

Oleander Business Park

NOISE IMPACT ANALYSIS COUNTY OF RIVERSIDE

PREPARED BY:

Bill Lawson, PE, INCE blawson@urbanxroads.com (949) 336-5979

Alex Wolfe, INCE awolfe@urbanxroads.com (949) 336-5977

AUGUST 17, 2020

10720-10 Noise Study

TABLE OF CONTENTS

TA	BLE O	F CONTENTS					
AF	APPENDICES IV						
LIS	LIST OF EXHIBITS						
			V				
LI: EV		NDREVIATED TERIVIS	. VI 1				
LA			1				
	Off-Si	te Traffic Noise Analysis	1				
	Opera	ational Noise Analysis	1				
	Const	ruction Noice Analysis	Z				
	Const	ruction Vibration Analysis	2				
	Const	ruction Blasting Analysis	2				
	Airpo	rt Land Use Compatibility	3				
	Summ	nary of CEQA Significance Findings	3				
1	INT	RODUCTION	5				
-	1 1	Site Location	е				
	1.1 1.2	Project Description	5				
	1.2 F1.1						
2	FU	NDAMENTALS	9				
	2.1	Range of Noise	9				
	2.2	Noise Descriptors	10				
	2.3	Sound Propagation	10				
	2.4 2.5	Noise Control	11				
	2.5	Land Lise Compatibility With Noise	11 11				
	2.0	Community Response to Noise	12				
	2.8	Exposure to High Noise Levels	13				
	2.9	Vibration	13				
	2.10	Blasting Fundamentals	16				
3	REG	GULATORY SETTING	.17				
-	2 1	State of California Noice Requirements	17				
	3.1	State of California Green Building Standards Code	17				
	3.3	County of Riverside General Plan Noise Element	17				
	3.4	Construction Noise Standards	22				
	3.5	Vibration Standards	23				
	3.6	March Air Reserve Base/Inland Port Airport Land Use Compatibility	23				
	3.7	Blasting Regulations	25				
4	SIG	NIFICANCE CRITERIA	.26				
	4.1	Noise-Sensitive Receivers	26				
	4.2	Non-Noise-Sensitive Receivers	27				
	4.3	Significance Criteria Summary	28				
5	EXI	STING NOISE LEVEL MEASUREMENTS	.31				
-	5 1	Measurement Procedure and Criteria	21				
	J.1	measurement i roccuire and enteria	<u>эт</u>				

	5.2 5.3	Noise Measurement Locations	31 32
6	ME	THODS AND PROCEDURES	35
	6.1 6.2 6.3	FHWA Traffic Noise Prediction Model Off-Site Traffic Noise Prediction Model Inputs Construction Equipment Vibration Assessment	35 35 38
7	OFI	F-SITE TRANSPORTATION NOISE IMPACTS	39
	7.1 7.2 7.3	Traffic Noise Contours Existing Conditions 2019 Project Traffic Noise Level Contributions Opening Year 2021 Project Traffic Noise Level Contributions	39 42 43
8	SEN	ISITIVE RECEIVER LOCATIONS	45 47
5	9.1 9.2 9.3 9.4 9.5 9.6	Operational Noise Sources Reference Noise Levels Project Operational Noise Levels Project Operational Noise Level Contributions Reflection Operational Vibration Impacts	47 47 49 52 53 53
10	CO	NSTRUCTION IMPACTS	55
	10.1 10.2 10.3 10.4 10.5 10.6	Construction Noise Levels Construction Reference Noise Levels Construction Noise Analysis Construction Noise Level Compliance Construction Vibration Impacts Blasting Impacts	55 55 58 62 64 65
11 12	REF		67 69
	021		55

