceed with your LID design and explain your design decisions to others.

The 2010 Santa Ana MS4 Permit further requires that LID Retention BMPs (Infiltration Only or Harvest and Use) be used unless it can be shown that those BMPs are infeasible. Therefore, it is important that your narrative identify and justify if there are any constraints that would prevent the use of those categories of LID BMPs. Similarly, you should also note opportunities that exist which will be utilized during project design. Upon completion of identifying Constraints and Opportunities, include these on your WQMP Site plan in Appendix 1.

Consideration of "highest and best use" of the discharge should also be considered. For example, Lake Elsinore is evaporating faster than runoff from natural precipitation can recharge it. Requiring infiltration of 85% of runoff events for projects tributary to Lake Elsinore would only exacerbate current water quality problems associated with Pollutant concentration due to lake water evaporation. In cases where rainfall events have low potential to recharge Lake Elsinore (i.e., no hydraulic connection between groundwater to Lake Elsinore, or other factors), requiring infiltration of Urban Runoff from projects is counterproductive to the overall watershed goals. Project proponents, in these cases, would be allowed to discharge Urban Runoff, provided they used equally effective filtration-based BMPs.

Site Optimization

The following questions are based upon Section 3.2 of the WQMP Guidance Document. Review of the WQMP Guidance Document will help you determine how best to optimize your site and subsequently identify opportunities and/or constraints, and document compliance.

Did you identify and preserve existing drainage patterns? If so, how? If not, why?

Yes, the direction of surface runoff will flow from West to East. This drainage pattern will remain the same in the proposed condition. The proposed storm drain system will run from West to East to the proposed underground storage systems to store the design capture volume (DCV) and then treated by the Modular Wetlands Systems (MWS). Offsite surface runoff on the western portion of the project will be collected in the terrace drain and drain onto the project and into the proposed storm drain system. After water quality treatment in the MWS, surface runoff from the project site will leave the site in the easterly direction via Perris Valley MDP Lateral B-8 and B-9.

Did you identify and protect existing vegetation? If so, how? If not, why?

In existing condition, the proposed project site is barren and has minimal effects on local plant life. There are no native trees on-site that need to be relocated. Vegetation proposed on-site will be determined by the Landscape Architect and discussed in the Final WQMP.

Did you identify and preserve natural infiltration capacity? If so, how? If not, why?

The site has poor infiltration capacity. The soils on-site mainly consist of Hydrologic Soil Types C and D.

Did you identify and minimize impervious area? If so, how? If not, why?

Due to the nature of the project, the majority of new construction will be impervious area. Landscaped parking medians/islands are proposed throughout the project site. Large landscaped areas will be proposed along the perimeter of the project site.

Did you identify and disperse runoff to adjacent pervious areas? If so, how? If not, why?

Roof runoff will sheet flow towards landscaped areas surrounding the building. The landscaped areas around the building will be depressed to provide maximum detention before draining onto the parking lot. Runoff will sheet flow throughout the parking lot towards the catch basins and discharge into the proposed storm drain system, eventually being stored in the underground storage systems and treated by the proposed MWS as shown in the BMP Exhibit.

Section C: Delineate Drainage Management Areas (DMAs)

Utilizing the procedure in Section 3.3 of the WQMP Guidance Document which discusses the methods of delineating and mapping your project site into individual DMAs, complete Table C.1 below to appropriately categorize the types of classification (e.g., Type A, Type B, etc.) per DMA for your project site. Upon completion of this table, this information will then be used to populate and tabulate the corresponding tables for their respective DMA classifications.

DMA Name or ID	Surface Type(s) ¹²	Area (Sq. Ft.)	DMA Type
DMA A-1	Roof, Concrete/Asphalt	244,078	Type D
	Landscaping	26,119	
		270,197	
DMA A-2	Concrete/Asphalt	286	Type A
	Landscaping	7,360	
		7,646	
DMA A-3	Concrete/Asphalt	0	Type A
	Landscaping	44,364	
		44,364	
DMA B-1	Roof, Concrete/Asphalt	380,063	Type D
	Landscaping	86,961	
		467,024	
DMA B-2	Concrete/Asphalt	397	Type A
	Landscaping	75,196	
		75,593	
DMA C-1	Roof, Concrete/Asphalt	123,925	Type D
	Landscaping	62,595	
		186,520	
DMA C-2	Concrete/Asphalt	0	Type A
	Landscaping	8,297	
		8,297	
DMA D-1	Roof, Concrete/Asphalt	466,031	Type D
	Landscaping	82,879	
		548,910	
DMA D-2	Concrete/Asphalt	305	Type A
	Landscaping	97,647	
		97,952	

Table C.1 DMA Classifications

¹*Reference Table 2-1 in the WQMP Guidance Document to populate this column*

²If multi-surface provide back-up

Table C.2 Type 'A', Self-Treating Areas

_				
	DMA Name or ID	Area (Sq. Ft.)	Stabilization Type	Irrigation Type (if any)
	DMA A-2	7,360.34	Vegetation	To be determined in Final WQMP
	DMA A-3	44,363.95	Vegetation	To be determined in Final WQMP
	DMA B-2	75,196.59	Vegetation	To be determined in Final WQMP
	DMA C-2	8,297.29	Vegetation	To be determined in Final WQMP
	DMA D-2	97,647.33	Vegetation	To be determined in Final WQMP

Self-treating areas that have not been fully captured in the soils will runoff into the drainage swales at the toe of slope and discharge into the storm drain system via catch basin inlets.

Table C.3 Type 'B', Self-Retaining Areas

Self-Retaining Area					'C' DMAs tha the Self-Reta	t are draining iining Area	
DMA Name/ ID	Post-project surface type	Area (square feet) [A]	Storm Depth (inches) [B]	DMA Name/ID	[C] from Table C.4 = [C]	Required Retention Depth (inches) [D]	
N/A							
$[D] = [B] + \frac{[B] \cdot [C]}{[A]}$							

Table C.4 Type 'C', Areas that Drain to Self-Retaining Areas

DMA					Receivin	g Self-Retainin	g DMA			
DMA Name/ID	Area (square feet)	Post- project surface	Impervious fraction	Product	DMA name/ID	DMA name/ID	DMA name/ID	DMA name/ID	Area (square feet)	Ratio
Name/ID	[A]	type	[B]	[C] = [A] x [B]		[D]	[C]/[D]			
N/A										

Table C.5 Type 'D', Areas Draining to BMPs

DMA Name or ID	BMP Name or ID
DMA A-1	BMP A-1 MWS-L-4-15
DMA B-1	BMP B-1 MWS-L-4-21
DMA C-1	BMP C-1 MWS-L-4-8
DMA D-1	BMP D-1 MWS-L-8-12

<u>Note</u>: More than one drainage management area can drain to a single LID BMP; however, one drainage management area may not drain to more than one BMP.

Section D: Implement LID BMPs

D.1 Infiltration Applicability

Is there an approved downstream 'Highest and Best Use' for stormwater runoff (see discussion in Chapter 2.4.4 of the WQMP Guidance Document for further details)? \Box Y \boxtimes N

If yes has been checked, Infiltration BMPs shall not be used for the site; proceed to section D.3

If no, continue working through this section to implement your LID BMPs. It is recommended that you contact your Co-Permittee to verify whether or not your project discharges to an approved downstream 'Highest and Best Use' feature.

Geotechnical Report

A Geotechnical Report or Phase I Environmental Site Assessment may be required by the Copermittee to confirm present and past site characteristics that may affect the use of Infiltration BMPs. In addition, the Co-Permittee, at their discretion, may not require a geotechnical report for small projects as described in Chapter 2 of the WQMP Guidance Document. If a geotechnical report has been prepared, include it in Appendix 3. In addition, if a Phase I Environmental Site Assessment has been prepared, include it in Appendix 4.

Is this project classified as a small project consistent with the requirements of Chapter 2 of the WQMP Guidance Document? \Box Y \bigotimes N

Infiltration Feasibility

Table D.1 below is meant to provide a simple means of assessing which DMAs on your site support Infiltration BMPs and is discussed in the WQMP Guidance Document in Chapter 2.4.5. Check the appropriate box for each question and then list affected DMAs as applicable. If additional space is needed, add a row below the corresponding answer.

Does the project site	YES	NO
have any DMAs with a seasonal high groundwater mark shallower than 10 feet?		х
If Yes, list affected DMAs:		
have any DMAs located within 100 feet of a water supply well?		х
If Yes, list affected DMAs:		
have any areas identified by the geotechnical report as posing a public safety risk where infiltration of		х
stormwater could have a negative impact?		
If Yes, list affected DMAs:		
have measured in-situ infiltration rates of less than 1.6 inches / hour?		х
If Yes, list affected DMAs:		
have significant cut and/or fill conditions that would preclude in-situ testing of infiltration rates at the final		х
infiltration surface?		
If Yes, list affected DMAs:		
geotechnical report identify other site-specific factors that would preclude effective and safe infiltration?		х
Describe here:		

Table D.1 Infiltration Feasibility

If you answered "Yes" to any of the questions above for any DMA, Infiltration BMPs should not be used for those DMAs and you should proceed to the assessment for Harvest and Use below.

Based on preliminary information available, the Geotech has indicated that the site contains shallow bedrock encountered between 5-6 feet from existing grades. Additionally, information from the USDA Web oil Survey indicates the depths to the water table are approximately greater than 6.5 feet and the shallowest depth to any soil restrictive layer is approximately 1.2 feet. It is assumed that infiltration is deemed infeasible within the project area. A geotechnical report will be provided along with the Final WQMP submittal.

D.2 Harvest and Use Assessment

Please check what applies:

- \Box Reclaimed water will be used for the non-potable water demands for the project.
- Downstream water rights may be impacted by Harvest and Use as approved by the Regional Board (verify with the Copermittee).
- The Design Capture Volume will be addressed using Infiltration Only BMPs. In such a case,
 Harvest and Use BMPs are still encouraged, but it would not be required if the Design Capture
 Volume will be infiltrated or evapotranspired.

If any of the above boxes have been checked, Harvest and Use BMPs need not be assessed for the site. If none of the above criteria applies, follow the steps below to assess the feasibility of irrigation use, toilet use and other non-potable uses (e.g., industrial use).

Irrigation Use Feasibility

Complete the following steps to determine the feasibility of harvesting stormwater runoff for Irrigation Use BMPs on your site:

Step 1: Identify the total area of irrigated landscape on the site, and the type of landscaping used.

Total Area of Irrigated Landscape: Insert Area (Acres)

Type of Landscaping (Conservation Design or Active Turf): List Landscaping Type

Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for irrigation use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.

Total Area of Impervious Surfaces: Insert Area (Acres)

Step 3: Cross reference the Design Storm depth for the project site (see Exhibit A of the WQMP Guidance Document) with the left column of Table 2-3 in Chapter 2 to determine the minimum area of Effective Irrigated Area per Tributary Impervious Area (EIATIA).

Enter your EIATIA factor: EIATIA Factor

Step 4: Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum irrigated area that would be required.

Minimum required irrigated area: Insert Area (Acres)

Step 5: Determine if harvesting stormwater runoff for irrigation use is feasible for the project by comparing the total area of irrigated landscape (Step 1) to the minimum required irrigated area (Step 4).

	Minimum required irrigated area (Step 4)	Available Irrigated Landscape (Step 1)
	Insert Area (Acres)	Insert Area (Acres)

i.

Toilet Use Feasibility

Complete the following steps to determine the feasibility of harvesting stormwater runoff for toilet flushing uses on your site:

Step 1: Identify the projected total number of daily toilet users during the wet season, and account for any periodic shut downs or other lapses in occupancy:

Projected Number of Daily Toilet Users: Number of daily Toilet Users

Project Type: Enter 'Residential', 'Commercial', 'Industrial' or 'Schools'

Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for toilet use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.

Total Area of Impervious Surfaces: Insert Area (Acres)

Step 3: Enter the Design Storm depth for the project site (see Exhibit A) into the left column of Table 2-2 in Chapter 2 to determine the minimum number or toilet users per tributary impervious acre (TUTIA).

Enter your TUTIA factor: TUTIA Factor

Step 4: Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum number of toilet users that would be required.

Minimum number of toilet users: Required number of toilet users

Step 5: Determine if harvesting stormwater runoff for toilet flushing use is feasible for the project by comparing the Number of Daily Toilet Users (Step 1) to the minimum required number of toilet users (Step 4).

Minimum required Toilet Users (Step 4)	Projected number of toilet users (Step 1)
Insert Area (Acres)	Insert Area (Acres)

Other Non-Potable Use Feasibility

Are there other non-potable uses for stormwater runoff on the site (e.g., industrial use)? See Chapter 2 of the Guidance for further information. If yes, describe below. If no, write N/A.

Insert text here describing how each included Site Design BMP will be implemented.

Step 1: Identify the projected average daily non-potable demand, in gallons per day, during the wet season and accounting for any periodic shut downs or other lapses in occupancy or operation.

Average Daily Demand: Projected Average Daily Use (gpd)

Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for the identified non-potable use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.

Total Area of Impervious Surfaces: Insert Area (Acres)

Step 3: Enter the Design Storm depth for the project site (see Exhibit A) into the left column of Table 2-4 in Chapter 2 to determine the minimum demand for non-potable uses per tributary impervious acre.

Enter the factor from Table 2-4: Enter Value

Step 4: Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum number of gallons per day of non-potable use that would be required.

Minimum required use: Minimum use required (gpd)

Step 5: Determine if harvesting stormwater runoff for other non-potable use is feasible for the project by comparing the projected average daily use (Step 1) to the minimum required non-potable use (Step 4).

Minimum required non-potable use (Step 4)	Projected average daily use (Step 1)
Minimum use required (gpd)	Projected Average Daily Use (gpd)

If Irrigation, Toilet and Other Use feasibility anticipated demands are less than the applicable minimum values, Harvest and Use BMPs are not required and you should proceed to utilize LID Bioretention and Biotreatment per Section 3.4.2 of the WQMP Guidance Document.

D.3 Bioretention and Biotreatment Assessment

Other LID Bioretention and Biotreatment BMPs as described in Chapter 2.4.7 of the WQMP Guidance Document are feasible on nearly all development sites with sufficient advance planning.

Select one of the following:

- LID Bioretention/Biotreatment BMPs will be used for some or all DMAs of the project as noted below in Section D.4 (note the requirements of Section 3.4.2 in the WQMP Guidance Document).
- □ A site-specific analysis demonstrating the technical infeasibility of all LID BMPs has been performed and is included in Appendix 5. If you plan to submit an analysis demonstrating the technical infeasibility of LID BMPs, request a pre-submittal meeting with the Copermittee to discuss this option. Proceed to Section E to document your alternative compliance measures.

D.4 Feasibility Assessment Summaries

From the Infiltration, Harvest and Use, Bioretention and Biotreatment Sections above, complete Table D.2 below to summarize which LID BMPs are technically feasible, and which are not, based upon the established hierarchy.

		LID BMP Hierarchy									
DMA					(Alternative						
Name/ID	1. Infiltration	2. Harvest and use	3. Bioretention	4. Biotreatment	Compliance)						
BMP A-1				\square							
BMP B-1				\square							
BMP C-1				\square							
BMP D-1				\square							

Table D.2 LID Prioritization Summary Matrix

For those DMAs where LID BMPs are not feasible, provide a brief narrative below summarizing why they are not feasible, include your technical infeasibility criteria in Appendix 5, and proceed to Section E below to document Alternative Compliance measures for those DMAs. Recall that each proposed DMA must pass through the LID BMP hierarchy before alternative compliance measures may be considered.

All DMAs either drain to a LID BMP (MWS downstream of underground storage systems) or is self-treating.

D.5 LID BMP Sizing

Each LID BMP must be designed to ensure that the Design Capture Volume will be addressed by the selected BMPs. First, calculate the Design Capture Volume for each LID BMP using the V_{BMP} worksheet in Appendix F of the LID BMP Design Handbook. Second, design the LID BMP to meet the required V_{BMP} using a method approved by the Copermittee. Utilize the worksheets found in the LID BMP Design Handbook or consult with your Copermittee to assist you in correctly sizing your LID BMPs. Complete Table D.3 below to document the Design Capture Volume and the Proposed Volume for each LID BMP. Provide the completed design procedure sheets for each LID BMP in Appendix 6. You may add additional rows to the table below as needed.

DMA Type/ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Areas x Runoff Factor [A] x [C]	Enter BMP Name / Identifier Here BMP A-1		
Impervious (Roof, Parking Lot & Walkway)	244,078.53	Roofs, Concrete, Asphalt	1.0	0.89	217,718	Design Storm	Design Capture	Proposed Volume on Plans
Pervious (Landscaping)	26,118.72	Ornamental Landscaping	0.1	0.11	2,885	Depth (in)	Volume, V_{вмр} (cubic feet)	(cubic feet)
	A _T = Σ[A] 270,197.25				Σ= [D] 220,603	[E] 0.59	$[F] = \frac{[D]x[E]}{12}$ 10,846.3	[G] 11,433

Table D.3 DCV Calculations for LID BMPs

[B], [C] is obtained as described in Section 2.3.1 of the WQMP Guidance Document

[E] is obtained from Exhibit A in the WQMP Guidance Document

[G] is obtained from a design procedure sheet, such as in LID BMP Design Handbook and placed in Appendix 6

DMA Type/ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor	DMA Areas x Runoff Factor [A] x [C]	Enter BMP Name / Identifier Here BMP B-1		
Impervious (Roof, Parking Lot & Walkway)	380,063.28	Roofs, Concrete, Asphalt	1.0	0.89	339,016.4	Design Storm	Design Capture	Proposed Volume on Plans
Pervious (Landscaping)	86,961.35	Ornamental Landscaping	0.1	0.11	9,605.6	Depth (in)	Volume, V_{BMP} (cubic feet)	(cubic feet)
	A _T = Σ[A] 467,024.63				Σ= [D] 348,622	[E] 0.59	$[F] = \frac{[D]x[E]}{12}$ 17,140.6	[G] 17,559

[B], [C] is obtained as described in Section 2.3.1 of the WQMP Guidance Document

[E] is obtained from Exhibit A in the WQMP Guidance Document

[G] is obtained from a design procedure sheet, such as in LID BMP Design Handbook and placed in Appendix 6

DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type	Effective Impervious Fraction, I _f	DMA Runoff Factor	DMA Areas x Runoff Factor	Enter BMP Name / Identifier Here BMP C-1		
	[A]		[B]	[C]	[A] x [C]	DIVIP C	.1	
Impervious (Roof, Parking Lot & Walkway)	123,925.28	Roofs, Concrete, Asphalt	1.0	0.89	110,541.3	Design Storm	Design Capture	Proposed Volume on Plans
Pervious (Landscaping)	62,594.75	Ornamental Landscaping	0.1	0.11	6,914.1	Depth (in)	Volume, V_{вмр} (cubic feet)	(cubic feet)
	A _T = Σ[A] 186,520.03				Σ= [D] 117,455.4	[E] 0.59	$[F] = \frac{[D]x[E]}{12}$ 5,774.9	[G] 7554

[B], [C] is obtained as described in Section 2.3.1 of the WQMP Guidance Document

[E] is obtained from Exhibit A in the WQMP Guidance Document

[G] is obtained from a design procedure sheet, such as in LID BMP Design Handbook and placed in Appendix 6

DMA Type/ID	DMA Area (square feet) [A]	Post-Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor	DMA Areas x Runoff Factor [A] x [C]	Enter BMP Name / Identifier Here BMP D-1		
Impervious (Roof, Parking Lot & Walkway)	466,030.75	Roofs, Concrete, Asphalt	1.0	0.89	415,699.4	Design Storm		
Pervious (Landscaping)	82,879.48	Ornamental Landscaping	0.1	0.11	9,154.7	Depth (in)	Volume, V _{BMP} (cubic feet)	(cubic feet)
	A _T = Σ[A] 548,910.23				Σ= [D] 424,854.1	[E] 0.59	$[F] = \frac{[D]x[E]}{12}$ 20,888.7	[G] 22,662

[B], [C] is obtained as described in Section 2.3.1 of the WQMP Guidance Document

[E] is obtained from Exhibit A in the WQMP Guidance Document

[G] is obtained from a design procedure sheet, such as in LID BMP Design Handbook and placed in Appendix 6

Section E: Alternative Compliance (LID Waiver Program)

LID BMPs are expected to be feasible on virtually all projects. Where LID BMPs have been demonstrated to be infeasible as documented in Section D, other Treatment Control BMPs must be used (subject to LID waiver approval by the Copermittee). Check one of the following Boxes:

LID Principles and LID BMPs have been incorporated into the site design to fully address all Drainage Management Areas. No alternative compliance measures are required for this project and thus this Section is not required to be completed.