APPENDICES

APPENDIX 3.1: COUNTY OF RIVERSIDE MUNICIPAL CODE

APPENDIX 5.1: STUDY AREA PHOTOS

APPENDIX 5.2: NOISE LEVEL MEASUREMENT WORKSHEETS

APPENDIX 7.1: OFF-SITE TRAFFIC NOISE CONTOURS

APPENDIX 9.1: OPERATIONAL STATIONARY-SOURCE NOISE CALCULATIONS

LIST OF EXHIBITS

EXHIBIT 1-A:	LOCATION MAP	.6
EXHIBIT 1-B:	PROJECT DEVELOPMENT CONCEPT	.7
EXHIBIT 2-A:	TYPICAL NOISE LEVELS	.9
EXHIBIT 2-B:	NOISE LEVEL INCREASE PERCEPTION	L3
EXHIBIT 2-C:	TYPICAL LEVELS OF GROUND-BORNE VIBRATION1	۱5
EXHIBIT 3-A:	LAND USE COMPATIBILITY FOR COMMUNITY NOISE EXPOSURE	21
EXHIBIT 3-B:	MARB/IPA FUTURE AIRPORT NOISE CONTOURS	24
EXHIBIT 5-A:	NOISE MEASUREMENT LOCATIONS	34
EXHIBIT 8-A:	SENSITIVE RECEIVER LOCATIONS	1 6
EXHIBIT 9-A:	OPERATIONAL NOISE SOURCE LOCATIONS	50
EXHIBIT 10-A	: CONSTRUCTION NOISE SOURCE LOCATIONS	56

LIST OF TABLES

TABLE ES-1: SUMMARY OF SIGNIFICANCE FINDINGS	4
TABLE 4-1: SIGNIFICANCE OF NOISE IMPACTS AT NOISE-SENSITIVE RECEIVERS	27
TABLE 4-2: SIGNIFICANCE CRITERIA SUMMARY	29
TABLE 5-1: 24-HOUR AMBIENT NOISE LEVEL MEASUREMENTS	33
TABLE 6-1: OFF-SITE ROADWAY PARAMETERS	36
TABLE 6-2: AVERAGE DAILY TRAFFIC VOLUMES	36
TABLE 6-3: TIME OF DAY VEHICLE SPLITS	37
TABLE 6-4: WITHOUT PROJECT CONDITIONS VEHICLE MIX	37
TABLE 6-5: EXISTING WITH PROJECT CONDITIONS VEHICLE MIX	37
TABLE 6-6: OPENING YEAR WITH PROJECT CONDITIONS VEHICLE MIX	38
TABLE 6-7: VIBRATION SOURCE LEVELS FOR CONSTRUCTION EQUIPMENT	38
TABLE 7-1: EXISTING WITHOUT PROJECT CONDITIONS NOISE CONTOURS	40
TABLE 7-2: EXISTING WITH PROJECT CONDITIONS NOISE CONTOURS	40
TABLE 7-3: OPENING YEAR WITHOUT PROJECT CONDITIONS NOISE CONTOURS	41
TABLE 7-4: OPENING YEAR WITH PROJECT CONDITIONS NOISE CONTOURS	41
TABLE 7-5: UNMITIGATED EXISTING WITH PROJECT TRAFFIC NOISE LEVEL INCREASES	42
TABLE 7-6: UNMITIGATED OPENING YEAR 2021 WITH PROJECT TRAFFIC NOISE IMPACTS	43
TABLE 9-1: REFERENCE NOISE LEVEL MEASUREMENTS	49
TABLE 9-2: UNMITIGATED PROJECT-ONLY OPERATIONAL NOISE LEVELS	51
TABLE 9-3: UNMITIGATED OPERATIONAL NOISE LEVEL COMPLIANCE	51
TABLE 9-4: PROJECT DAYTIME NOISE LEVEL CONTRIBUTIONS	52
TABLE 9-5: PROJECT NIGHTTIME NOISE LEVEL CONTRIBUTIONS	53
TABLE 10-1: CONSTRUCTION REFERENCE NOISE LEVELS	57
TABLE 10-2: SITE PREPARATION EQUIPMENT NOISE LEVELS	58
TABLE 10-3: GRADING EQUIPMENT NOISE LEVELS	59
TABLE 10-4: BUILDING CONSTRUCTION EQUIPMENT NOISE LEVELS	60
TABLE 10-5: ARCHITECTURAL COATING EQUIPMENT NOISE LEVELS	61
TABLE 10-6: PAVING EQUIPMENT NOISE LEVELS	62
TABLE 10-7: UNMITIGATED CONSTRUCTION EQUIPMENT NOISE LEVEL SUMMARY (DBA L_{EQ})	63
TABLE 10-8: CONSTRUCTION EQUIPMENT NOISE LEVEL COMPLIANCE (DBA L _{EQ})	63
TABLE 10-9: PROJECT CONSTRUCTION VIBRATION LEVELS	65

LIST OF ABBREVIATED TERMS

(1)	Reference
ADT	Average Daily Traffic
ANSI	American National Standards Institute
Calveno	California Vehicle Noise
CEQA	California Environmental Quality Act
CNEL	Community Noise Equivalent Level
dBA	A-weighted decibels
EPA	Environmental Protection Agency
FHWA	Federal Highway Administration
FTA	Federal Transit Administration
Hz	Hertz
I-215	Interstate 215
INCE	Institute of Noise Control Engineering
L _{eq}	Equivalent continuous (average) sound level
L _{max}	Maximum level measured over the time interval
L _{min}	Minimum level measured over the time interval
MARB/IPA	March Air Reserve Base / Inland Port Airport
mph	Miles per hour
OPR	Office of Planning and Research
PPV	Peak particle velocity
Project	Oleander Business Park
REMEL	Reference Energy Mean Emission Level
RMS	Root-mean-square
VdB	Vibration Decibels

EXECUTIVE SUMMARY

Urban Crossroads, Inc. has prepared this noise study to determine the potential noise impacts and the necessary noise mitigation measures, if any, for the proposed Oleander Business Park development ("Project"). The Project site is located on the northwest corner of Decker Road and Oleander Avenue in unincorporated County of Riverside. The Project is proposed to consist of up to approximately 710,736 square feet of high-cube warehouse and manufacturing uses divided over two buildings—Building A: approximately 347,369 square feet; and Building B: approximately 347,369 square feet. Up to 20 percent of the Project building areas are assumed to accommodate manufacturing occupancies.

The Project is anticipated to be constructed in a single phase and occupied by 2021. At the time this noise analysis was prepared, the future tenants of the proposed Project were unknown, and therefore, this noise study includes a conservative analysis of the proposed Project uses. This study has been prepared to satisfy applicable County of Riverside standards and thresholds of significance based on guidance provided by Appendix G of the California Environmental Quality Act (CEQA) Guidelines. (1)

OFF-SITE TRAFFIC NOISE ANALYSIS

Traffic generated by the operation of the Project will influence the traffic noise levels in surrounding off-site areas. To quantify the off-site traffic noise increases on the surrounding off-site areas, the changes in traffic noise levels on seven study-area roadway segments were calculated based on the change in the average daily traffic (ADT) volumes. The traffic noise levels provided in this analysis are based on the traffic forecasts found in the *Oleander Business Park Traffic Impact Analysis* prepared by Urban Crossroads, Inc. (2) To assess the off-site noise level impacts associated with the proposed Project, noise contour boundaries were developed for Existing (2019) and Opening Year 2021 conditions.

The analysis shows that the unmitigated Project-related traffic noise level increases under all with Project traffic scenarios would be *less than significant* Impacts at land uses adjacent to the study area roadway segments.

OPERATIONAL NOISE ANALYSIS

Using reference noise levels to represent the expected operation noise sources of the Oleander Business Park site, this analysis estimates the Project-related stationary-source noise levels at nearby sensitive receiver locations. The typical activities associated with the proposed Oleander Business Park are anticipated to include idling trucks, delivery truck activities, backup alarms, as well as loading and unloading of dry goods, roof-top air conditioning units, and parking lot vehicle movements. The operational noise analysis shows that the Project-related stationary-source noise levels at all receiver locations will satisfy the County of Riverside 65 dBA L_{eq} daytime and 45 dBA L_{eq} nighttime exterior noise level standards.

Further, this analysis demonstrates that the unmitigated Project operational noise levels will not contribute a long-term operational noise level impact to the existing ambient noise environment at any of the sensitive receiver locations. Therefore, Project operational noise level impacts associated with the proposed 24-hour seven days per week Project activities, such as the idling trucks, delivery truck activities, backup alarms, as well as loading and unloading of dry goods, roof-top air conditioning units, and parking lot vehicle movements, would be *less than significant*.

OPERATIONAL VIBRATION ANALYSIS

The operation of the Project site will include heavy trucks moving on site to and from the loading dock areas. Truck vibration levels are dependent on vehicle characteristics, load, speed, and pavement conditions. According to the FTA *Transit Noise Impact and Vibration Assessment,* (3) trucks rarely create vibration that exceeds 70 VdB or 0.003 in/sec RMS (4) (unless there are bumps due to frequent potholes in the road). Trucks transiting on site will be travelling at very low speeds so it is expected that delivery truck vibration impacts at nearby homes will satisfy the 0.01 in/sec RMS vibration threshold of the County of Riverside, and therefore, would be *less than significant*.