– Or –

□ The following Drainage Management Areas are unable to be addressed using LID BMPs. A sitespecific analysis demonstrating technical infeasibility of LID BMPs has been approved by the Co-Permittee and included in Appendix 5. Additionally, no downstream regional and/or subregional LID BMPs exist or are available for use by the project. The following alternative compliance measures on the following pages are being implemented to ensure that any pollutant loads expected to be discharged by not incorporating LID BMPs, are fully mitigated.

N/A

E.1 Identify Pollutants of Concern

Utilizing Table A.1 from Section A above which noted your project's receiving waters and their associated EPA approved 303(d) listed impairments, cross reference this information with that of your selected Priority Development Project Category in Table E.1 below. If the identified General Pollutant Categories are the same as those listed for your receiving waters, then these will be your Pollutants of Concern and the appropriate box or boxes will be checked on the last row. The purpose of this is to document compliance and to help you appropriately plan for mitigating your Pollutants of Concern in lieu of implementing LID BMPs.

	Priority Development Project Categories and/or Project Features (check those that apply)			Ge	eneral Pollu	itant Categori	es		
			Metals	Nutrients	Pesticides	Toxic Organic Compounds	Sediments	Trash & Debris	Oil & Grease
	Detached Residential Development	Р	Ν	Р	Р	Ν	Р	Ρ	Р
	Attached Residential Development	Р	Ν	Р	Р	Ν	Р	Ρ	P ⁽²⁾
	Commercial/Industrial Development	P ⁽³⁾	Ρ	P ⁽¹⁾	P ⁽¹⁾	P ⁽⁵⁾	P ⁽¹⁾	Ρ	Р
	Automotive Repair Shops	Ν	Р	Ν	Ν	P ^(4, 5)	N	Р	Р
	Restaurants (>5,000 ft ²)	Р	Ν	Ν	Ν	Ν	Ν	Р	Ρ
	Hillside Development (>5,000 ft ²)	Р	Ν	Р	Р	Ν	Р	Ρ	Р
	Parking Lots (>5,000 ft ²)	P ⁽⁶⁾	Ρ	P ⁽¹⁾	P ⁽¹⁾	P ⁽⁴⁾	P ⁽¹⁾	Ρ	Р
	Retail Gasoline Outlets	N	Р	Ν	Ν	Р	N	Р	Р
Pro	Project Priority Pollutant(s) of Concern			\boxtimes	\boxtimes	\boxtimes	\boxtimes		

Table E.1 Potential Pollutants by Land Use Type

P = Potential

N = Not Potential

⁽¹⁾ A potential Pollutant if non-native landscaping exists or is proposed onsite; otherwise not expected

⁽²⁾ A potential Pollutant if the project includes uncovered parking areas; otherwise not expected

⁽³⁾ A potential Pollutant is land use involving animal waste

⁽⁴⁾ Specifically, petroleum hydrocarbons

⁽⁵⁾ Specifically, solvents

⁽⁶⁾ Bacterial indicators are routinely detected in pavement runoff

E.2 Stormwater Credits

Projects that cannot implement LID BMPs but nevertheless implement smart growth principles are potentially eligible for Stormwater Credits. Utilize Table 3-8 within the WQMP Guidance Document to identify your Project Category and its associated Water Quality Credit. If not applicable, write N/A.

Table E.2 Water Quality Credits

Qualifying Project Categories	Credit Percentage ²
N/A	
Total Credit Percentage ¹	

¹Cannot Exceed 50%

²Obtain corresponding data from Table 3-8 in the WQMP Guidance Document

E.3 Sizing Criteria

After you appropriately considered Stormwater Credits for your project, utilize Table E.3 below to appropriately size them to the DCV, or Design Flow Rate, as applicable. Please reference Chapter 3.5.2 of the WQMP Guidance Document for further information.

DMA Type/ID	DMA Area (square feet) [A]	Post- Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor	DMA Area x Runoff Factor [A] x [C]		Enter BMP Na	ime / Identif	ier Here
N/A						Design Storm Depth (in)	Minimum Design Capture Volume or Design Flow Rate (cubic feet or cfs)	Total Storm Water Credit % Reduction	Proposed Volume or Flow on Plans (cubic feet or cfs)
	A _T = Σ[A]				Σ= [D]	[E]	$[F] = \frac{[D]x[E]}{[G]}$	[F] X (1- [H])	[1]

Table E.3 Treatment Control BMP Sizing

[B], [C] is obtained as described in Section 2.3.1 from the WQMP Guidance Document

[E] is for Flow-Based Treatment Control BMPs [E] = .2, for Volume-Based Control Treatment BMPs, [E] obtained from Exhibit A in the WQMP Guidance Document

[G] is for Flow-Based Treatment Control BMPs [G] = 43,560, for Volume-Based Control Treatment BMPs, [G] = 12

[H] is from the Total Credit Percentage as Calculated from Table E.2 above

[I] as obtained from a design procedure sheet from the BMP manufacturer and should be included in Appendix 6

E.4 Treatment Control BMP Selection

Treatment Control BMPs typically provide proprietary treatment mechanisms to treat potential pollutants in runoff, but do not sustain significant biological processes. Treatment Control BMPs must have a removal efficiency of a medium or high effectiveness as quantified below:

- High: equal to or greater than 80% removal efficiency
- Medium: between 40% and 80% removal efficiency

Such removal efficiency documentation (e.g., studies, reports, etc.) as further discussed in Chapter 3.5.2 of the WQMP Guidance Document, must be included in Appendix 6. In addition, ensure that proposed Treatment Control BMPs are properly identified on the WQMP Site Plan in Appendix 1.

able L.4 Treatment control DMF Selection							
Selected Treatment	Priority Pollutant(s) of Concern to Mitigate ²	Removal Efficiency					
Control BMP Name or ID ¹	rhonty rolatant(s) of concern to witigate	Percentage ³					
BMP A-1 MWS	Sediment, Nutrients, Trash, Metals, Bacteria, Oil	Greater than or					
	& Grease, Organic Compounds, Pesticides	equal to 80%					
BMP B-1 MWS	Sediment, Nutrients, Trash, Metals, Bacteria, Oil	Greater than or					
	& Grease, Organic Compounds, Pesticides	equal to 80%					
BMP C-1 MWS	Sediment, Nutrients, Trash, Metals, Bacteria, Oil	Greater than or					
	& Grease, Organic Compounds, Pesticides	equal to 80%					
BMP D-1 MWS	Sediment, Nutrients, Trash, Metals, Bacteria, Oil	Greater than or					
	& Grease, Organic Compounds, Pesticides	equal to 80%					

Table E.4 Treatment Control BMP Selection

¹ Treatment Control BMPs must not be constructed within Receiving Waters. In addition, a proposed Treatment Control BMP may be listed more than once if they possess more than one qualifying pollutant removal efficiency.

² Cross Reference Table E.1 above to populate this column.

³ As documented in a Co-Permittee Approved Study and provided in Appendix 6.

Section F: Hydromodification

F.1 Hydrologic Conditions of Concern (HCOC) Analysis

Once you have determined that the LID design is adequate to address water quality requirements, you will need to assess if the proposed LID Design may still create a HCOC. Review Chapters 2 and 3 (including Figure 3-7) of the WQMP Guidance Document to determine if your project must mitigate for Hydromodification impacts. If your project meets one of the following criteria which will be indicated by the check boxes below, you do not need to address Hydromodification at this time. However, if the project does not qualify for Exemptions 1, 2 or 3, then additional measures must be added to the design to comply with HCOC criteria. This is discussed in further detail below in Section F.2.

HCOC EXEMPTION 1: The Priority Development Project disturbs less than one acre. The Copermittee has the discretion to require a Project-Specific WQMP to address HCOCs on projects less than one acre on a case by case basis. The disturbed area calculation should include all disturbances associated with larger common plans of development.

Does the project qualify for this HCOC Exemption?

If Yes, HCOC criteria do not apply.

HCOC EXEMPTION 2: The volume and time of concentration¹ of storm water runoff for the postdevelopment condition is not significantly different from the pre-development condition for a 2-year return frequency storm (a difference of 5% or less is considered insignificant) using one of the following methods to calculate:

- Riverside County Hydrology Manual
- Technical Release 55 (TR-55): Urban Hydrology for Small Watersheds (NRCS 1986), or derivatives thereof, such as the Santa Barbara Urban Hydrograph Method
- Other methods acceptable to the Co-Permittee

Does the project qualify for this HCOC Exemption?

🗌 Y 🛛 🕅 N

Ν

Y

If Yes, report results in Table F.1 below and provide your substantiated hydrologic analysis in Appendix 7.

	2 year – 24 hour		
	Pre-condition	Post-condition	% Difference
Time of Concentration	N/A	N/A	N/A
Volume (Cubic Feet)	N/A	N/A	N/A

Table F.1 Hydrologic Conditions of Concern Summary

¹ Time of concentration is defined as the time after the beginning of the rainfall when all portions of the drainage basin are contributing to flow at the outlet.

HCOC EXEMPTION 3: All downstream conveyance channels to an adequate sump (for example, Prado Dam, Lake Elsinore, Canyon Lake, Santa Ana River, or other lake, reservoir or naturally erosion resistant feature) that will receive runoff from the project are engineered and regularly maintained to ensure design flow capacity; no sensitive stream habitat areas will be adversely affected; or are not identified on the Co-Permittees Hydromodification Susceptibility Maps.

Does the project qualify for this HCOC Exemption? \square Y

If Yes, HCOC criteria do not apply and note below which adequate sump applies to this HCOC qualifier:

N

All downstream receiving waters from the project are engineered and regularly maintained and drains to Canyon Lake and Lake Elsinore.

F.2 HCOC Mitigation

If none of the above HCOC Exemption Criteria are applicable, HCOC criteria is considered mitigated if they meet one of the following conditions:

- a. Additional LID BMPS are implemented onsite or offsite to mitigate potential erosion or habitat impacts as a result of HCOCs. This can be conducted by an evaluation of site-specific conditions utilizing accepted professional methodologies published by entities such as the California Stormwater Quality Association (CASQA), the Southern California Coastal Water Research Project (SCCRWP), or other Co-Permittee approved methodologies for site-specific HCOC analysis.
- b. The project is developed consistent with an approved Watershed Action Plan that addresses HCOC in Receiving Waters.
- c. Mimicking the pre-development hydrograph with the post-development hydrograph, for a 2year return frequency storm. Generally, the hydrologic conditions of concern are not significant, if the post-development hydrograph is no more than 10% greater than pre-development hydrograph. In cases where excess volume cannot be infiltrated or captured and reused, discharge from the site must be limited to a flow rate no greater than 110% of the predevelopment 2-year peak flow.

Be sure to include all pertinent documentation used in your analysis of the items a, b or c in Appendix 7.

Section G: Source Control BMPs

Source control BMPs include permanent, structural features that may be required in your project plans — such as roofs over and berms around trash and recycling areas — and Operational BMPs, such as regular sweeping and "housekeeping", that must be implemented by the site's occupant or user. The MEP standard typically requires both types of BMPs. In general, Operational BMPs cannot be substituted for a feasible and effective permanent BMP. Using the Pollutant Sources/Source Control Checklist in Appendix 8, review the following procedure to specify Source Control BMPs for your site:

- 1. *Identify Pollutant Sources*: Review Column 1 in the Pollutant Sources/Source Control Checklist. Check off the potential sources of Pollutants that apply to your site.
- Note Locations on Project-Specific WQMP Exhibit: Note the corresponding requirements listed in Column 2 of the Pollutant Sources/Source Control Checklist. Show the location of each Pollutant source and each permanent Source Control BMP in your Project-Specific WQMP Exhibit located in Appendix 1.
- 3. **Prepare a Table and Narrative:** Check off the corresponding requirements listed in Column 3 in the Pollutant Sources/Source Control Checklist. In the left column of Table G.1 below, list each potential source of runoff Pollutants on your site (from those that you checked in the Pollutant Sources/Source Control Checklist). In the middle column, list the corresponding permanent, Structural Source Control BMPs (from Columns 2 and 3 of the Pollutant Sources/Source Control Checklist) used to prevent Pollutants from entering runoff. **Add additional narrative** in this column that explains any special features, materials or methods of construction that will be used to implement these permanent, Structural Source Control BMPs.
- 4. Identify Operational Source Control BMPs: To complete your table, refer once again to the Pollutant Sources/Source Control Checklist. List in the right column of your table the Operational BMPs that should be implemented as long as the anticipated activities continue at the site. Copermittee stormwater ordinances require that applicable Source Control BMPs be implemented; the same BMPs may also be required as a condition of a use permit or other revocable Discretionary Approval for use of the site.

Potential Sources of Runoff pollutants	Permanent Structural Source Control BMPs	Operational Source Control BMPs
On-site storm drain inlets	Mark all inlets with the words "Only Rain Down the Storm Drain" or similar. Catch Basin markers may be available from the Riverside County Flood Control and Water Conservation District, call 951.955.1200 to verify.	 Maintain and periodically repaint or replace inlet markings. Provide stormwater pollution prevention information to new site, owners, lessees, or operators. See applicable operational BMPs in Fact Sheet SC-44, "Drainage System Maintenance," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com Include the following in lease agreements: "Tenant shall not allow anyone to discharge anything to storm drains or to store or deposit

Table G.1 Permanent and Operational Source Control Measures

Potential Sources of	Permanent Structural Source	Operational Source Control BMPs
Runoff pollutants	Control BMPs	
		materials so as to create a potential discharge to storm drains."
Need for indoor & structural pest control	Doors will always remain closed.	Provide Integrated Pest Management (IPM) information to owners, lessees, and operators.
Landscape/Outdoor Pesticide Use	 State that all final landscape plans will accomplish all of the following: Preserve existing native trees, shrubs, and ground cover to the maximum extent possible. Design landscaping to minimize irrigation and runoff, to promote surface infiltration where appropriate, and to minimize the use of fertilizers and pesticides that can contribute to stormwater pollution. Where landscaped areas are used to retain or detain stormwater, specify plants that are tolerant of saturated soil conditions. Consider using pest- resistant plants, especially adjacent to hardscape. To ensure successful establishment, select plants appropriate to site soils, slopes, climate, sun, wind, rain, land use, air movement, ecological consistency, and plant interactions. 	 Maintain landscaping using minimum or no pesticides. See applicable operational BMPs in "What you should know forLandscaping and Gardening" at <u>http://rcflood.org/stormwater/</u> Provide IPM information to new owners, lessees and operators.
Refuse Areas	 Refuse will be handled with Refuse Areas that will have covered receptacles. These are located on the west side of the project adjacent to truck parking. 	There will be adequate number of receptacles for the project site. Receptacles will be inspected regularly. Repair or replacement of leaky receptacles as needed. Receptacles will be covered at all times. Dumping of liquid or hazardous wastes is strictly prohibited. "No hazardous materials" signs will be posted at refuse areas. Litter will be inspected and picked up daily. Spill control materials will be available on-site. See Fact

Potential Sources of Runoff pollutants	Permanent Structural Source Control BMPs	Operational Source Control BMPs
	 Signs will be posted on or near dumpsters with the words "Do not dump hazardous materials here" or similar 	Sheet SC-34, "Waste Handling and Disposal" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com
Industrial processes	All process activities to be performed indoors. No processes to drain to exterior or to storm drain system.	 See Fact Sheet SC-10, "Non-Stormwater Discharges" in the CASQA Stormwater Quality Handbooks at <u>www.cabmphandbooks.com</u> See the brochure "Industrial & Commercial Facilities Best Management Practices for: Industrial, Commercial Facilities" at http://rcflood.org/stormwater/
Loading Docks		 Move loaded and unloaded items indoors as soon as possible. See Fact Sheet SC-30, "Outdoor Loading and Unloading," in the CASQA Stormwater Quality Handbooks at <u>www.cabmphandbooks.com</u>
Plazas, sidewalks, and parking lots		Sweep plazas, sidewalks, and parking lots regularly to prevent accumulation of litter and debris. Collect debris from pressure washing to prevent entry into the storm drain system. Collect washwater containing any cleaning agent or degreaser and discharge to the sanitary sewer not to a storm drain.

Section H: Construction Plan Checklist

Populate Table H.1 below to assist the plan checker in an expeditious review of your project. The first two columns will contain information that was prepared in previous steps, while the last column will be populated with the corresponding plan sheets. This table is to be completed with the submittal of your final Project-Specific WQMP.

BMP No. or ID	BMP Identifier and Description	Corresponding Plan Sheet(s)	BMP Location (Lat/Long)
BMP A-1	MWS downstream of	Plot Plan, Precise Grading Plan,	33.859364,
	underground storage system	Improvement Plan	-117.270429
BMP B-1	MWS downstream of	Plot Plan, Precise Grading Plan,	33.862192,
	underground storage system	Improvement Plan	-117.27043
BMP C-1	MWS downstream of	Plot Plan, Precise Grading Plan,	33.862611,
	underground storage system	Improvement Plan	-117.270873
BMP D-1	MWS downstream of	Plot Plan, Precise Grading Plan,	33.865623,
	underground storage system	Improvement Plan	-117.270481

 Table H.1 Construction Plan Cross-reference

Note that the updated table — or Construction Plan WQMP Checklist — is **only a reference tool** to facilitate an easy comparison of the construction plans to your Project-Specific WQMP. Co-Permittee staff can advise you regarding the process required to propose changes to the approved Project-Specific WQMP.