CONSTRUCTION NOISE ANALYSIS

Construction-related noise impacts are expected to create temporary and intermittent high-level noise conditions at receivers surrounding the Project site. Using sample reference noise levels to represent the planned construction activities of the Oleander Business Park site, this analysis estimates the Project-related construction noise levels at nearby sensitive receiver locations. Since the County of Riverside General Plan and Municipal Codes do not identify specific construction noise level thresholds, a threshold is identified based on the National Institute for Occupational Safety and Health (NIOSH) limits for construction noise. The Project-related short-term construction noise levels are expected to range from 33.2 to 51.4 dBA L_{eq} and will satisfy the 85 dBA L_{eq} threshold identified by the National Institute for Occupational Safety and Health (NIOSH) at all receiver locations. Therefore, based on the results of this analysis, all nearby sensitive receiver locations would experience *less than significant* impacts due to Project construction noise levels.

CONSTRUCTION VIBRATION ANALYSIS

Construction activity can result in varying degrees of ground vibration, depending on the equipment and methods used, distance to the affected structures and soil type. It is expected that ground-borne vibration from Project construction activities would cause only intermittent, localized intrusion. This analysis shows the highest construction vibration levels are estimated at 0.0002 in/sec RMS, which is below the vibration standard of 0.01 in/sec RMS at all receiver locations.

Further, the Project-related construction vibration levels do not represent levels capable of causing building damage to nearby residential homes. The FTA identifies construction vibration levels capable of building damage ranging from 0.12 to 0.5 in/sec PPV. (3) The peak Project-construction vibration levels approaching 0.0002 in/sec PPV will remain below the FTA vibration levels for building damage at the residential homes near the Project site. Moreover, the impacts at the site of the closest sensitive receivers are unlikely to be sustained during the entire construction period but will occur rather only during the times that heavy construction equipment is operating adjacent to the Project site perimeter. Based on the preceding, Project construction-source vibration impacts would be *less than significant*.

CONSTRUCTION BLASTING ANALYSIS

To assess the potential Project blasting impacts, the worst-case airblast and vibration levels were calculated based on a 210 pound maximum charge weight using the closest distance of 1,282 feet from receiver location R6 to the closest potential Project blasting location, consistent with the methodology provided in the International Society of Explosives Engineers (ISEE's) *Blasters' Handbook* and information provided by the blasting contractor. The worst-case airblast and vibration levels are shown to satisfy the Office of Surface Mining and Reclamation Enforcement (OSMRE) airblast and vibration level thresholds without accounting for any additional attenuation provided by intervening topography and/or structures in the Project study area. Therefore, since airblast and vibration levels at the closest receiver location would remain below the airblast and vibration level thresholds based on reference ISEE data, Project-related blasting impacts are considered *less than significant*.

Further, the blasting contractor is required to design all blasts such that they remain below the significance thresholds identified by the USBM and OSMRE in addition to the permitting requirements of the State and Riverside County Sheriff's Department.

AIRPORT LAND USE COMPATIBILITY

The March Air Reserve Base/Inland Port Airport (MARB/IPA) is located approximately one mile northeast of the Project site. The *March Air Reserve Base/Inland Port Airport Land Use Compatibility Plan* (MARB/IPA LUCP) includes the policies for determining the land use compatibility of the Project. In summary, the Project land uses are compatible with the MARB/IPA LUCP and would not be adversely affected by noise generated by MARB uses or activities.

SUMMARY OF CEQA SIGNIFICANCE FINDINGS

The results of this Oleander Business Park Noise Impact Analysis are summarized below based on the significance criteria in Section 4 of this report consistent with Appendix G of the California Environmental Quality Act (CEQA) Guidelines. (1) Table ES-1 shows the findings of significance for each potential noise and/or vibration impact under CEQA before and after any required mitigation measures.

Anchesic	Report	Significance Findings			
Analysis	Section	Unmitigated	Mitigated		
Off-Site Traffic Noise	7	Less Than Significant	-		
Operational Noise	0	Less Than Significant	-		
Operational Vibration	9	Less Than Significant	-		
Construction Noise	10	Less Than Significant	-		
Construction Vibration		Less Than Significant	-		
Construction Blasting		Less Than Significant	-		
Airport Land Use Compatibility	3.6	Less Than Significant	-		

TABLE ES-1: SUMMARY OF SIGNIFICANCE FINDINGS

1 INTRODUCTION

This noise analysis has been completed to determine the noise impacts associated with the development of the proposed Oleander Business Park ("Project"). This noise study briefly describes the proposed Project, provides information regarding noise fundamentals, describes the local regulatory setting, provides the study methods and procedures for traffic noise analysis, and evaluates the future exterior noise environment. In addition, this study includes an analysis of the potential Project-related long-term operational and short-term construction noise and vibration impacts.

1.1 SITE LOCATION

The Project site is located within the Mead Valley area of the County of Riverside. More specifically, the Project site is located west of Decker Road, between Nandina Avenue and Oleander Avenue. Interstate 215 (I-215) exists in a north – south orientation approximately one-half mile easterly of the Project site. The Project site location is shown on Exhibit 1-A. The Project site comprises vacant, undeveloped property. To the north, south, and west of the Project site, properties are also vacant and undeveloped. Easterly of the Project site, across Decker Road, are warehouse/distribution center uses and vacant land. March Air Reserve Base/Inland Port Airport (MARB/IPA) is located roughly one-mile northeast of the Project site.

1.2 PROJECT DESCRIPTION

The Oleander Business Park Project (Project) proposes construction and operation of approximately 710,736 square feet of light industrial/manufacturing uses within an approximately 93.85-acre site (gross), located within the Mead Valley area of Riverside County. As part of the Project, Parcel Map 5128 (Parcel Map Book [P.M.B.] 8/54) comprising 4 parcels, would be reconfigured via Riverside County Lot Line Adjustment procedures. Project Parcel 1 (18.50 acres) would be developed with approximately 363,367 square feet of light industrial uses. Project Parcel 2 (approximately 17.26 acres) would be developed with approximately 347,369 square feet of light industrial uses. Project Parcels 3 and 4, totaling approximately 58.09 acres would remain vacant. The Project is anticipated to be constructed and occupied by 2021 (the Project Opening Year). The Project is assumed to be operational 24 hours per day, 7 days per week. At the time this analysis was prepared, specific Project tenants have not yet been identified.

The on-site Project-related noise sources are expected to include: idling trucks, delivery truck activities, backup alarms, as well as loading and unloading of dry goods, roof-top air conditioning units, and parking lot vehicle movements. This noise analysis is intended to describe noise level impacts associated with the expected typical operational activities at the Project site. Per the *Oleander Business Park Traffic Impact Analysis* prepared by Urban Crossroads, Inc. the Project is expected to generate a total of approximately 1,366 trip-ends per day (actual vehicles) and includes 376 truck trip-ends per day. (2) This noise study relies on the actual Project trips (as opposed to the passenger car equivalents) to accurately account for the effect of individual truck trips on the study area roadway network.

EXHIBIT 1-A: LOCATION MAP

EXHIBIT 1-B: PROJECT DEVELOPMENT CONCEPT

This page intentionally left blank

2 FUNDAMENTALS

Noise has been simply defined as "unwanted sound." Sound becomes unwanted when it interferes with normal activities, when it causes actual physical harm or when it has adverse effects on health. Noise is measured on a logarithmic scale of sound pressure level known as a decibel (dB). A-weighted decibels (dBA) approximate the subjective response of the human ear to broad frequency noise source by discriminating against very low and very high frequencies of the audible spectrum. They are adjusted to reflect only those frequencies which are audible to the human ear. Exhibit 2-A presents a summary of the typical noise levels and their subjective loudness and effects that are described in more detail below.

COMMON OUTDOOR ACTIVITIES	COMMON INDOOR ACTIVITIES	A - WEIGHTED SOUND LEVEL dBA	SUBJECTIVE LOUDNESS	EFFECTS OF NOISE
THRESHOLD OF PAIN		140		
NEAR JET ENGINE		130	INTOLERABLE OR	
		120	DEAFENING	HEARING LOSS
JET FLY-OVER AT 300m (1000 ft)	ROCK BAND	110		
LOUD AUTO HORN		100		
GAS LAWN MOWER AT 1m (3 ft)		90		
DIESEL TRUCK AT 15m (50 ft), at 80 km/hr (50 mph)	FOOD BLENDER AT 1m (3 ft)	80		
NOISY URBAN AREA, DAYTIME	VACUUM CLEANER AT 3m (10 ft)	70	70	
HEAVY TRAFFIC AT 90m (300 ft)	NORMAL SPEECH AT 1m (3 ft)	60		
QUIET URBAN DAYTIME	LARGE BUSINESS OFFICE	50	MODERATE	CLEED
QUIET URBAN NIGHTTIME	THEATER, LARGE CONFERENCE ROOM (BACKGROUND)	40		DISTURBANCE
QUIET SUBURBAN NIGHTTIME	LIBRARY	30		
QUIET RURAL NIGHTTIME	BEDROOM AT NIGHT, CONCERT HALL (BACKGROUND)	20	FAINT	
	BROADCAST/RECORDING STUDIO	10	NO EFFE	
LOWEST THRESHOLD OF HUMAN HEARING	LOWEST THRESHOLD OF HUMAN HEARING	0		