Section I: Operation, Maintenance and Funding

The Copermittee will periodically verify that Stormwater BMPs on your site are maintained and continue to operate as designed. To make this possible, your Copermittee will require that you include in Appendix 9 of this Project-Specific WQMP:

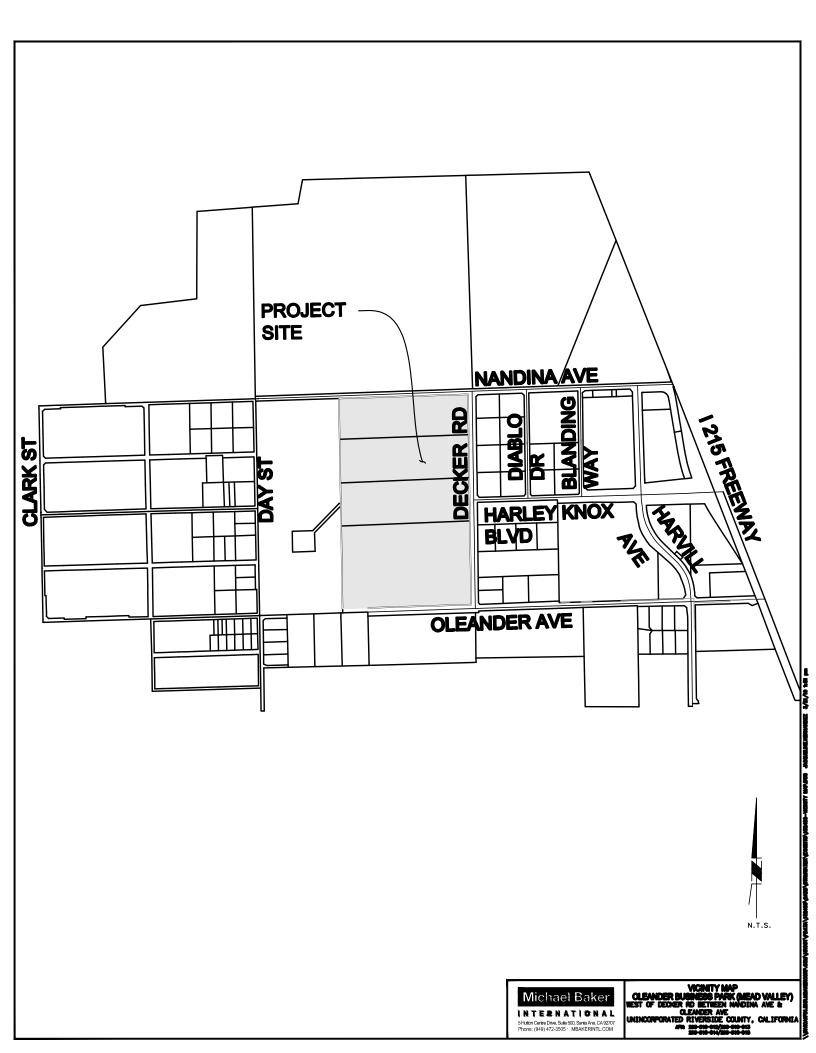
- 1. A means to finance and implement facility maintenance in perpetuity, including replacement cost.
- 2. Acceptance of responsibility for maintenance from the time the BMPs are constructed until responsibility for operation and maintenance is legally transferred. A warranty covering a period following construction may also be required.
- 3. An outline of general maintenance requirements for the Stormwater BMPs you have selected.
- 4. Figures delineating and designating pervious and impervious areas, location, and type of Stormwater BMP, and tables of pervious and impervious areas served by each facility. Geolocating the BMPs using a coordinate system of latitude and longitude is recommended to help facilitate a future statewide database system.
- 5. A separate list and location of self-retaining areas or areas addressed by LID Principles that do not require specialized O&M or inspections but will require typical landscape maintenance as noted in Chapter 5, pages 85-86, in the WQMP Guidance. Include a brief description of typical landscape maintenance for these areas.

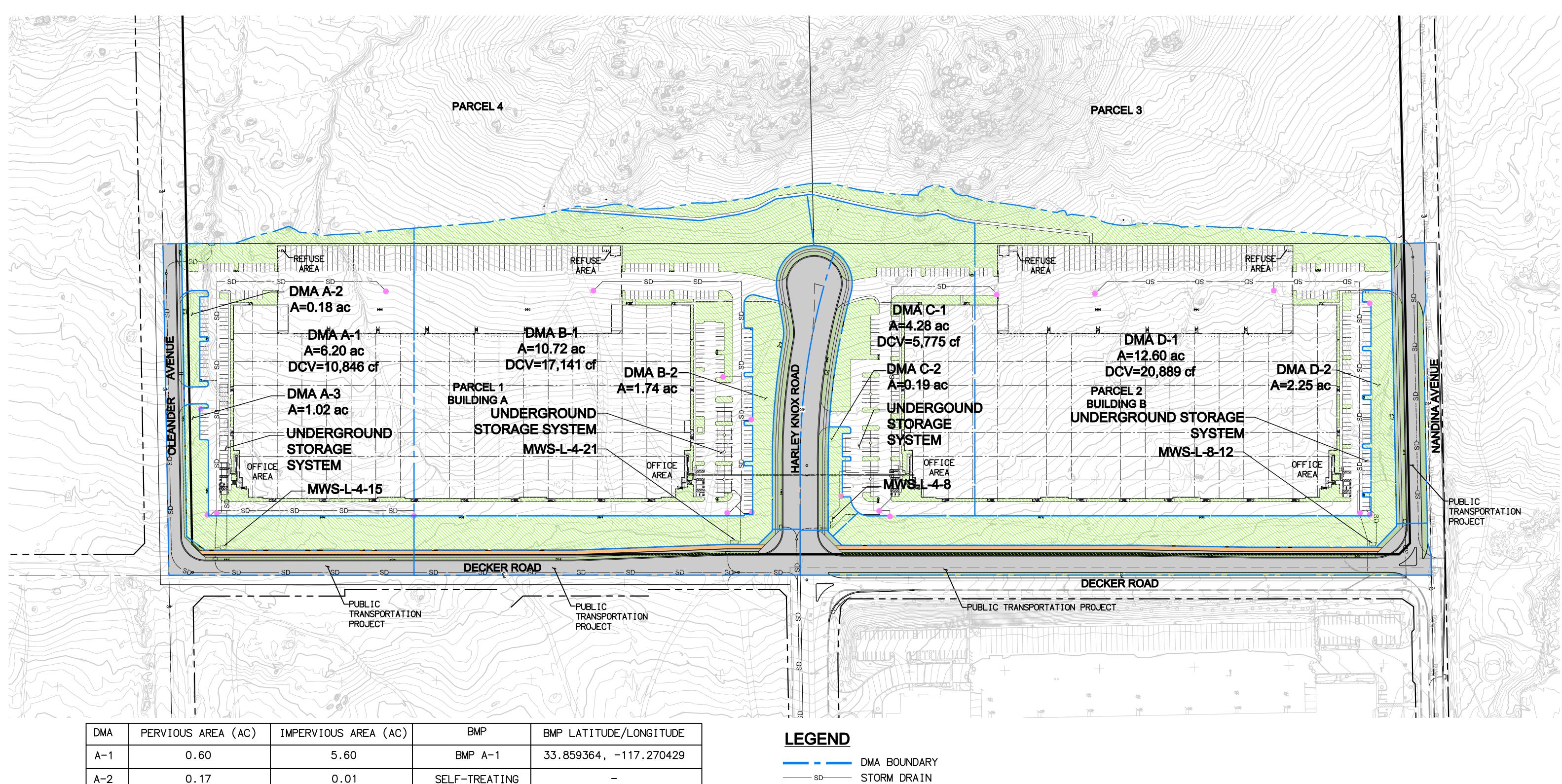
Your local Co-Permittee will also require that you prepare and submit a detailed Stormwater BMP Operation and Maintenance Plan that sets forth a maintenance schedule for each of the Stormwater BMPs built on your site. An agreement assigning responsibility for maintenance and providing for inspections and certification may also be required.

Details of these requirements and instructions for preparing a Stormwater BMP Operation and Maintenance Plan are in Chapter 5 of the WQMP Guidance Document.

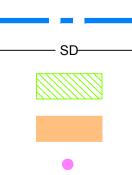
Maintenance Mechanism:

All funding will be provided by SRG. If at any time SRG sells the property, then the operation and maintenance responsibilities will be recorded against the property and will be the responsibility of the new property owner.


Will the proposed BMPs be maintained by a Home Owners' Association (HOA) or Property Owners Association (POA)?



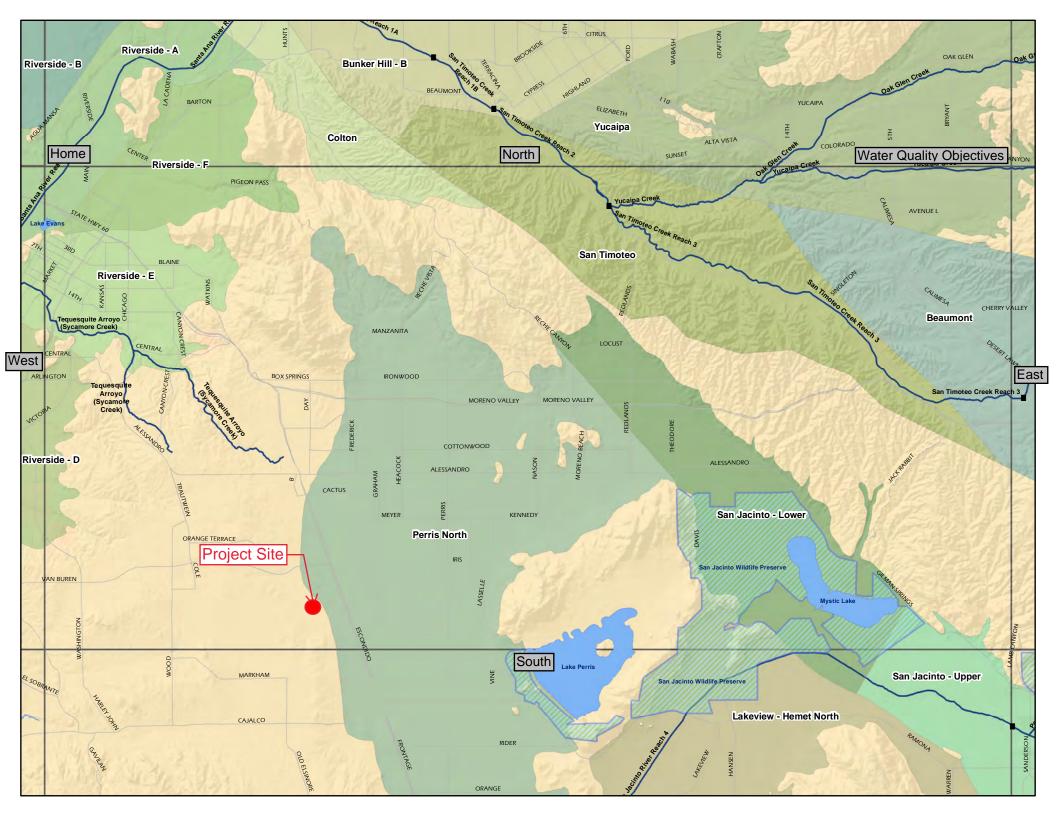
Include your Operation and Maintenance Plan and Maintenance Mechanism in Appendix 9. Additionally, include all pertinent forms of educational materials for those personnel that will be maintaining the proposed BMPs within this Project-Specific WQMP in Appendix 10.


Appendix 1: Maps and Site Plans

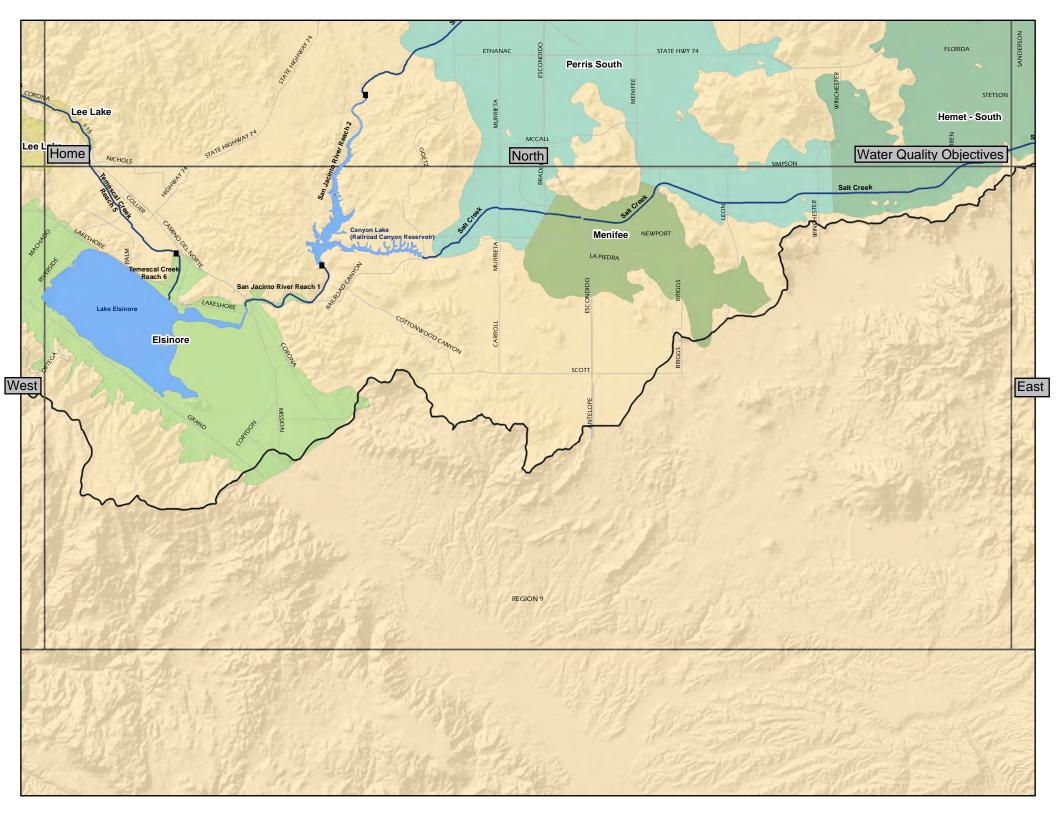
Vicinity Map, WQMP Site Plan and Receiving Waters Map

DMA	PERVIOUS AREA (AC)	IMPERVIOUS AREA (AC)	BMP	BMP LATITUDE/LONGITUDE
A-1	0.60	5.60	BMP A-1	33.859364, -117.270429
A-2	0.17	0.01	SELF-TREATING	_
A-3	1.02	0.00	SELF-TREATING	_
B-1	2.00	8.73	BMP B-1	33.862192, -117.270430
B-2	1.73	0.01	SELF-TREATING	_
C-1	1.44	2.84	BMP C-1	33.862611, -117.2708734
C-2	0.19	0.00	SELF-TREATING	_
D-1	1.90	10.70	BMP D-1	33.865623, -117.2704810
D-2	2.24	0.01	SELF-TREATING	_
	11.28	27.89	TOTAL	39.18