EXHIBIT 2-A: TYPICAL NOISE LEVELS

2.1 RANGE OF NOISE

Since the range of intensities that the human ear can detect is so large, the scale frequently used to measure intensity is a scale based on multiples of 10, the logarithmic scale. The scale for measuring intensity is the decibel scale. Each interval of 10 decibels indicates a sound energy ten times greater than before, which is perceived by the human ear as being roughly twice as loud. (5) The most common sounds vary between 40 dBA (very quiet) to 100 dBA (very loud). Normal conversation at three feet is roughly at 60 dBA, while loud jet engine noises equate to 110 dBA at approximately 100 feet, which can cause serious discomfort. (6) Another important aspect of noise is the duration of the sound and the way it is described and distributed in time.

2.2 NOISE DESCRIPTORS

Environmental noise descriptors are generally based on averages, rather than instantaneous, noise levels. The most commonly used figure is the equivalent level (L_{eq}). Equivalent sound levels are not measured directly but are calculated from sound pressure levels typically measured in A-weighted decibels (dBA). The equivalent sound level (L_{eq}) represents a steady state sound level containing the same total energy as a time varying signal over a given sample period and is commonly used to describe the "average" noise levels within the environment.

Peak hour or average noise levels, while useful, do not completely describe a given noise environment. Noise levels lower than peak hour may be disturbing if they occur during times when quiet is most desirable, namely evening and nighttime (sleeping) hours. To account for this, the Community Noise Equivalent Level (CNEL), representing a composite 24-hour noise level is utilized. The CNEL is the weighted average of the intensity of a sound, with corrections for time of day, and averaged over 24 hours. The time of day corrections require the addition of 5 decibels to dBA L_{eq} sound levels in the evening from 7:00 p.m. to 10:00 p.m., and the additions are made to account for the noise sensitive time periods during the evening and night hours when sound appears louder. CNEL does not represent the actual sound level heard at any time, but rather represents the total sound exposure. The County of Riverside relies on the 24-hour CNEL level to assess land use compatibility with transportation related noise sources.

2.3 SOUND PROPAGATION

When sound propagates over a distance, it changes in level and frequency content. The way noise reduces with distance depends on the following factors.

2.3.1 GEOMETRIC SPREADING

Sound from a localized source (i.e., a stationary point source) propagates uniformly outward in a spherical pattern. The sound level attenuates (or decreases) at a rate of 6 dB for each doubling of distance from a point source. Highways consist of several localized noise sources on a defined path and hence can be treated as a line source, which approximates the effect of several point sources. Noise from a line source propagates outward in a cylindrical pattern, often referred to as cylindrical spreading. Sound levels attenuate at a rate of 3 dB for each doubling of distance from a line source. (5)

2.3.2 GROUND ABSORPTION

The propagation path of noise from a highway to a receiver is usually very close to the ground. Noise attenuation from ground absorption and reflective wave canceling adds to the attenuation associated with geometric spreading. Traditionally, the excess attenuation has also been expressed in terms of attenuation per doubling of distance. This approximation is usually sufficiently accurate for distances of less than 200 ft. For acoustically hard sites (i.e., sites with a reflective surface between the source and the receiver, such as a parking lot or body of water), no excess ground attenuation is assumed. For acoustically absorptive or soft sites (i.e., those

sites with an absorptive ground surface between the source and the receiver such as soft dirt, grass, or scattered bushes and trees), an excess ground attenuation value of 1.5 dB per doubling of distance is normally assumed. When added to the cylindrical spreading, the excess ground attenuation results in an overall drop-off rate of 4.5 dB per doubling of distance from a line source. (7)

2.3.3 ATMOSPHERIC EFFECTS

Receivers located downwind from a source can be exposed to increased noise levels relative to calm conditions, whereas locations upwind can have lowered noise levels. Sound levels can be increased at large distances (e.g., more than 500 feet) due to atmospheric temperature inversion (i.e., increasing temperature with elevation). Other factors such as air temperature, humidity, and turbulence can also have significant effects. (5)

2.3.4 SHIELDING

A large object or barrier in the path between a noise source and a receiver can substantially attenuate noise levels at the receiver. The amount of attenuation provided by shielding depends on the size of the object and the frequency content of the noise source. Shielding by trees and other such vegetation typically only has an "out of sight, out of mind" effect. That is, the perception of noise impact tends to decrease when vegetation blocks the line-of-sight to nearby residents. However, for vegetation to provide a substantial, or even noticeable, noise reduction, the vegetation area must be at least 15 feet in height, 100 feet wide and dense enough to completely obstruct the line-of sight between the source and the receiver. This size of vegetation may provide up to 5 dBA of noise reduction. The FHWA does not consider the planting of vegetation to be a noise abatement measure. (7)

2.4 NOISE CONTROL

Noise control is the process of obtaining an acceptable noise environment for an observation point or receiver by controlling the noise source, transmission path, receiver, or all three. This concept is known as the source-path-receiver concept. In general, noise control measures can be applied to these three elements.

2.5 Noise Barrier Attenuation

Effective noise barriers can reduce noise levels by up to 10 to 15 dBA, cutting the loudness of traffic noise in half. A noise barrier is most effective when placed close to the noise source or receiver. Noise barriers, however, do have limitations. For a noise barrier to work, it must be high enough and long enough to block the path of the noise source. (7)

2.6 LAND USE COMPATIBILITY WITH NOISE

Some land uses are more tolerant of noise than others. For example, schools, hospitals, churches, and residences are more sensitive to noise intrusion than are commercial or industrial developments and related activities. As ambient noise levels affect the perceived amenity or livability of a development, so too can the mismanagement of noise impacts impair the economic

health and growth potential of a community by reducing the area's desirability as a place to live, shop and work. For this reason, land use compatibility with the noise environment is an important consideration in the planning and design process. The FHWA encourages State and Local government to regulate land development in such a way that noise-sensitive land uses are either prohibited from being located adjacent to a highway, or that the developments are planned, designed, and constructed in such a way that noise impacts are minimized. (8)

2.7 COMMUNITY RESPONSE TO NOISE

Community responses to noise may range from registering a complaint by telephone or letter, to initiating court action, depending upon everyone's susceptibility to noise and personal attitudes about noise. Several factors are related to the level of community annoyance including:

- Fear associated with noise producing activities;
- Socio-economic status and educational level;
- Perception that those affected are being unfairly treated;
- Attitudes regarding the usefulness of the noise-producing activity;
- Belief that the noise source can be controlled.

Approximately ten percent of the population has a very low tolerance for noise and will object to any noise not of their making. Consequently, even in the quietest environment, some complaints will occur. Another twenty-five percent of the population will not complain even in very severe noise environments. Thus, a variety of reactions can be expected from people exposed to any given noise environment. (9) Surveys have shown that about ten percent of the people exposed to traffic noise of 60 dBA will report being highly annoyed with the noise, and each increase of one dBA is associated with approximately two percent more people being highly annoyed. When traffic noise exceeds 60 dBA or aircraft noise exceeds 55 dBA, people may begin to complain. (9) Despite this variability in behavior on an individual level, the population can be expected to exhibit the following responses to changes in noise levels as shown on Exhibit 2-B. A change of 3 dBA are considered *barely perceptible*, and changes of 5 dBA are considered *readily perceptible*. (7)

EXHIBIT 2-B: NOISE LEVEL INCREASE PERCEPTION

2.8 EXPOSURE TO HIGH NOISE LEVELS

The Occupational Safety and Health Administration (OSHA) sets legal limits on noise exposure in the workplace. The permissible exposure limit (PEL) for a worker over an eight-hour day is 90 dBA. The OSHA standard uses a 5 dBA exchange rate. This means that when the noise level is increased by 5 dBA, the amount of time a person can be exposed to a certain noise level to receive the same dose is cut in half. The National Institute for Occupational Safety and Health (NIOSH) has recommended that all worker exposures to noise should be controlled below a level equivalent to 85 dBA for eight hours to minimize occupational noise induced hearing loss. NIOSH also recommends a 3 dBA exchange rate so that every increase by 3 dBA doubles the amount of the noise and halves the recommended amount of exposure time. (10)