PERVIOUS AREA TRAIL - DECOMPOSED GRANITE

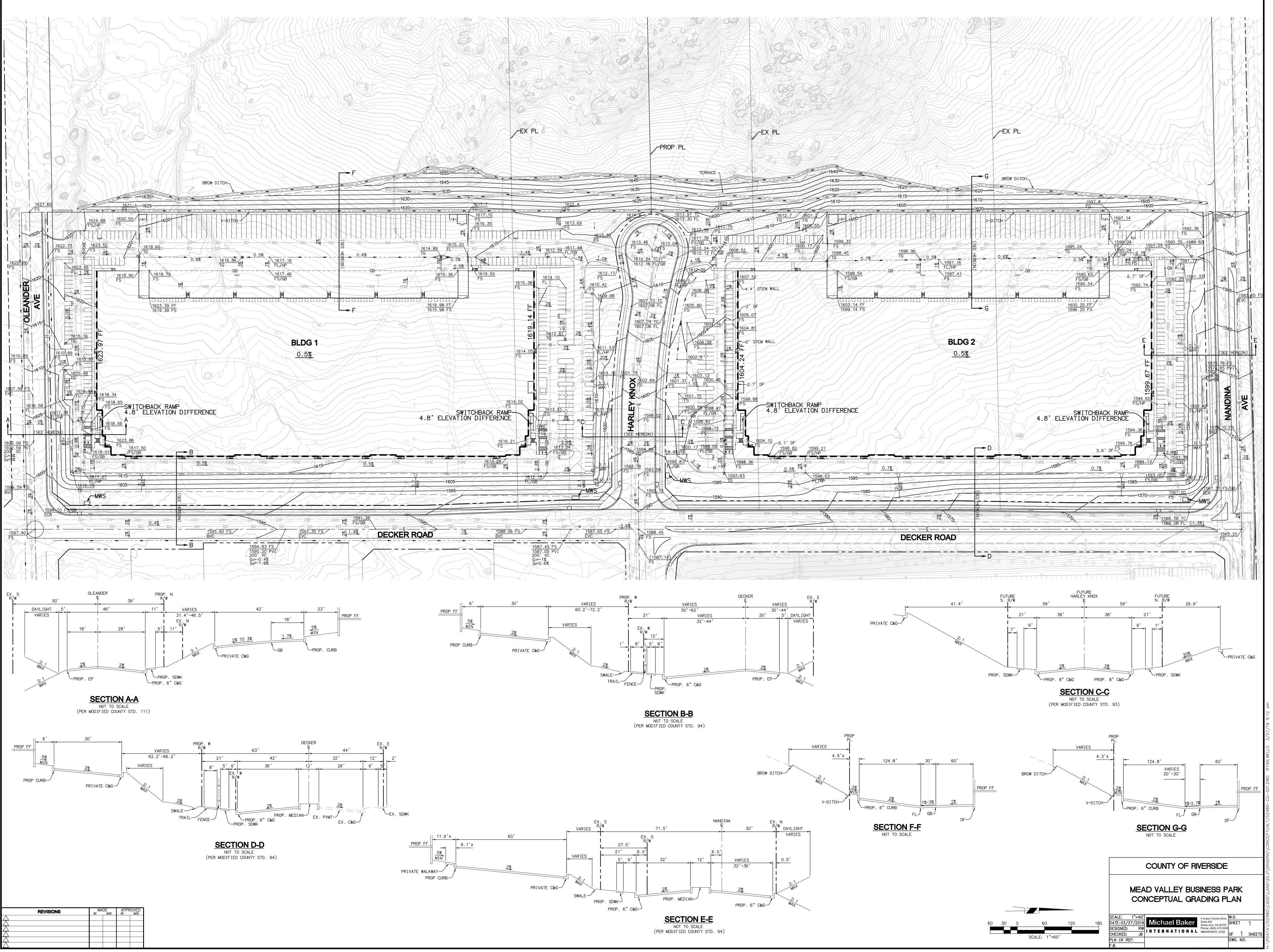

STORM DRAIN INLET STENCILNG

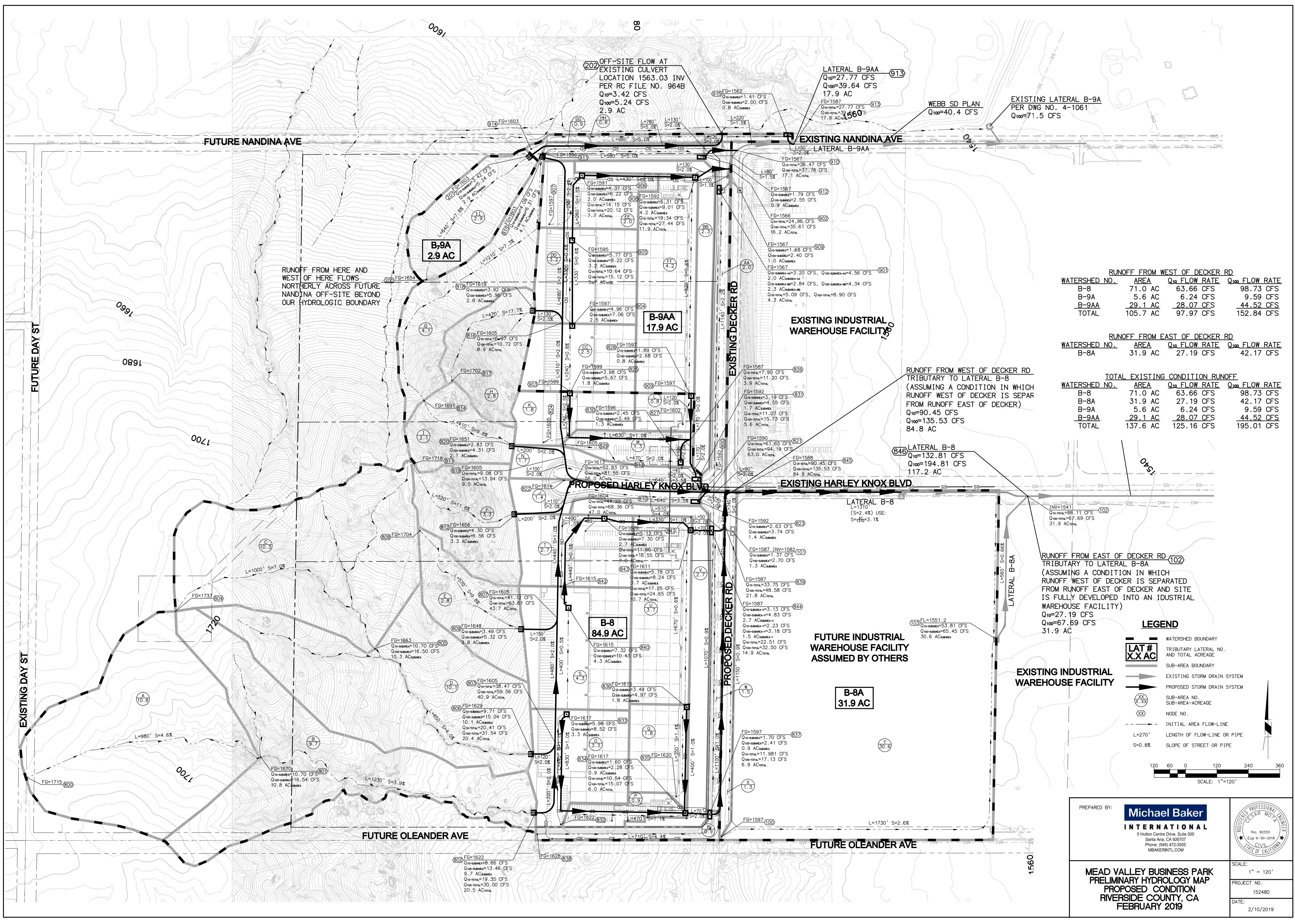


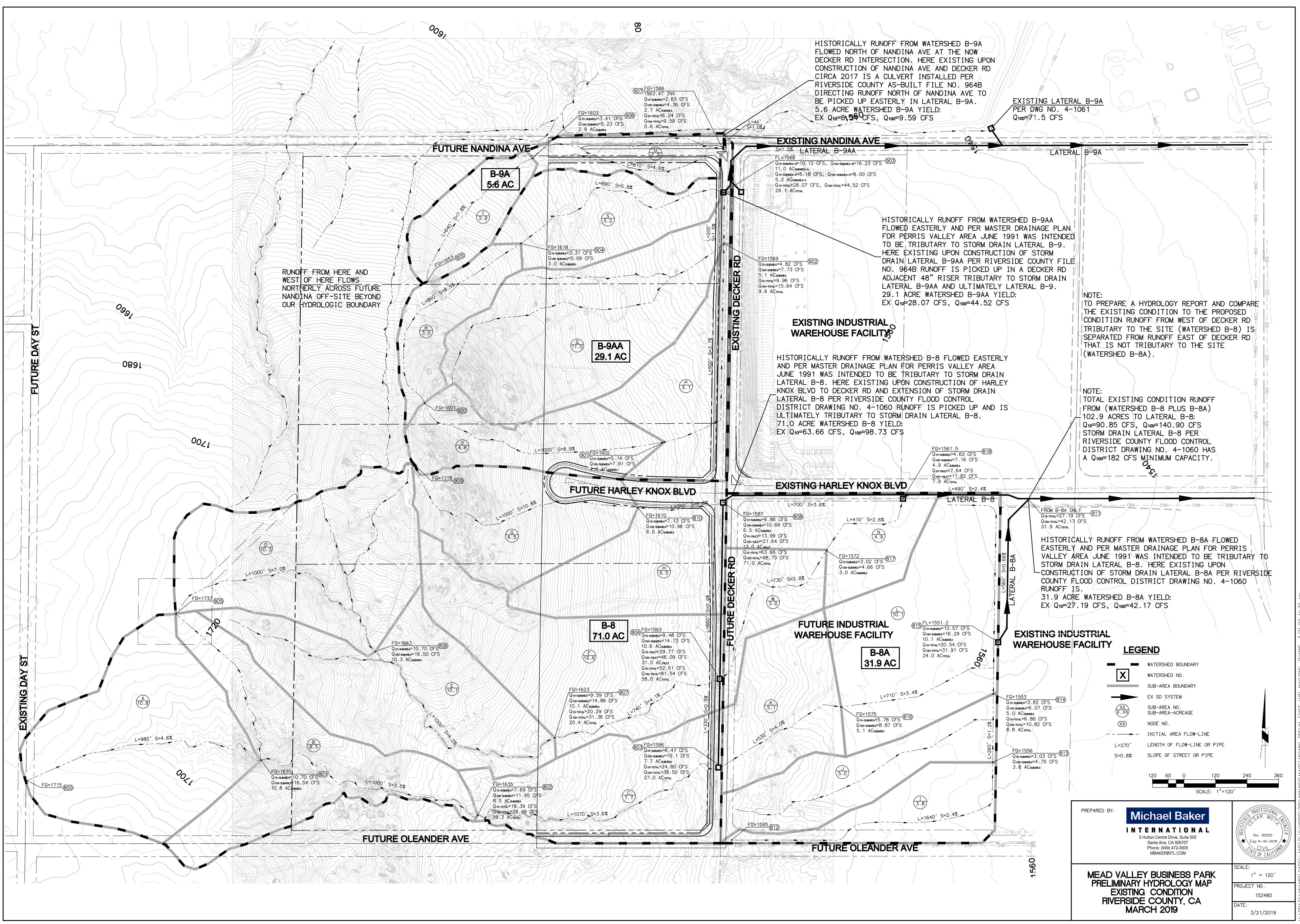


5 Hutton Centre Drive, Suite 500, Santa Ana, CA 92707 Phone: (949) 472-3505 MBAKERINTL.COM

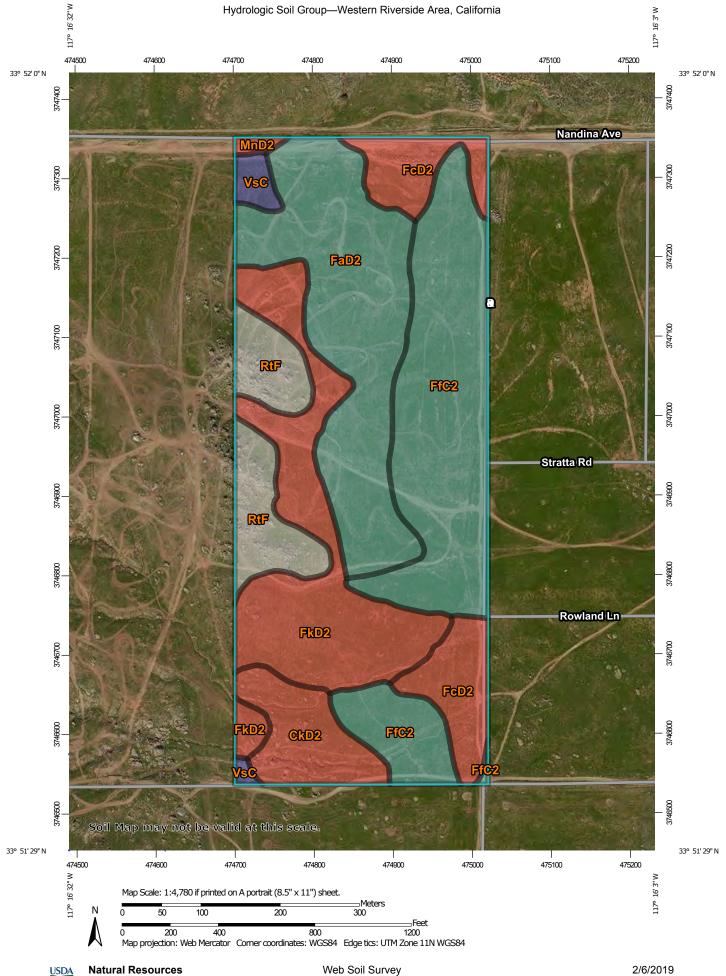
BMP EXHIBIT OLEANDER BUSINESS PARK (MEAD VALLEY) WEST OF DECKER RD BETWEEN NANDINA AVE & OLEANDER AVE UNINCORPORATED RIVERSIDE COUNTY, CALIFORNIA APN: 295-310-012/295-310-013 295-310-014/295-310-015

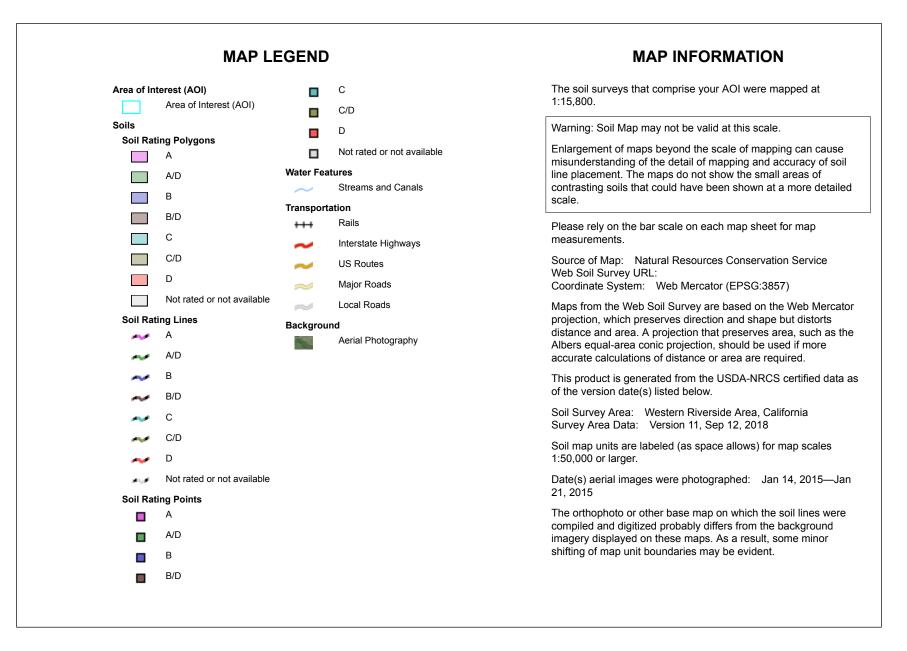





Appendix 2: Construction Plans

Grading and Drainage Plans


TA\152480\CADD\LAND\DLV\HYDR0\PRELIMINARY\MAPS\152480-PRELIM-PROP-HYD-MAP.DWG RHOWE 3/20/19 5:0


JATA\152480\CADD\LAND\DLV\HYDR0\PRELIMINARY\MAPS\152480-PRELIM-EXIST-HYD-MAP.DWG RHOWE 3/21/19 11:39

Appendix 3: Soils Information

Geotechnical Study and Other Infiltration Testing Data

Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
CkD2	Cieneba rocky sandy loam, 8 to 15 percent slopes, eroded	D	4.3	6.6%
FaD2	Fallbrook sandy loam, 8 to 15 percent slopes, eroded	С	15.9	24.5%
FcD2	Fallbrook rocky sandy loam, shallow, 8 to 15 percent slopes, eroded	D	6.1	9.5%
FfC2	Fallbrook fine sandy loam, 2 to 8 percent slopes, eroded	С	18.3	28.2%
FkD2	Fallbrook fine sandy loam, shallow, 8 to 15 percent slopes, eroded	D	13.1	20.3%
MnD2	Monserate sandy loam, shallow, 5 to 15 percent slopes, eroded	D	0.3	0.4%
RtF	Rockland		5.8	8.9%
VsC	Vista coarse sandy loam, 2 to 8 percent slopes	В	1.0	1.6%
Totals for Area of Inter	est	1	64.8	100.0%

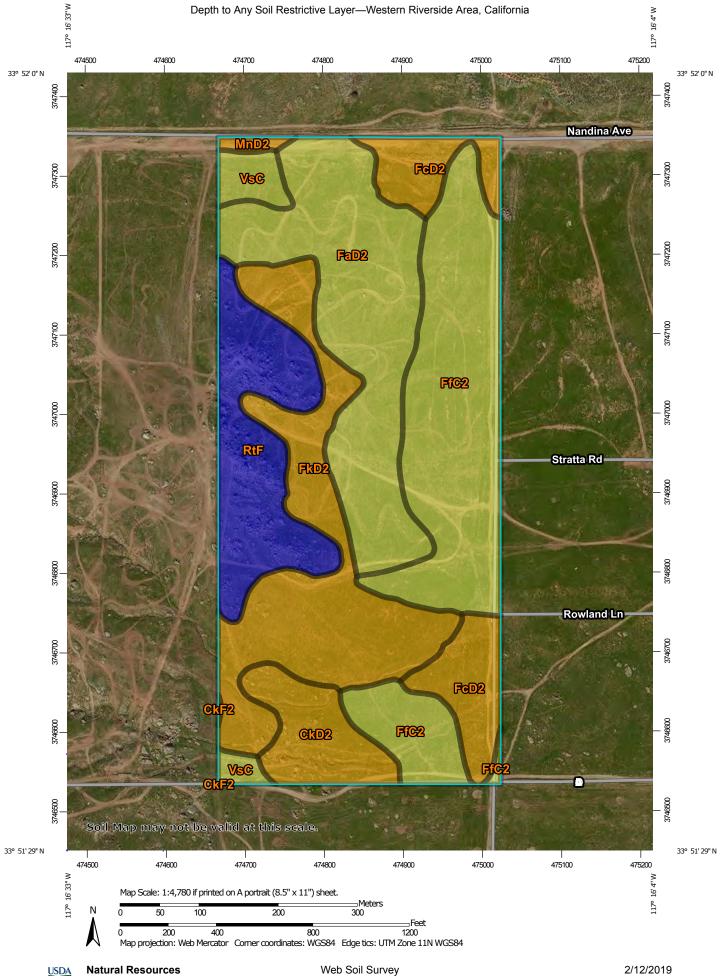
Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

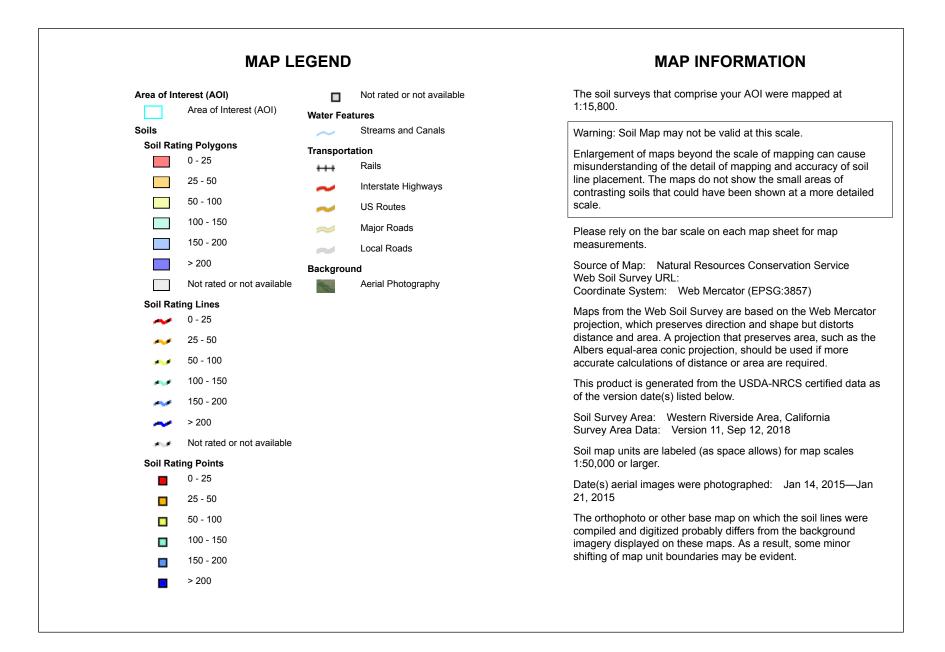
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.


Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.


Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

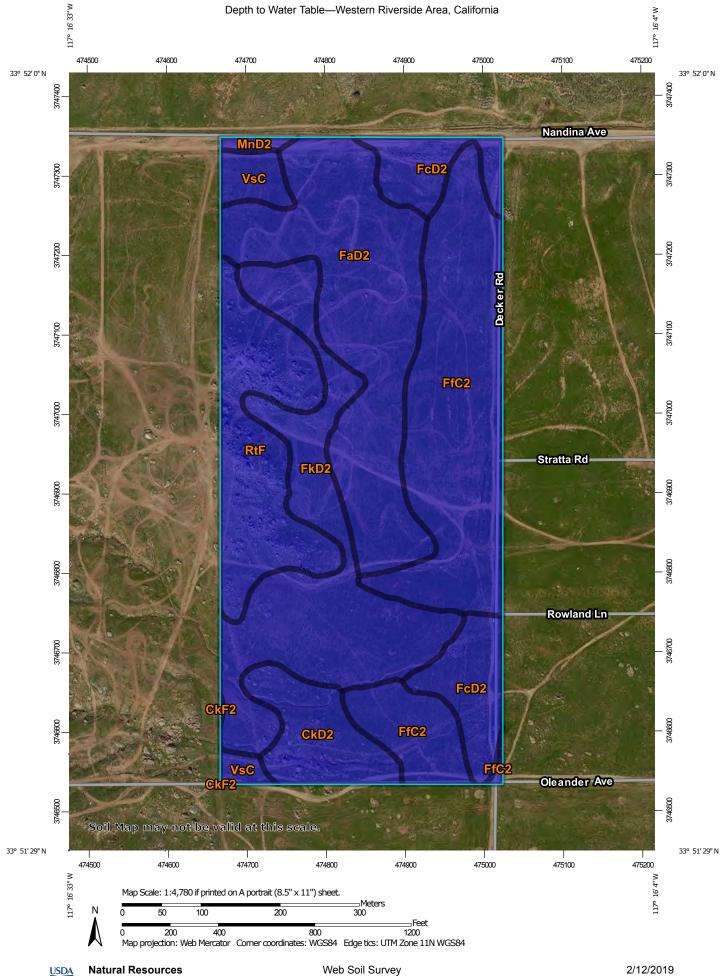
National Cooperative Soil Survey

Conservation Service

Depth to Any Soil Restrictive Layer

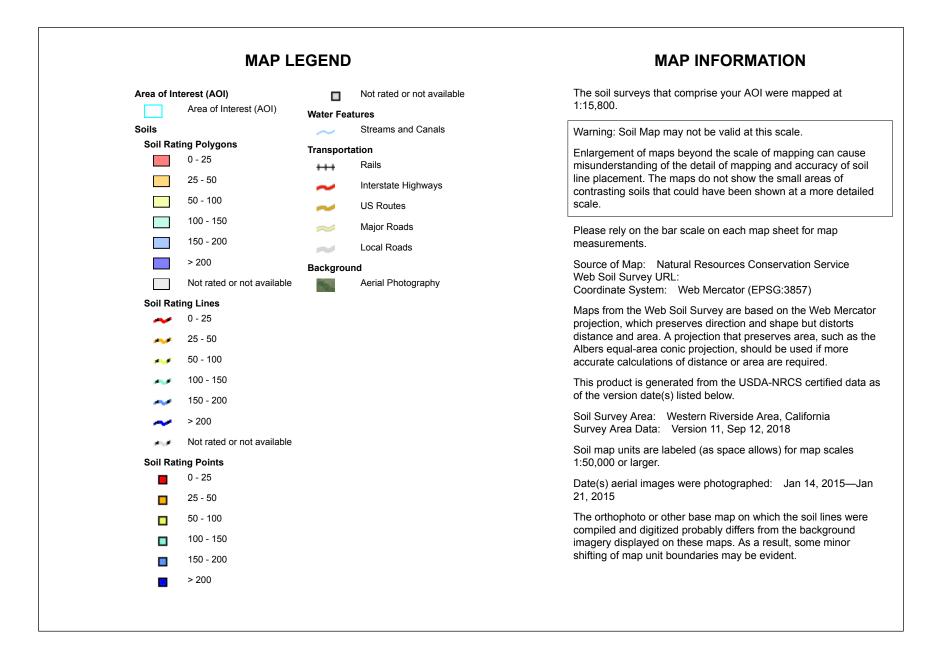
Map unit symbol	Map unit name	Rating (centimeters)	Acres in AOI	Percent of AOI
CkD2	Cieneba rocky sandy loam, 8 to 15 percent slopes, eroded	36	4.4	6.1%
CkF2	Cieneba rocky sandy loam, 15 to 50 percent slopes, eroded	36	0.0	0.0%
FaD2	Fallbrook sandy loam, 8 to 15 percent slopes, eroded	61	16.5	22.8%
FcD2	Fallbrook rocky sandy loam, shallow, 8 to 15 percent slopes, eroded	46	6.2	8.6%
FfC2	Fallbrook fine sandy loam, 2 to 8 percent slopes, eroded	61	18.8	26.0%
FkD2	Fallbrook fine sandy loam, shallow, 8 to 15 percent slopes, eroded	46	14.6	20.3%
MnD2	Monserate sandy loam, shallow, 5 to 15 percent slopes, eroded	46	0.4	0.5%
RtF	Rockland	>200	9.4	13.0%
VsC	Vista coarse sandy loam, 2 to 8 percent slopes	61	1.9	2.7%
Totals for Area of Inter	rest		72.2	100.0%

Description


A "restrictive layer" is a nearly continuous layer that has one or more physical, chemical, or thermal properties that significantly impede the movement of water and air through the soil or that restrict roots or otherwise provide an unfavorable root environment. Examples are bedrock, cemented layers, dense layers, and frozen layers.

This theme presents the depth to any type of restrictive layer that is described for each map unit. If more than one type of restrictive layer is described for an individual soil type, the depth to the shallowest one is presented. If no restrictive layer is described in a map unit, it is represented by the "> 200" depth class.

This attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.


Rating Options

Units of Measure: centimeters Aggregation Method: Dominant Component Component Percent Cutoff: None Specified Tie-break Rule: Lower Interpret Nulls as Zero: No

National Cooperative Soil Survey

Conservation Service

Depth to Water Table

Map unit symbol	Map unit name	Rating (centimeters)	Acres in AOI	Percent of AOI
CkD2	Cieneba rocky sandy loam, 8 to 15 percent slopes, eroded	>200	4.4	6.1%
CkF2	Cieneba rocky sandy loam, 15 to 50 percent slopes, eroded	>200	0.0	0.0%
FaD2	Fallbrook sandy loam, 8 to 15 percent slopes, eroded	>200	16.5	22.8%
FcD2	Fallbrook rocky sandy loam, shallow, 8 to 15 percent slopes, eroded	>200	6.2	8.6%
FfC2	Fallbrook fine sandy loam, 2 to 8 percent slopes, eroded	>200	18.8	26.0%
FkD2	Fallbrook fine sandy loam, shallow, 8 to 15 percent slopes, eroded	>200	14.6	20.3%
MnD2	Monserate sandy loam, shallow, 5 to 15 percent slopes, eroded	>200	0.4	0.5%
RtF	Rockland	>200	9.4	13.0%
VsC	Vista coarse sandy loam, 2 to 8 percent slopes	>200	1.9	2.7%
Totals for Area of Inter	rest		72.2	100.0%

Description

"Water table" refers to a saturated zone in the soil. It occurs during specified months. Estimates of the upper limit are based mainly on observations of the water table at selected sites and on evidence of a saturated zone, namely grayish colors (redoximorphic features) in the soil. A saturated zone that lasts for less than a month is not considered a water table.

This attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

Rating Options

Units of Measure: centimeters Aggregation Method: Dominant Component Component Percent Cutoff: None Specified Tie-break Rule: Lower Interpret Nulls as Zero: No Beginning Month: January Ending Month: December

Appendix 4: Historical Site Conditions

Not Applicable

Appendix 5: LID Infeasibility

LID Technical Infeasibility Analysis

Appendix 6: BMP Design Details

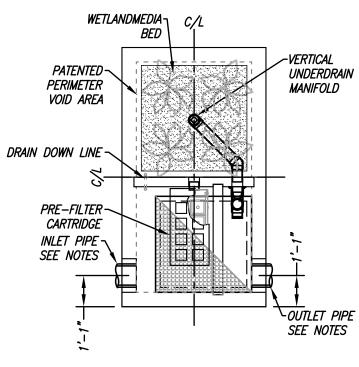
BMP Sizing, Design Details and other Supporting Documentation

Sa	anta	Ana Wate	ershed - BMP	Design Vo	olume, V	RMP	Legend:		Required Entr
			(Rev. 10-2011)				-		Calculated Ce
ompany N			eet shall <u>only</u> be used er International	in conjunction	n with BMP	designs from the	LID BMP		<u>k</u>) 3/19/2019
esigned by		Jacqueline H						Case No	
		Number/Nam			152480 -	Oleander Busi	ness Park	(Mead Valley)	
					1				
				BMPI	dentificati	on			
MP NAM	E / ID	BMP A-1	0.4				Caladatia	- Chast	
			IVIUS	t match Nam	ie/ID used (on BMP Design	Calculation	i Sheet	
				Design I	Rainfall De	epth			
		l-hour Rainfa					D ₈₅ =	0.59	inches
om the Iso	ohyetal	Map in Hand	lbook Appendix E						-
			Drain	age Manag	ement Are	a Tabulation			
		Ins	ert additional rows i				aining to th	he BMP	
				F((DMA		Design	Design Capture	Proposed Volume on
C	DMA	DMA Area	Post-Project Surface	Effective Imperivous	DMA Runoff	DMA Areas x	Storm	Volume, V _{BMP}	Plans (cubic
Ту	/pe/ID	(square feet)	Туре	Fraction, I _f	Factor	Runoff Factor	Depth (in)	(cubic feet)	feet)
	ervious Roof,								
	arking	244078.53	Roofs	1	0.89	217718			
	ot and								
	ilkway) rvious								
	ndscapi	26118.72	Ornamental Landscaping	0.1	0.11	2885			
	ng)		Lunuscuping						
_									
-									
-									
		270197.25		otal		220603	0.59	10846.3	11433
		270197.25	l ,	0101		220003	0.59	10040.3	11433

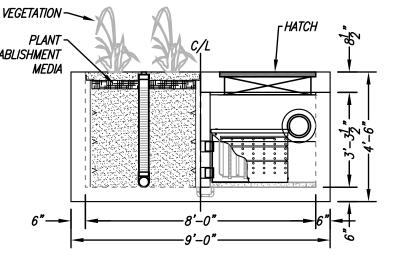
	Ana Wat	ershed - BMP ((Rev. 10-2011)	Design Vo	olume, V	ВМР	Legend:		Required Ent Calculated C	
	(Note this worksh	neet shall <u>only</u> be used	in conjunctio	n with BMP	designs from the	LID BMP		<u>k</u>)	
ompany Name		ter International						3/19/2019	
esigned by company Project	Jacqueline H	lernandez		152480 -	Oleander Busi	ness Park	Case No (Mead Valley)		
ompany i roject	Trumber/Tram			152400 -			(wiead valiey)		
			BMP I	dentificati	on				
MP NAME / II	BMP B-1								
		Mus	t match Nam	ne/ID used o	on BMP Design	Calculatior	n Sheet		
			Design 1	Rainfall D	epth				
5th Percentile, 2	24-hour Rainfa	ll Depth.	U		1	D ₈₅ =	0.59	inches	
		lbook Appendix E				D 85-	0.57	inches	
		Dasia	ana Manan	A	a Tabulatian				
	In	sert additional rows i			a Tabulation	ainina to th	De RMP		
								Proposed	
DMA	DMA Area	Post-Project Surface	Effective	DMA Runoff	DMA Areas x	Design Storm	Design Capture Volume, V_{вмр}	Volume on Plans (cubic	
Type/ID	(square feet)	Type	Imperivous Fraction, I _f	Factor	Runoff Factor	Depth (in)	(cubic feet)	feet)	
Imperviou	5								
(Roof,	200062.20	Deefs	1	0.90	220016 4				
Parking Lot and	380063.28	Roofs	1	0.89	339016.4				
Walkway)									
Pervious (Landscap	i 86961.35	Ornamental	0.1	0.11	9605.6				
ng)	80901.55	Landscaping	0.1	0.11	9005.0				
							_		
			otal		348622	0.59	17140.6	17559	

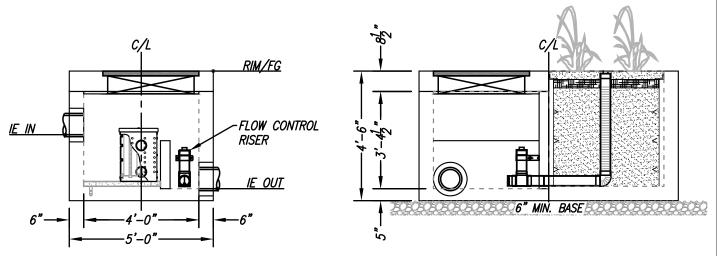
	<u>Santa</u>	Ana Wat	ershed - BMP	Design Vo	olume, V	BMP	Legend		Required Ent
	(3	Vote this 1 1	(Rev. 10-2011)	in accient	n with DMD	denier fre d	-		Calculated C
ompai			eet shall <u>only</u> be used er International	in conjunction	n with BMP	designs from the	LID BMP		<u>k</u>) 3/19/2019
esigne	ed by	Jacqueline H						Case No	
ompai	ny Project I	Number/Nam	e		152480 -	Oleander Busi	ness Park	(Mead Valley)	
				BMP I	dentificati	on			
MP N	AME / ID	BMP C-1							
			Musi	t match Nam	ne/ID used o	on BMP Design	Calculatior	n Sheet	
				Design I	Rainfall D	enth			
5th Pe	rcentile, 24	l-hour Rainfa	11 Depth.	2 CorBit		-pui	D ₈₅ =	0.59	inches
			lbook Appendix E				D ₈₅ -	0.57	inches
			Drain	age Manag	ement Are	a Tabulation			
		Ins	sert additional rows i				ainina to tl	he BMP	
									Proposed
	DMA	DMA Area	Post-Project Surface	Effective Imperivous	DMA Runoff	DMA Areas x	Design Storm	Design Capture Volume, V _{ВМР}	Volume on Plans (cubic
	Type/ID	(square feet)	Туре	Fraction, I _f	Factor	Runoff Factor	Depth (in)	(cubic feet)	feet)
	Impervious (Roof,								
	Parking	123925.28	Roofs	1	0.89	110541.3			
	Lot and								
	Walkway) Pervious								
	(Landscapi	62594.75	Ornamental Landscaping	0.1	0.11	6914.1			
	ng)		Lunuscuping						
		186520.03	7	otal		117455.4	0.59	5774.9	7554

Santa	Ana Wat	ershed - BMP	Design Vo	olume, V	RMP	Lagand		Required Entr
		(Rev. 10-2011)				Legend:		Calculated Ce
.) ompany Name		eet shall <u>only</u> be used er International	in conjunctio	n with BMP	designs from the	LID BMP		<u>k</u>) 3/19/2019
esigned by	Jacqueline H						Case No	
mpany Project				152480 -	Oleander Busi	ness Park	(Mead Valley)	
			BMP I	dentificati	on			
IP NAME / ID	BMP D-1							
		Musi	t match Nam	ie/ID used o	on BMP Design	Calculatior	n Sheet	
			Design l	Rainfall De	epth			
h Percentile, 24	4-hour Rainfa	ll Depth,				D ₈₅ =	0.59	inches
m the Isohyetal	Map in Hand	lbook Appendix E				05		
		Drair	age Manag	ement Are	a Tabulation			
	Ins	sert additional rows i				ainina to th	he RMP	
			,					Proposed
DMA	DMA Area	Post-Project Surface	Effective Imperivous	DMA Runoff	DMA Areas x	Design Storm	Design Capture Volume, V_{вмр}	Volume on Plans (cubic
Type/ID	(square feet)	Туре	Fraction, I _f	Factor	Runoff Factor	Depth (in)	(cubic feet)	feet)
Impervious								
(Roof, Parking	466030.75	Roofs	1	0.89	415699.4			
Lot and	400030.75	Noojs	1	0.05	415055.4			
Walkway)								
Pervious (Landscapi	82879.48	Ornamental	0.1	0.11	9154.7			
ng)		Landscaping	-					
	548910.23		otal		424854.1	0.59	20888.7	22662


	SITE SPEC	IFIC DATA	
PROJECT NUMBE	TR		
ORDER NUMBER			
PROJECT NAME			
PROJECT LOCATI	ON		
STRUCTURE ID			
	TREATMENT	REQUIRED	
VOLUME B	ASED (CF)	FLOW BAS	ED (CFS)
TREATMENT HGL			
PEAK BYPASS R	EQUIRED (CFS) –	IF APPLICABLE	
PIPE DATA	<i>I.E</i> .	MATERIAL	DIAMETER
INLET PIPE 1			
INLET PIPE 2			
OUTLET PIPE			
	PRETREATMENT	BIOFILTRATION	DISCHARGE
RIM ELEVATION			
SURFACE LOAD	PEDESTRIAN	OPEN PLANTER	PEDESTRIAN
FRAME & COVER	36" X 36"	N/A	N/A
WETLANDMEDIA V	OLUME (CY)		TBD
ORIFICE SIZE (D	IA. INCHES)		TBD

INSTALLATION NOTES


- 1. CONTRACTOR TO PROVIDE ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS REQUIRED TO OFFLOAD AND INSTALL THE SYSTEM AND ESTABLISHMENT APPURTENANCES IN ACCORDANCE WITH THIS DRAWING AND THE MANUFACTURERS SPECIFICATIONS, UNLESS OTHERWISE STATED IN MANUFACTURERS CONTRACT.
- 2. UNIT MUST BE INSTALLED ON LEVEL BASE. MANUFACTURER RECOMMENDS A MINIMUM 6" LEVEL ROCK BASE UNLESS SPECIFIED BY THE PROJECT ENGINEER. CONTRACTOR IS RESPONSIBLE TO VERIFY PROJECT ENGINEERS RECOMMENDED BASE SPECIFICATIONS.
- CONTRACTOR TO SUPPLY AND INSTALL ALL EXTERNAL CONNECTING 4. PIPES. ALL PIPES MUST BE FLUSH WITH INSIDE SURFACE OF CONCRETE. (PIPES CANNOT INTRUDE BEYOND FLUSH). INVERT OF OUTFLOW PIPE MUST BE FLUSH WITH DISCHARGE CHAMBER FLOOR. ALL PIPES SHALL BE SEALED WATER TIGHT PER MANUFACTURERS STANDARD CONNECTION DETAIL.
- 5. CONTRACTOR RESPONSIBLE FOR INSTALLATION OF ALL RISERS, MANHOLES, AND HATCHES. CONTRACTOR TO GROUT ALL MANHOLES AND HATCHES TO MATCH FINISHED SURFACE UNLESS SPECIFIED OTHERWISE.
- 6. VEGETATION SUPPLIED AND INSTALLED BY OTHERS. ALL UNITS WITH VEGETATION MUST HAVE DRIP OR SPRAY IRRIGATION SUPPLIED AND INSTALLED BY OTHERS.
- CONTRACTOR RESPONSIBLE FOR CONTACTING BIO CLEAN FOR 7. ACTIVATION OF UNIT. MANUFACTURERS WARRANTY IS VOID WITH OUT PROPER ACTIVATION BY A BIO CLEAN REPRESENTATIVE.


GENERAL NOTES

- MANUFACTURER TO PROVIDE ALL MATERIALS UNLESS OTHERWISE NOTED. 1
- ALL DIMENSIONS, ELEVATIONS, SPECIFICATIONS AND CAPACITIES ARE SUBJECT TO 2. CHANGE. FOR PROJECT SPECIFIC DRAWINGS DETAILING EXACT DIMENSIONS, WEIGHTS AND ACCESSORIES PLEASE CONTACT BIO CLEAN.

PLAN VIEW

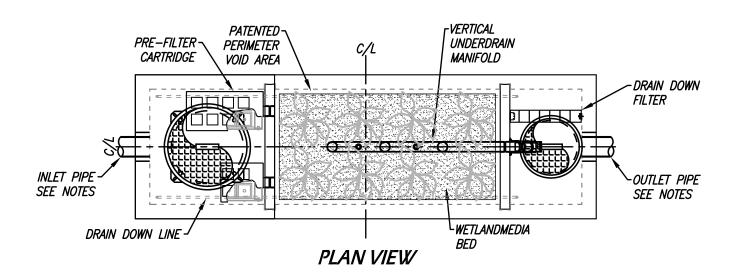
LEFT END VIEW

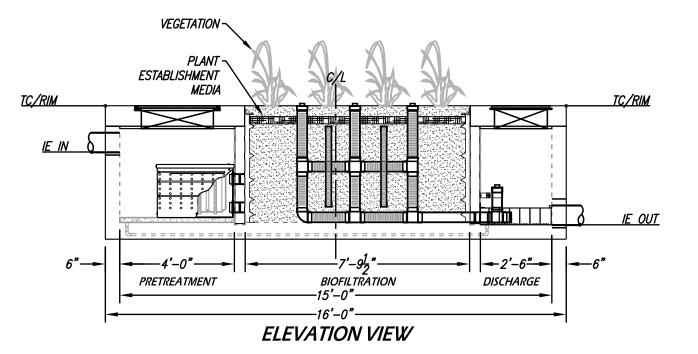
ELEVATION VIEW

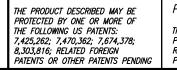
THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE SOLE PROPERTY OF FORTERRA AND ITS COMPANIES. THIS DOCUMENT, NOR ANY PART THEREOF. MAY BE USED. REPRODUCED OR MODIFIED IN ANY MANNER WITH OUT THE WRITTEN CONSENT OF FORTERRA

RIGHT END VIEW

	TREATMENT FLOW (CFS)	0.115
[OPERATING HEAD (FT)	3.4
	PRETREATMENT LOADING RATE (GPM/SF)	2.0
	WETLAND MEDIA LOADING RATE (GPM/SF)	1.0
an ompany	<i>MWS-L-4-8-V</i> STORMWATER BIOFILTRATION STANDARD DETAIL	SYSTEM

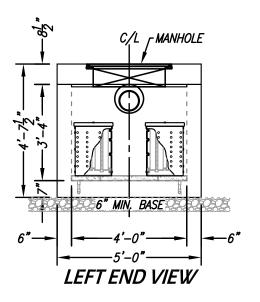

		IFIC DATA	
PROJECT NAME			
PROJECT LOCATI	ON		
STRUCTURE ID			
	TREATMENT	REQUIRED	
VOLUME B	ASED (CF)	FLOW BAS	ED (CFS)
TREATMENT HGL	AVAILABLE (FT)		
PEAK BYPASS R	EQUIRED (CFS) –	IF APPLICABLE	
PIPE DATA	<i>I.E.</i>	MATERIAL	DIAMETER
INLET PIPE 1			
INLET PIPE 2			
OUTLET PIPE			
	PRETREATMENT	BIOFILTRATION	DISCHARGE
RIM ELEVATION			
SURFACE LOAD	PARKWAY	OPEN PLANTER	PARKWAY
FRAME & COVER	ø30"	N/A	ø24"
WETLANDMEDIA V	4.30		
WETLANDMEDIA L	TBD		
ORIFICE SIZE (D	IA. INCHES)		ø1.89"
MAXIMUM PICK	WEIGHT (LBS)		31000

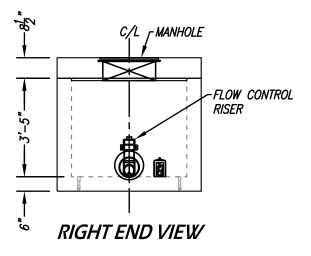

INSTALLATION NOTES


- 1. CONTRACTOR TO PROVIDE ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS REQUIRED TO OFFLOAD AND INSTALL THE SYSTEM AND APPURTENANCES IN ACCORDANCE WITH THIS DRAWING AND THE MANUFACTURERS SPECIFICATIONS, UNLESS OTHERWISE STATED IN MANUFACTURERS CONTRACT.
- 2. UNIT MUST BE INSTALLED ON LEVEL BASE. MANUFACTURER RECOMMENDS A MINIMUM 6" LEVEL ROCK BASE UNLESS SPECIFIED BY THE PROJECT ENGINEER. CONTRACTOR IS RESPONSIBLE TO VERIFY PROJECT ENGINEERS RECOMMENDED BASE SPECIFICATIONS.
- 3. ALL PIPES MUST BE FLUSH WITH INSIDE SURFACE OF CONCRETE. (PIPES CANNOT INTRUDE BEYOND FLUSH). INVERT OF OUTFLOW PIPE MUST BE FLUSH WITH DISCHARGE CHAMBER FLOOR. ALL GAPS AROUND PIPES SHALL BE SEALED WATER TIGHT WITH A NON-SHRINK GROUT PER MANUFACTURERS STANDARD CONNECTION DETAIL AND SHALL MEET OR EXCEED REGIONAL PIPE CONNECTION STANDARDS.
- 4. CONTRACTOR TO SUPPLY AND INSTALL ALL EXTERNAL CONNECTING PIPES.
- 5. CONTRACTOR RESPONSIBLE FOR INSTALLATION OF ALL RISERS, MANHOLES, AND HATCHES. CONTRACTOR TO GROUT ALL MANHOLES AND HATCHES TO MATCH FINISHED SURFACE UNLESS SPECIFIED OTHERWISE.
- 6. DRIP OR SPRAY IRRIGATION REQUIRED ON ALL UNITS WITH VEGETATION.

GENERAL NOTES

- 1. MANUFACTURER TO PROVIDE ALL MATERIALS UNLESS OTHERWISE NOTED.
- 2. ALL DIMENSIONS, ELEVATIONS, SPECIFICATIONS AND CAPACITIES ARE SUBJECT TO CHANGE. FOR PROJECT SPECIFIC DRAWINGS DETAILING EXACT DIMENSIONS, WEIGHTS AND ACCESSORIES PLEASE CONTACT MANUFACTURER.





PROPRIETARY AND CONFIDENTIAL:

THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF MODULAR WETLANDS SYSTEMS. ANY REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITTEN PERMISSION OF MODULAR WETLANDS SYSTEMS IS PROHIBITED.

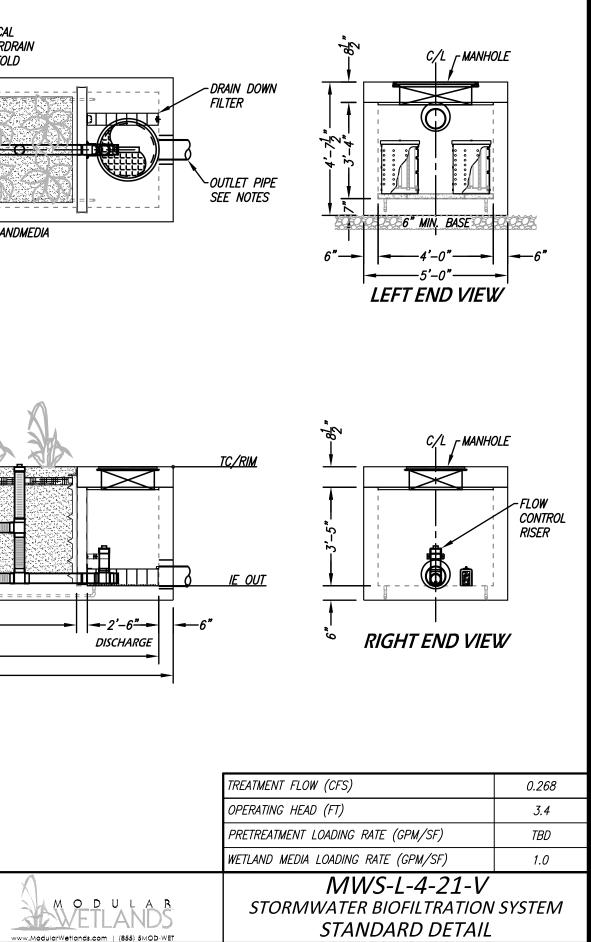


TREATMENT FLOW (CFS)	0.175
OPERATING HEAD (FT)	3.4
PRETREATMENT LOADING RATE (GPM/SF)	TBD
WETLAND MEDIA LOADING RATE (GPM/SF)	1.0
MWS-L-4-15-V	
STORMWATER BIOFILTRATION	SYSTEM
STANDARD DETAIL	

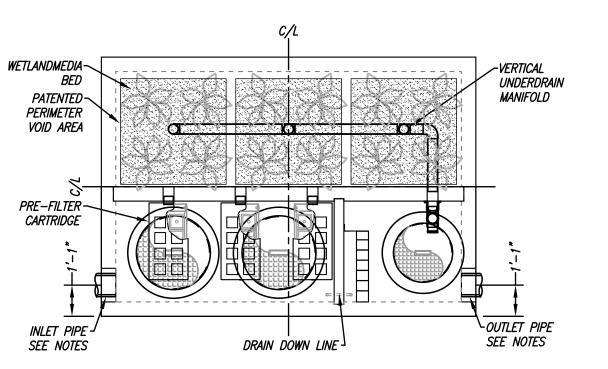
		IFIC DATA	
PROJECT NAME			
PROJECT LOCATI	ON		
STRUCTURE ID			
	TREATMENT	REQUIRED	
VOLUME B	ASED (CF)	FLOW BAS	ED (CFS)
TREATMENT HGL	AVAILABLE (FT)		
PEAK BYPASS R	EQUIRED (CFS) –	IF APPLICABLE	
PIPE DATA	<i>I.E.</i>	MATERIAL	DIAMETER
INLET PIPE 1			
INLET PIPE 2			
OUTLET PIPE			
	PRETREATMENT	BIOFILTRATION	DISCHARGE
RIM ELEVATION			
SURFACE LOAD	PARKWAY	OPEN PLANTER	PARKWAY
FRAME & COVER	ø30"	N/A	ø24"
WETLANDMEDIA	7.63		
WETLANDMEDIA L	TBD		
ORIFICE SIZE (D	IA. INCHES)		ø2.34"
MAXIMUM PICK	WEIGHT (LBS)		43000

I NOVEDI EUGIIII	011			
STRUCTURE ID				
	TREATMENT	REQUIRED		
VOLUME B	ASED (CF)	FLOW BASED (CFS)		
TREATMENT HGL	AVAILABLE (FT)			
PEAK BYPASS R	PEQUIRED (CFS) –	IF APPLICABLE		
PIPE DATA	<i>I.E</i> .	MATERIAL	DIAMETER	
INLET PIPE 1				
INLET PIPE 2				
OUTLET PIPE				
	PRETREATMENT	BIOFILTRATION	DISCHARGE	
RIM ELEVATION				
SURFACE LOAD	PARKWAY	OPEN PLANTER	PARKWAY	
FRAME & COVER	ø24"			
WETLANDMEDIA V	7.63			
WETLANDMEDIA L	TBD			
ORIFICE SIZE (D	ø2.34"			
MAXIMUM PICK	43000			
NOTES:				

INSTALLATION NOTES


- 1. CONTRACTOR TO PROVIDE ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS REQUIRED TO OFFLOAD AND INSTALL THE SYSTEM AND APPURTENANCES IN ACCORDANCE WITH THIS DRAWING AND THE MANUFACTURERS SPECIFICATIONS, UNLESS OTHERWISE STATED IN MANUFACTURERS CONTRACT.
- 2. UNIT MUST BE INSTALLED ON LEVEL BASE. MANUFACTURER RECOMMENDS A MINIMUM 6" LEVEL ROCK BASE UNLESS SPECIFIED BY THE PROJECT ENGINEER. CONTRACTOR IS RESPONSIBLE TO VERIFY PROJECT ENGINEERS RECOMMENDED BASE SPECIFICATIONS.
- 3. ALL PIPES MUST BE FLUSH WITH INSIDE SURFACE OF CONCRETE. (PIPES CANNOT INTRUDE BEYOND FLUSH). INVERT OF OUTFLOW PIPE MUST BE FLUSH WITH DISCHARGE CHAMBER FLOOR. ALL GAPS AROUND PIPES SHALL BE SEALED WATER TIGHT WITH A NON-SHRINK GROUT PER MANUFACTURERS STANDARD CONNECTION DETAIL AND SHALL MEET OR EXCEED REGIONAL PIPE CONNECTION STANDARDS.
- CONTRACTOR TO SUPPLY AND INSTALL ALL EXTERNAL CONNECTING 4. PIPES.
- CONTRACTOR RESPONSIBLE FOR INSTALLATION OF ALL RISERS, 5. MANHOLES, AND HATCHES. CONTRACTOR TO GROUT ALL MANHOLES AND HATCHES TO MATCH FINISHED SURFACE UNLESS SPECIFIED OTHERWISE.
- 6. DRIP OR SPRAY IRRIGATION REQUIRED ON ALL UNITS WITH VEGETATION.

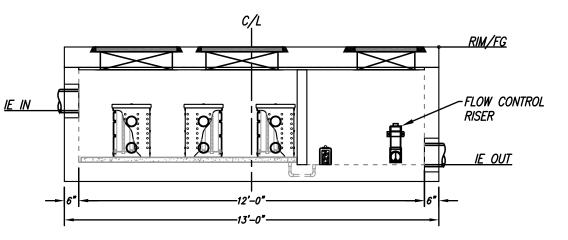
GENERAL NOTES


- MANUFACTURER TO PROVIDE ALL MATERIALS UNLESS OTHERWISE NOTED. 1
- ALL DIMENSIONS, ELEVATIONS, SPECIFICATIONS AND CAPACITIES ARE SUBJECT TO 2. CHANGE. FOR PROJECT SPECIFIC DRAWINGS DETAILING EXACT DIMENSIONS, WEIGHTS AND ACCESSORIES PLEASE CONTACT MANUFACTURER.

PATENTS OR OTHER PATENTS PENDING

PERMISSION OF MODULAR WETLANDS SYSTEMS IS PROHIBITED.

	SITE SPEC	IFIC DATA		
PROJECT NUMBE	R			
ORDER NUMBER				
PROJECT NAME				
PROJECT LOCATI	ON			
STRUCTURE ID				
	TREATMENT	REQUIRED		
VOLUME BI	4SED (CF)	FLOW BAS	ED (CFS)	
TREATMENT HGL				
PEAK BYPASS R	IF APPLICABLE			
PIPE DATA	PIPE DATA I.E. MATERIAL			
INLET PIPE 1				
INLET PIPE 2				
OUTLET PIPE				
	PRETREATMENT	BIOFILTRATION	DISCHARGE	
RIM ELEVATION				
SURFACE LOAD	PEDESTRIAN	OPEN PLANTER	PEDESTRIAN	
FRAME & COVER	2EA Ø30"	N/A	ø24"	
WETLANDMEDIA V	TBD			
ORIFICE SIZE (D	TBD			

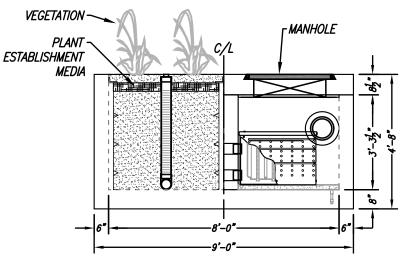

PLAN VIEW

INSTALLATION NOTES

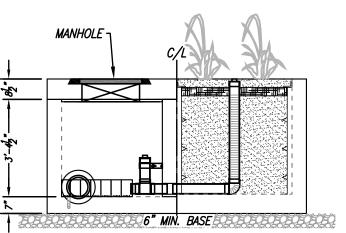
- 1. CONTRACTOR TO PROVIDE ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS REQUIRED TO OFFLOAD AND INSTALL THE SYSTEM AND APPURTENANCES IN ACCORDANCE WITH THIS DRAWING AND THE MANUFACTURERS SPECIFICATIONS, UNLESS OTHERWISE STATED IN MANUFACTURERS CONTRACT.
- 2. UNIT MUST BE INSTALLED ON LEVEL BASE. MANUFACTURER RECOMMENDS A MINIMUM 6" LEVEL ROCK BASE UNLESS SPECIFIED BY THE PROJECT ENGINEER. CONTRACTOR IS RESPONSIBLE TO VERIFY PROJECT ENGINEERS RECOMMENDED BASE SPECIFICATIONS.
- CONTRACTOR TO SUPPLY AND INSTALL ALL EXTERNAL CONNECTING 4. PIPES. ALL PIPES MUST BE FLUSH WITH INSIDE SURFACE OF CONCRETE. (PIPES CANNOT INTRUDE BEYOND FLUSH). INVERT OF OUTFLOW PIPE MUST BE FLUSH WITH DISCHARGE CHAMBER FLOOR. ALL PIPES SHALL BE SEALED WATER TIGHT PER MANUFACTURERS STANDARD CONNECTION DETAIL.
- CONTRACTOR RESPONSIBLE FOR INSTALLATION OF ALL RISERS, 5. MANHOLES, AND HATCHES. CONTRACTOR TO GROUT ALL MANHOLES AND HATCHES TO MATCH FINISHED SURFACE UNLESS SPECIFIED OTHERWISE.
- 6. VEGETATION SUPPLIED AND INSTALLED BY OTHERS. ALL UNITS WITH VEGETATION MUST HAVE DRIP OR SPRAY IRRIGATION SUPPLIED AND INSTALLED BY OTHERS.
- CONTRACTOR RESPONSIBLE FOR CONTACTING BIO CLEAN FOR 7. ACTIVATION OF UNIT. MANUFACTURERS WARRANTY IS VOID WITH OUT PROPER ACTIVATION BY A BIO CLEAN REPRESENTATIVE.

GENERAL NOTES

- MANUFACTURER TO PROVIDE ALL MATERIALS UNLESS OTHERWISE NOTED. 1
- ALL DIMENSIONS, ELEVATIONS, SPECIFICATIONS AND CAPACITIES ARE SUBJECT TO 2. CHANGE. FOR PROJECT SPECIFIC DRAWINGS DETAILING EXACT DIMENSIONS, WEIGHTS AND ACCESSORIES PLEASE CONTACT BIO CLEAN.

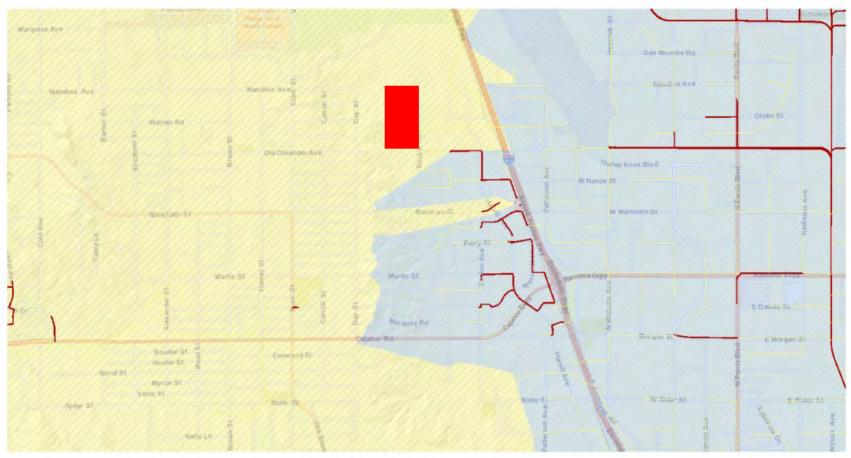

PROPRIETARY AND CONFIDENTIAL:

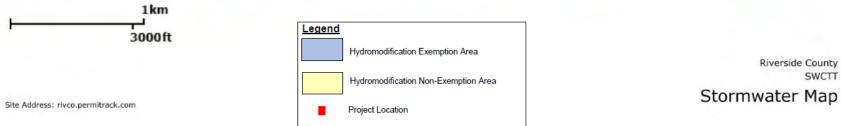
ELEVATION VIEW


VETLANDS

THIS PRODUCT MAY BE PROTECTED BY ONE OR MORE O THE FOLLOWING US PATENTS: 7,475,262; 7,470,362; 7,674,378; 8,303,816; RELATED FOREIGN PATENTS OR OTHER PATENTS PENDING

LEFT END VIEW




RIGHT END VIEW

	PRETREATMENT LOADING RATE (GPM/SF) WETLAND MEDIA LOADING RATE (GPM/SF) MWS-L-8-12-V	2.0 1.0					
an Company	STORMWATER BIOFILTRATION SYSTEM						

Appendix 7: Hydromodification

Supporting Detail Relating to Hydrologic Conditions of Concern

Receiving Waters and Susceptibility to Hydromodification

Nandina ave

Perris Valley MDP Lateral B-9 \rightarrow Perris Valley Channel Lateral B (EEM) \rightarrow Proposed District Facilities (to be engineered) \rightarrow Perris Valley Channel (EEM) \rightarrow San Jacinto River Reach 3 (EEM) \rightarrow Canyon Lake \rightarrow San Jacinto River Reach 1 \rightarrow Lake Elsinore

Harley Knox Blvd

Perris Valley MDP Lateral B-8 \rightarrow Perris Valley Channel Lateral B (EEM) \rightarrow Proposed District Facilities (to be engineered) \rightarrow Perris Valley Channel (EEM) \rightarrow San Jacinto River Reach 3 (EEM) \rightarrow Canyon Lake \rightarrow San Jacinto River Reach 1 \rightarrow Lake Elsinore

Oleander Ave

Perris Valley MDP Lines E-10 and F (EFHM) \rightarrow Proposed District Facilities (to be engineered) \rightarrow Perris Valley Channel Lateral B (EFHM) \rightarrow Perris Valley Channel (EEM) \rightarrow San Jacinto River Reach 3 (EEM) \rightarrow **Canyon Lake** \rightarrow San Jacinto River Reach 1 \rightarrow Lake Elsinore

According to the Hydromodifcation Susceptibility Documentation Report and Mapping: Santa Ana Region, prepared by RBF Consulting, January 2012:

Engineered, Earthen and Maintained (EEM): This group includes constructed facilities that do not contain armoring but have been engineered to be stable systems and are verified by as-builts. The facility must also be maintained. This group is intended to be channel segments constructed for flood conveyance, which generally have a design capacity in excess of a 10-year storm event.

Engineered, Fully Hardened and Maintained (EFHM): This group includes constructed facilities that are fully armored (e.g. concrete, soil cement, rip rap rock, etc.) on three sides and verified by as-builts, aerial photographs and/or a site visit. This group includes piped and boxed stream channel segments. The facility must also, be maintained and designed based on an engineering criteria (e.g. a specific storm event.)

- 1. Not Susceptible
 - a. EFHM The risk for adverse impacts caused by Hydromodification is insignificant due to the armoring of the stream channel segment and the engineered design which would prevent erosion and degradation of the channel.
 - b. EPHM The risk for adverse impacts caused by Hydromodification is very low due to the partial armoring of the stream channel segment and the engineered design which would significantly lower the risk of erosion and degradation of the channel.
 - c. EEM The risk for adverse impacts caused by Hydromodification is low due to the engineered design of the stream channel segment which would lower the risk of erosion and degradation of the channel.

Therefore, the project site is not susceptible to hydromodification.

Appendix 8: Source Control

Pollutant Sources/Source Control Checklist

How to use this worksheet (also see instructions in Section G of the WQMP Template):

- 1. Review Column 1 and identify which of these potential sources of stormwater pollutants apply to your site. Check each box that applies.
- 2. Review Column 2 and incorporate all of the corresponding applicable BMPs in your WQMP Exhibit.
- 3. Review Columns 3 and 4 and incorporate all of the corresponding applicable permanent controls and operational BMPs in your WQMP. Use the format shown in Table G.1on page 23 of this WQMP Template. Describe your specific BMPs in an accompanying narrative, and explain any special conditions or situations that required omitting BMPs or substituting alternative BMPs for those shown here.

E SOURCES WILL BE PROJECT SITE	E THEN YOUR WOMP SHOULD INCLUDE THESE SOURCE CONTROL BMPS, AS APPLICABLE						
1 ential Sources of unoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	Per	3 rmanent Controls—List in WQMP Table and Narrative	Op	4 Derational BMPs—Include in WQMP Table and Narrative		
A. On-site storm drain inlets	☑ Locations of inlets.		Mark all inlets with the words "Only Rain Down the Storm Drain" or similar. Catch Basin Markers may be available from the Riverside County Flood Control and Water Conservation District, call 951.955.1200 to verify.		Maintain and periodically repaint or replace inlet markings. Provide stormwater pollution prevention information to new site owners, lessees, or operators. See applicable operational BMPs in Fact Sheet SC-44, "Drainage System Maintenance," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com Include the following in lease agreements: "Tenant shall not allow anyone to discharge anything to storm drains or to store or deposit materials so as to create a potential discharge to storm drains."		
B. Interior floor drains and elevator shaft sump pumps			State that interior floor drains and elevator shaft sump pumps will be plumbed to sanitary sewer.		Inspect and maintain drains to prevent blockages and overflow.		
C. Interior parking garages			State that parking garage floor drains will be plumbed to the sanitary sewer.		Inspect and maintain drains to prevent blockages and overflow.		

STORMWATER POLLUTANT SOURCES/SOURCE CONTROL CHECKLIST

	E SOURCES WILL BE PROJECT SITE	THEN YOUR WOMP SHOULD INCLUDE THESE SOURCE CONTROL BMPS, AS APPLICABLE					
1 Potential Sources of Runoff Pollutants		2 Permanent Controls—Show on WQMP Drawings		3 Permanent Controls—List in WQMP Table and Narrative		4 Operational BMPs—Include in WQM Table and Narrative	
	D1. Need for future indoor & structural pest control			ď	Note building design features that discourage entry of pests.		Provide Integrated Pest Management information to owners, lessees, and operators.
	D2. Landscape/ Outdoor Pesticide Use		Show locations of native trees or areas of shrubs and ground cover to be undisturbed and retained. Show self-retaining landscape areas, if any. Show stormwater treatment and hydrograph modification management BMPs. (See instructions in Chapter 3, Step 5 and guidance in Chapter 5.)		Where landscaped areas are used to retain or detain stormwater, specify plants that are tolerant of saturated		Maintain landscaping using minimum or no pesticides. See applicable operational BMPs in "What you should know forLandscape and Gardening" at http://rcflood.org/stormwater/Error! Hyperlink reference not valid. Provide IPM information to new owners, lessees and operators.

STORMWATER POLLUTANT SOURCES/SOURCE CONTROL CHECKLIST

	E SOURCES WILL BE PROJECT SITE		THEN YOUR WOMP SHO	JULE	D INCLUDE THESE SOURCE CONT	ROL	BMPS, AS APPLICABLE
1 Potential Sources of Runoff Pollutants		2 Permanent Controls—Show on WQMP Drawings		3 Permanent Controls—List in WQMP Table and Narrative		4 Operational BMPs—Include in WQMP Table and Narrative	
	E. Pools, spas, ponds, decorative fountains, and other water features.		Show location of water feature and a sanitary sewer cleanout in an accessible area within 10 feet. (Exception: Public pools must be plumbed according to County Department of Environmental Health Guidelines.)		If the Co-Permittee requires pools to be plumbed to the sanitary sewer, place a note on the plans and state in the narrative that this connection will be made according to local requirements.		See applicable operational BMPs in "Guidelines for Maintaining Your Swimming Pool, Jacuzzi and Garden Fountain" at http://rcflood.org/stormwater/
	F. Food service	•	For restaurants, grocery stores, and other food service operations, show location (indoors or in a covered area outdoors) of a floor sink or other area for cleaning floor mats, containers, and equipment. On the drawing, show a note that this drain will be connected to a grease interceptor before discharging to the sanitary sewer.		Describe the location and features of the designated cleaning area. Describe the items to be cleaned in this facility and how it has been sized to insure that the largest items can be accommodated.		See the brochure, "The Food Service Industry Best Management Practices for: Restaurants, Grocery Stores, Delicatessens and Bakeries" at http://rcflood.org/stormwater/ Provide this brochure to new site owners, lessees, and operators.
	G. Refuse areas	⊠∕ ⊴	Show where site refuse and recycled materials will be handled and stored for pickup. See local municipal requirements for sizes and other details of refuse areas. If dumpsters or other receptacles are outdoors, show how the designated area will be covered, graded, and paved to prevent run- on and show locations of berms to prevent runoff from the area. Any drains from dumpsters, compactors, and tallow bin areas shall be connected to a grease removal device before discharge to sanitary sewer.	đ	State how site refuse will be handled and provide supporting detail to what is shown on plans. State that signs will be posted on or near dumpsters with the words "Do not dump hazardous materials here" or similar.	G	State how the following will be implemented: Provide adequate number of receptacles. Inspect receptacles regularly; repair or replace leaky receptacles. Keep receptacles covered. Prohibit/prevent dumping of liquid or hazardous wastes. Post "no hazardous materials" signs. Inspect and pick up litter daily and clean up spills immediately. Keep spill control materials available on-site. See Fact Sheet SC-34, "Waste Handling and Disposal" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com

IF THESE SOURCES WILL BE ON THE PROJECT SITE	THEN YOUR WOMP SHOULD INCLUDE THESE SOURCE CONTROL BMPS, AS APPLICABLE		
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
☐ H. Industrial processes.	Show process area.	✓ If industrial processes are to be located on site, state: "All process activities to be performed indoors. No processes to drain to exterior or to storm drain system."	 See Fact Sheet SC-10, "Non-Stormwater Discharges" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com See the brochure "Industrial & Commercial Facilities Best Management Practices for: Industrial, Commercial Facilities" at http://rcflood.org/stormwater/

IF THESE SOURCES WILL BE ON THE PROJECT SITE	THEN YOUR WOMP SHO	DULD INCLUDE THESE SOURCE CONT	ROL BMPs, AS APPLICABLE
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
L Outdoor storage of equipment or materials. (See rows J and K for source control measures for vehicle cleaning, repair, and maintenance.)	 Show any outdoor storage areas, including how materials will be covered. Show how areas will be graded and bermed to prevent runon or run-off from area. Storage of non-hazardous liquids shall be covered by a roof and/or drain to the sanitary sewer system, and be contained by berms, dikes, liners, or vaults. Storage of hazardous materials and wastes must be in compliance with the local hazardous materials ordinance and a Hazardous Materials Management Plan for the site. 	Include a detailed description of materials to be stored, storage areas, and structural features to prevent pollutants from entering storm drains. Where appropriate, reference documentation of compliance with the requirements of Hazardous Materials Programs for: • Hazardous Waste Generation • Hazardous Materials Release Response and Inventory • California Accidental Release (CalARP) • Aboveground Storage Tank • Uniform Fire Code Article 80 Section 103(b) & (c) 1991 • Underground Storage Tank www.cchealth.org/groups/hazmat	See the Fact Sheets SC-31, "Outdoor Liquid Container Storage" and SC-33, "Outdoor Storage of Raw Materials" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com

IF THESE SOURCES WILL BE ON THE PROJECT SITE	THEN YOUR WOMP SHO	DULD INCLUDE THESE SOURCE CONT	ROL BMPS, AS APPLICABLE
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
J. Vehicle and Equipment Cleaning	 Show on drawings as appropriate: (1) Commercial/industrial facilities having vehicle/equipment cleaning needs shall either provide a covered, bermed area for washing activities or discourage vehicle/equipment washing by removing hose bibs and installing signs prohibiting such uses. (2) Multi-dwelling complexes shall have a paved, bermed, and covered car wash area (unless car washing is prohibited on-site and hoses are provided with an automatic shutoff to discourage such use). (3) Washing areas for cars, vehicles, and equipment shall be paved, designed to prevent run-on to or runoff from the area, and plumbed to drain to the sanitary sewer. (4) Commercial car wash facilities shall be designed such that no runoff from the facility is discharged to the storm drain system. Wastewater from the facility shall discharge to the sanitary sewer, or a wastewater reclamation system shall be installed. 	□ If a car wash area is not provided, describe any measures taken to discourage on-site car washing and explain how these will be enforced.	 Describe operational measures to implement the following (if applicable): Washwater from vehicle and equipment washing operations shall not be discharged to the storm drain system. Refer to "Outdoor Cleaning Activities and Professional Mobile Service Providers" for many of the Potential Sources of Runoff Pollutants categories below. Brochure can be found at http://rcflood.org/stormwater/ Car dealerships and similar may rinse cars with water only.

IF THESE SOURCES WILL BE ON THE PROJECT SITE	THEN YOUR WOMP SHO	OULD INCLUDE THESE SOURCE CONT	ROL BMPS, AS APPLICABLE
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
K. Vehicle/Equipment Repair and Maintenance	 Accommodate all vehicle equipment repair and maintenance indoors. Or designate an outdoor work area and design the area to prevent run-on and runoff of stormwater. Show secondary containment for exterior work areas where motor oil, brake fluid, gasoline, diesel fuel, radiator fluid, acid-containing batteries or other hazardous materials or hazardous wastes are used or stored. Drains shall not be installed within the secondary containment areas. Add a note on the plans that states either (1) there are no floor drains, or (2) floor drains are connected to wastewater pretreatment systems prior to discharge to the sanitary sewer and an industrial waste discharge permit will be obtained. 	 State that no vehicle repair or maintenance will be done outdoors, or else describe the required features of the outdoor work area. State that there are no floor drains or if there are floor drains, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency's requirements. State that there are no tanks, containers or sinks to be used for parts cleaning or rinsing or, if there are, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency's requirements. 	 In the Stormwater Control Plan, note that all of the following restrictions apply to use the site: No person shall dispose of, nor permit the disposal, directly or indirectly of vehicle fluids, hazardous materials, or rinsewater from parts cleaning into storm drains. No vehicle fluid removal shall be performed outside a building, nor on asphalt or ground surfaces, whether inside or outside a building, except in such a manner as to ensure that any spilled fluid will be in an area of secondary containment. Leaking vehicle fluids shall be contained or drained from the vehicle immediately. No person shall leave unattended drip parts or other open containers containing vehicle fluid, unless such containers are in use or in an area of secondary containment. Refer to "Automotive Maintenance & Car Care Best Management Practices for Auto Body Shops, Auto Repair Shops, Car Dealerships, Gas Stations and Fleet Service Operations". Brochure can be found at http://rcflood.org/stormwater/ Refer to Outdoor Cleaning Activities and Professional Mobile Service Providers for many of the Potential Sources of Runoff Pollutants categories below. Brochure can be found at http://rcflood.org/stormwater/

IF THESE SOURCES WILL BE ON THE PROJECT SITE	THEN YOUR WOMP SH	IOULD INCLUDE THESE SOURCE CONT	ROL BMPS, AS APPLICABLE
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
□ ∟. Fuel Dispensing Areas	 Fueling areas⁶ shall have impermeable floors (i.e., portland cement concrete or equivalent smooth impervious surface) that are: a) graded at the minimum slope necessary to prevent ponding and b) separated from the rest of the site by a grade break that prevents run-on of stormwater to the maximum extent practicable. Fueling areas shall be covered by a canopy that extends a minimum of ten feet in each direction from each pump. [Alternative: The fueling area must be covered and the cover's minimum dimensions must be equal to or greater than the area within the grade break or fuel dispensing area¹.] The canopy [or cover] shall not drain onto the fueling area. 		 The property owner shall dry sweep the fueling area routinely. See the Fact Sheet SD-30, "Fueling Areas" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com

⁶ The fueling area shall be defined as the area extending a minimum of 6.5 feet from the corner of each fuel dispenser or the length at which the hose and nozzle assembly may be operated plus a minimum of one foot, whichever is greater.

IF THESE SOURCES WILL BE ON THE PROJECT SITE	THEN YOUR WOMP SH	OULD INCLUDE THESE SOURCE CONT	ROL BMPS, AS APPLICABLE
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
M. Loading Docks	Show a preliminary design for the loading dock area, including roofing and drainage. Loading docks shall be covered and/or graded to minimize run-on to and runoff from the loading area. Roof downspouts shall be positioned to direct stormwater away from the loading area. Water from loading dock areas shall be drained to the sanitary sewer, or diverted and collected for ultimate discharge to the sanitary sewer.		 Move loaded and unloaded items indoors as soon as possible. See Fact Sheet SC-30, "Outdoor Loading and Unloading," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com
	 Loading dock areas draining directly to the sanitary sewer shall be equipped with a spill control valve or equivalent device, which shall be kept closed during periods of operation. Provide a roof overhang over the loading area or install door skirts (cowling) at each bay that enclose the end of the trailer. 		

IF THESE SOURCES WILL BE ON THE PROJECT SITE	THEN YOUR WQMP SHO	OULD INCLUDE THESE SOURCE CONT	ROL BMPS, AS APPLICABLE
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
N. Fire Sprinkler Test Water		Provide a means to drain fire sprinkler test water to the sanitary sewer.	 See the note in Fact Sheet SC-41, "Building and Grounds Maintenance," in the CASQA Stormwater Quality Handbooks at <u>www.cabmphandbooks.com</u>
 O. Miscellaneous Drain or Wash Water or Other Sources Boiler drain lines Condensate drain lines Rooftop equipment Drainage sumps Roofing, gutters, and trim. Other sources 		 Boiler drain lines shall be directly or indirectly connected to the sanitary sewer system and may not discharge to the storm drain system. Condensate drain lines may discharge to landscaped areas if the flow is small enough that runoff will not occur. Condensate drain lines may not discharge to the storm drain system. Rooftop equipment with potential to produce pollutants shall be roofed and/or have secondary containment. Any drainage sumps on-site shall feature a sediment sump to reduce the quantity of sediment in pumped water. Avoid roofing, gutters, and trim made of copper or other unprotected metals that may leach into runoff. Include controls for other sources as specified by local reviewer. 	

IF THESE SOURCES WILL BE ON THE PROJECT SITE	THEN YOUR WOMP SHOULD INCLUDE THESE SOURCE CONTROL BMPS, AS APPLICABLE		
1 Potential Sources of Runoff Pollutants	2 Permanent Controls—Show on WQMP Drawings	3 Permanent Controls—List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
☑ P. Plazas, sidewalks, and parking lots.			Sweep plazas, sidewalks, and parking lots regularly to prevent accumulation of litter and debris. Collect debris from pressure washing to prevent entry into the storm drain system. Collect washwater containing any cleaning agent or degreaser and discharge to the sanitary sewer not to a storm drain.

Appendix 9: Operation and Maintenance

Operation and Maintenance Plan and Documentation of Finance, Maintenance and Recording Mechanisms

Operation and Maintenance Plan and Documentation of Finance, Maintenance and Recording Mechanisms for Oleander Business Park (Mead Valley)

Riverside County, California

I. Inspection and Maintenance Log See Appendix A for Inspection and Maintenance Log Records.

II. Updates, Revisions and Errata

See Appendix B for Updates, Revisions and Errata.

III. Introduction

Oleander Business Park (Mead Valley) is a commercial development consisting of two buildings located west of Decker Road between Oleander Avenue and Nandina Avenue in Unincorporated County of Riverside. There are nine drainage management areas (DMAs) for the project site.

DMA A-1 will treat runoff from the southern portion of Building A, parking lot and offsite runoff from the west. The runoff from this DMA will discharge into the storm drain system and be stored in the underground storage system and treated by the volume based Modular Wetlands System (MWS) BMP A-1. DMA A-2 is self-treating landscaped area adjacent to Oleander Avenue. Any runoff not infiltrated will discharge onto Oleander Avenue. DMA A-3 is also a self-treating landscaped area adjacent to Oleander Avenue and Decker Road. Any runoff not infiltrated will discharge into the landscaped swale and enter the storm drain system.

DMA B-1 will treat the remaining northern portion of the Building A, parking lot and offsite runoff from the west. The runoff from this DMA will discharge into the storm drain system and be stored in the underground storage system and treated by the volume based MWS BMP B-1. DMA B-2 is self-treating landscaped area adjacent to Harley Knox Road and Decker Road. Any runoff not infiltrated will discharge into the landscaped swale and enter the storm drain system.

DMA C-1 will treat runoff from the southern portion of the Building B, parking lot and off-site runoff from the west. The runoff from this DMA will discharge into the storm drain system and be stored in the underground storage system and treated by the volume based MWS BMP C-1. DMA C-2 is self-treating landscaped area adjacent to Harley Knox Road. Any runoff not infiltrated will discharge into the landscaped swale and enter the storm drain system.

DMA D-1 will treat runoff from the northern portion of the Building B, parking lot and off-site runoff from the west. The runoff from this DMA will discharge into the storm drain system and be stored in the underground storage system and treated by the volume based MWS BMP D-1. DMA D-2 is self-treating landscaped area adjacent to Decker Road and Nandina Avenue. Any runoff not infiltrated will discharge into the landscaped swale and enter the storm drain system.

IV. Responsibility for Maintenance

a. General

Property Owner: Contact Info:

The "Storm Water Quality Management Plan and Storm Water BMP Transfer, Access and Maintenance Agreement" executed between the County of Riverside and the property owner requires that the property owner will install, implement and maintain the Modular Wetland Systems and underground storage systems. Any major maintenance to these systems should be performed by a professional contractor.

Operation and Maintenance Agreement will be provided in the O&M Plan in the Final WQMP.

The annual anticipated cost of maintenance for the Modular Wetlands Systems are as follows:

- MWS-L-4-15 \$750
- MWS-L-4-21 \$950
- MWS-L-4-8 \$550
- MWS-L-8-12 \$1,100

Each annual maintenance includes two site visits, one inspection and one full service with clean disposal and media replacement.

b. Staff Training Program

Staff and professional contractors will be trained annually.

c. Records

Maintenance/inspection records should be kept for a minimum of five years from the date of maintenance. These records should be made available to the governing municipality for inspection upon request at any time.

d. Safety

Staff and professional contractors will have safety training annually.

V. Summary of Drainage Management Areas and Stormwater BMPs

a. Drainage Areas

DMAs were explained in Section III. Introduction.

See the WQMP BMP Exhibit in Appendix C for DMAs and pervious and impervious areas.

b. Structural Post-Construction BMPs

BMP A-1 is a volume based MWS (MWS-L-4-15) that treats the stored runoff of DMA A-1 from the underground storage system located in the parking lot adjacent to Building A.

BMP B-1 is a volume based MWS (MWS-L-4-21) that treats the stored runoff of DMA B-1 from the underground storage system located in the parking lot adjacent to Building A.

BMP C-1 is a volume based MWS (MWS-L-4-8) that treats the stored runoff of DMAs C-1 from the underground storage system located in the parking lot adjacent to Building B.

BMP D-1 is a volume based MWS (MWS-L-8-12) that treats the stored runoff of DMAs D-1 from the underground storage system located in the parking lot adjacent to Building D.

See the WQMP BMP Exhibit in Appendix C for where post-construction BMPs are located.

c. Self-Treating Areas

The following DMAs are self-treating and does not require specialized maintenance beyond that of typical landscape maintenance:

- DMA A-2
- DMA A-3
- DMA B-2
- DMA C-2
- DMA D-2

See the WQMP BMP Exhibit in Appendix C for where self-treating areas are located.

VI. Stormwater BMP Design Documentation

See Appendix D for as-built drawings, product brochures and maintenance manuals of the MWS and underground storage systems.

VII. Maintenance Schedule or Matrix

Maintenance Matrix

System	Maintenance Activity	Frequency
	Remove trash from screening device. This can be	6 to 12 months
	done manually or with the use of a vacuum truck.	
	Remove sediment from separation chamber. Spray	12 to 24 months
	down pollutants accumulated on walls and	
	cartridge filters with a pressure washer. Vacuum	
	out separation chamber and remove all	
Modular Wetlands	accumulated pollutants.	
System	Replace cartridge filter media. Remove media	12 to 24 months
o you com	cages and spray down the cartridge filter to	
	remove any accumulated pollutants. Reinstall	
	media cages and fill with new media.	
	Replace drain down filter. Unlock and lift drain	12 to 24 months
	down filter housing and remove old media block.	
	Replace with new media block.	
	Trim vegetation.	6 to 12 months
	Perform inspections annually at a minimum. For	6 to 12 months
	the first year of operation, the Isolator Row should	
	be inspected every 6 months. For subsequent	
	years, the inspection should be based upon	
	previous observations of sediment deposition.	
Underground Storage	If upon visual inspection it is found that sediment	As needed
Systems (ADS	has accumulated, a stadia rod should be inserted	
StormTech or similar)	to determine the depth of sediment. When the	
	average depth of sediment exceeds 3 inches	
	throughout the length of the Isolator Row, clean-	
	out should be performed.	
	Maintain the Isolator Rows by performing the	6 to 12 months
	JetVac process and vacuum manhole sump.	

Appendix 10: Educational Materials

BMP Fact Sheets, Maintenance Guidelines and Other End-User BMP Information

Anderstanding Stormwater A Citizen's Guide to

EPA 833-B-03-002

anary 2003

or visit www.epa.gov/npdes/stormwater www.epa.gov/nps

For more information contact:

muois shi veila

Why is stormwater runof

Stormwater runoff occurs when precipitation from rain or snowmelt flows over the ground. Impervious surfaces like driveways, sidewalks, and streets prevent stormwater from naturally soaking into the ground.

The effects of pollution

Polluted stormwater runoff can have many adverse effects on plants, fish, animals, and people.

- Sediment can cloud the water and make it difficult or impossible for aquatic plants to grow. Sediment also can destroy aquatic habitats.
- Excess nutrients can cause algae blooms. When algae die, they sink to the bottom and decompose in a process that removes oxygen from the water. Fish and other aquatic organisms can't exist in water with low dissolved oxygen levels.

a problem?

Stormwater can pick up debris, chemicals, dirt, and other pollutants and flow into a storm sewer system or directly to a lake, stream, river, wetland, or coastal water. Anything that enters a storm sewer system is discharged untreated into the waterbodies we use for swimming, fishing, and providing drinking water.

- Bacteria and other pathogens can wash into swimming areas and create health hazards, often making beach closures necessary.
- Debris—plastic bags, six-pack rings, bottles, and cigarette butts—washed into waterbodies can choke, suffocate, or disable aquatic life like ducks, fish, turtles, and birds.
- Household hazardous wastes like insecticides, pesticides, paint, solvents, used motor oil, and other auto fluids can poison aquatic life. Land animals and people can become sick or die from eating diseased fish and shellfish or ingesting polluted water.

 Polluted stormwater often affects drinking water sources. This, in turn, can affect human health and increase drinking water treatment costs.

Stormwater Pollution Solutions

Septic

poorly

septic

systems

Leaking and

maintained

systems release nutrients and

viruses) that can be picked up

by stormwater and discharged

Pathogens can cause public

Inspect your system every

3 years and pump your

household hazardous

waste in sinks or toilets.

tank as necessary (every 3

pathogens (bacteria and

into nearby waterbodies.

environmental concerns.

health problems and

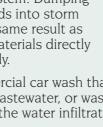
to 5 years).

Don't dispose of

Recycle or properly dispose of household products that contain chemicals, such as insecticides, pesticides, paint, solvents, and used motor oil and other auto fluids. Don't pour them onto the ground or into storm drains.

Lawn care

Excess fertilizers and pesticides applied to lawns and gardens wash off and pollute streams. In addition, yard clippings and leaves can wash


into storm drains and contribute nutrients and organic matter to streams.

- Don't overwater your lawn. Consider using a soaker hose instead of a sprinkler.
- Use pesticides and fertilizers sparingly. When use is necessary, use these chemicals in the recommended amounts. Use organic mulch or safer pest control methods whenever possible.
- Compost or mulch yard waste. Don't leave it in the street or sweep it into storm drains or streams.
- Cover piles of dirt or mulch being used in landscaping projects.

Washing your car and degreasing auto parts at home can send detergents and other contaminants through the storm sewer system. Dumping automotive fluids into storm drains has the same result as dumping the materials directly into a waterbody.

- Use a commercial car wash that treats or recycles its wastewater, or wash your car on your yard so the water infiltrates into the ground.
- Repair leaks and dispose of used auto fluids and batteries at designated drop-off or recycling locations.

Pet waste can be a major source of bacteria and excess nutrients in local waters.

 When walking your pet, remember to pick up the waste and dispose of it properly. Flushing pet waste is the best disposal method. Leaving pet waste on the ground increases public health risks by allowing harmful bacteria and nutrients to wash into the storm drain and eventually into local waterbodies.

Permeable Pavement—Traditional concrete and asphalt don't allow water to soak into the ground. Instead these surfaces rely on storm drains to divert unwanted water. Permeable pavement systems allow rain and snowmelt to soak through, decreasing stormwater runoff.

Education is essential to changing people's behavior.

Signs and markers near storm drains warn residents

that pollutants entering the drains will be carried

Rain Barrels—You can collect rainwater from rooftops in mosquitoproof containers. The water can be used later on lawn or garden areas.

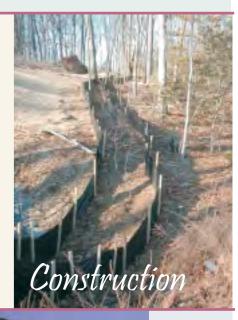
Grassy Swales—Specially

designed areas planted with native plants can provide natural places for

Rain Gardens and

rainwater to collect and soak into the ground. Rain from rooftop areas or paved areas can be diverted into these areas rather than into storm drains.

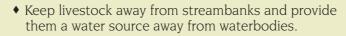
Vegetated Filter Strips—Filter strips are areas of native grass or plants created along roadways or streams. They trap the pollutants stormwater picks up as it flows across driveways and streets.



Dirt, oil, and debris that collect in parking lots and paved areas can be washed into the storm sewer system and eventually enter local waterbodies.

- Sweep up litter and debris from sidewalks, driveways and parking lots, especially around storm drains.
- Cover grease storage and dumpsters and keep them clean to avoid leaks.
- Report any chemical spill to the local hazardous waste cleanup team. They'll know the best way to keep spills from harming the environment.

Erosion controls that aren't maintained can cause excessive amounts of sediment and debris to be carried into the stormwater system. Construction vehicles can leak fuel, oil, and other harmful fluids that can be picked up by stormwater and deposited into local waterbodies.


- Divert stormwater away from disturbed or exposed areas of the construction site.
- Install silt fences, vehicle mud removal areas, vegetative cover, and other sediment and erosion controls and properly maintain them, especially after rainstorms.
- Prevent soil erosion by minimizing disturbed areas during construction projects, and seed and mulch bare areas as soon as possible.

Lack of vegetation on streambanks can lead to erosion. Overgrazed pastures can also contribute excessive amounts of sediment to local waterbodies. Excess fertilizers and pesticides can poison aquatic animals and lead to destructive algae blooms. Livestock in streams can contaminate waterways with bacteria, making them unsafe for human contact. Automotive Facilities

- Store and apply manure away from waterbodies and in accordance with a nutrient management plan.
- Vegetate riparian areas along waterways.
- Rotate animal grazing to prevent soil erosion in fields.
- Apply fertilizers and pesticides according to label instructions to save money and minimize pollution.

Improperly managed logging operations can result in erosion and sedimentation.

- Conduct preharvest planning to prevent erosion and lower costs.
- Use logging methods and equipment that minimize soil disturbance.
- Plan and design skid trails, yard areas, and truck access roads to minimize stream crossings and avoid disturbing the forest floor.
- Construct stream crossings so that they minimize erosion and physical changes to streams.
- Expedite revegetation of cleared areas.

Uncovered fueling stations allow spills to be washed into storm drains. Cars waiting to be repaired can leak fuel, oil, and other harmful fluids that can be picked up by stormwater.

- Clean up spills immediately and properly dispose of cleanup materials.
- Provide cover over fueling stations and design or retrofit facilities for spill containment.
- Properly maintain fleet vehicles to prevent oil, gas, and other discharges from being washed into local waterbodies.
- Install and maintain oil/water separators.

Stormwater Pollution

What you should know for...

Riverside County Stormwater Program Members

City of Banning (951) 922-3105

City of Beaumont (951) 769-8520

City of Moreno Valley

City of Calimesa (909) 795-9801

City of Canyon Lake (951) 244-2955

City of Cathedral City (760) 770-0340

City of Coachella (760) 398-3502

City of Corona (951) 736-2447

City of Desert Hot Springs (760) 329-6411

City of Eastvale (951) 361-0900

City of Hemet (951) 765-2300

City of Indian Wells (760) 346-2489

City of Indio (760) 391-4000

City of Jurupa Valley (951) 332-6464

City of Lake Elsinore (951) 674-3124

City of La Quinta (760) 777-7000

City of Menifee (951) 672-6777

(951) 413-3000 **City of Murrieta** (951) 304-2489

City of Norco (951) 270-5607

City of Palm Desert (760) 346-0611

City of Palm Springs (760) 323-8299

City of Perris (951) 943-6100

City of Rancho Mirage (760) 324-4511

City of Riverside (951) 826-5311

City of San Jacinto (951) 487-7330

City of Temecula (951) 694-6444

City of Wildomar (951) 677-7751

Coachella Valley Water District (760) 398-2651

County of Riverside (951) 955-1000

Riverside County Flood Control District (951) 955-1200

Industrial & Commercial Facilities

Best Management Practices (BMPS) for:

- Industrial Facilities
- Commercial Facilities

YOU can prevent Stormwater Pollution following these practices...

Industrial and Commercial Facilities

The Riverside County Stormwater Program has identified a number of Best Management Practices (BMPs) for Industrial and Commercial Facilities. These BMPs control and reduce stormwater pollutants from reaching our storm drain system and ultimately our local water bodies. City and County ordinances require businesses to use these BMPs to protect our water quality. Local cities and the County are required to verify implementation of these BMPs by performing regular facility inspections.

Prohibited Discharges

Discontinue all non-stormwater discharges to the storm drain system. It is *prohibited* to discharge any chemicals, paints, debris, wastes or wastewater into the gutter, street or storm drain.

Outdoor Storage BMPs

- Install covers and secondary containment areas for all hazardous materials and wastes stored outdoors in accordance with County and/or City standards.
- Keep all temporary waste containers covered, at all times when not in use.
- Sweep outdoor areas instead of using a hose or pressure washer.
- Move all process operations including vehicle/equipment maintenance inside of the building or under a covered and contained area.

 Wash equipment and vehicles in a contained and covered wash bay which is closed-loop or

connected to a clarifier sized to local standards and discharged to a sanitary sewer or take them to a commercial car wash.

Spills and Clean Up BMPs

- Keep the work site clean and orderly. Remove debris in a timely fashion. Sweep up the area.
- Clean up spills immediately when they occur, using dry clean up methods such as absorbent materials or sweep followed by proper disposal of materials.

- Always have a spill kit available near chemical loading dock doors and vehicle maintenance and fueling areas.
- Follow your Business Emergency Plan, as filed with the local Fire Department.
- Report all prohibited discharges and nonimplementation of BMPs to your local Stormwater Coordinator as listed on the back of this pamphlet.

• Report hazardous materials spills to 951-358-5055 or call after hours to 951-782-2973 or, if an <u>emergency</u>, call the Fire Department's Haz Mat Team at 911.

Plastic Manufacturing Facilities BMPs

AB 258 requires plastic product manufacturers to use BMPs, such as safe storage and clean-up procedures to prevent plastic pellets (nurdles) from entering the waterway. The plastic pellets are released into the environment during transporting, packaging and processing and migrate to waterways through the storm drain system. AB 258 will help protect fish and wildlife from the hazards of plastic pollution.

Training BMPs

As prescribed by your City and County Stormwater Ordinance(s), train employees in spill procedures and prohibit non-stormwater discharges to the storm drain system. Applicable BMP examples can be found at <u>www.cabmphandbooks.com</u>.

Permitting

Stormwater discharges associated with specific categories for industrial facilities are regulated by the State Water Resources Control Board through an Industrial Stormwater General Permit. A copy of this General Permit and application forms are available at: <u>www.waterboards.ca.gov</u>, select stormwater then the industrial quick link.

To report illegal dumping or for more information on stormwater pollution prevention call: 1-800-506-2555 or e-mail us at: <u>fcnpdes@rcflood.org</u>.

IRRIGATION RUNOFF

STORMWATER FACT SHEET

Report Irrigation Runoff or Stormwater Pollution: 800.506.2555

OVERWATERING

Overwatering causes irrigation runoff that may contain pollutants such as pesticides, herbicides, fertilizers, pet waste, yard waste, and sediments which can be hazardous to residents and harmful to our environment. Runoff can also serve as a transport mechanism for other pollutants already on the ground or in the curb gutter. Irrigation runoff entering the storm drain system is an illicit discharge.

BEST PRACTICES

Urban runoff begins when yards and landscaped areas are over-irrigated. Irrigation systems require regular maintenance and visual inspection of the system should be performed to prevent over-spray, leaks, and other problems that result in runoff to storm drains, curbs and gutters.

You can **prevent pollution** by conserving water on your property. Water during cooler times of the day (before 10am and after 6pm).

- Adjust sprinklers to stop overspray and runoff.
- Make needed repairs immediately.
- Use drip irrigation, soaker hoses, or micro-spray systems.
- Use an irrigation timer to pre-set watering times.
- Use a control nozzle or similar mechanism when watering by hand.
- Switch to a water-wise landscape native plants need less fertilizers, herbicides, pesticides and water.

PROTECT OUR WATERSHED

Many people think that when water flows into a storm drain it is treated, but the storm drain system and the sanitary sewer system are not connected. Everything that enters storm drains flows untreated directly into our creeks, rivers, lakes, beaches and ultimately the ocean. Storm water often contains pollutants, including chemicals, trash, and automobile fluids, all of which pollute our watershed and harm fish and wildlife.

Whether at home or work, you can help reduce pollution and improve water quality by using the above Best Management Practices (BMP's) as part of your daily clean up and maintenance routine.

...................