OSHA has implemented requirements to protect all workers in general industry (e.g. the manufacturing and the service sectors) for employers to implement a Hearing Conservation Program where workers are exposed to a time weighted average noise level of 85 dBA or higher over an eight-hour work shift. Hearing Conservation Programs require employers to measure noise levels, provide free annual hearing exams and free hearing protection, provide training, and conduct evaluations of the adequacy of the hearing protectors in use unless changes to tools, equipment and schedules are made so that they are less noisy and worker exposure to noise is less than the 85 dBA. This noise study does not evaluate the noise exposure of workers within a project or construction site based on CEQA requirements, and instead, evaluates Project-related operational and construction noise levels at the nearby sensitive receiver locations in the Project study area.

2.9 VIBRATION

Per the Federal Transit Administration (FTA) *Transit Noise Impact and Vibration Assessment* (3), vibration is the periodic oscillation of a medium or object. The rumbling sound caused by the vibration of room surfaces is called structure-borne noise. Sources of ground-borne vibrations include natural phenomena (e.g., earthquakes, volcanic eruptions, sea waves, landslides) or human-made causes (e.g., explosions, machinery, traffic, trains, construction equipment). Vibration sources may be continuous, such as factory machinery, or transient, such as explosions. As is the case with airborne sound, ground-borne vibrations may be described by amplitude and frequency.

There are several different methods that are used to quantify vibration. The peak particle velocity (PPV) is defined as the maximum instantaneous peak of the vibration signal. The PPV is most frequently used to describe vibration impacts to buildings, but is not always suitable for evaluating human response (annoyance) because it takes some time for the human body to respond to vibration signals. Instead, the human body responds to average vibration amplitude often described as the root mean square (RMS). The RMS amplitude is defined as the average of the squared amplitude of the signal, and is most frequently used to describe the effect of vibration on the human body. Decibel notation (VdB) is commonly used to measure RMS. Decibel notation (VdB) serves to reduce the range of numbers used to describe human response to vibration. Typically, ground-borne vibration generated by man-made activities attenuates rapidly with distance from the source of the vibration. Sensitive receivers for vibration include structures (especially older masonry structures), people (especially residents, the elderly, and sick), and vibration-sensitive equipment and/or activities

The background vibration-velocity level in residential areas is generally 50 VdB. Ground-borne vibration is normally perceptible to humans at approximately 65 VdB. For most people, a vibration-velocity level of 75 VdB is the approximate dividing line between barely perceptible and distinctly perceptible levels. Typical outdoor sources of perceptible ground-borne vibration are construction equipment, steel-wheeled trains, and traffic on rough roads. If a roadway is smooth, the ground-borne vibration is rarely perceptible. The range of interest is from approximately 50 VdB, which is the typical background vibration-velocity level, to 100 VdB, which is the general threshold where minor damage can occur in fragile buildings. Exhibit 2-C illustrates common vibration sources and the human and structural response to ground-borne vibration.

EXHIBIT 2-C: TYPICAL LEVELS OF GROUND-BORNE VIBRATION

* RMS Vibration Velocity Level in VdB relative to 10⁻⁶ inches/second

Source: Federal Transit Administration (FTA) Transit Noise Impact and Vibration Assessment.

2.10 BLASTING FUNDAMENTALS

The intensity of the noise and vibration impacts associated with rock blasting depends on location, size, material, shape of the rock, and the methods used to crack it. While a blasting contractor can design the blasts to stay below a given vibration level that could cause damage to nearby structures, it is difficult to design blasts that produce noise levels which are not perceptible to receivers near the blast site. (11) The noise produced by blasting activities is referred to as air overpressure, or an "airblast," which is generated when explosive energy in the form of gases escape from the detonating blast holes. Much like a point source, airblasts radiate outward in a spherical pattern and attenuate with each doubling of distance from the blast location, depending on the design of the blast and amount of containment.

Blasting activities generally include: the pre-drilling of holes in the hard rock area; preparation and placement of the charges in the drilled holes; a pre-blast horn signal; additional pre-blast horn signals immediately prior to the blast; and the blast itself. An additional horn signal is sounded to indicate the "all clear" after the blast and the blasting contractor has inspected the blasting area. The noise from the blast itself starts with a cracking sound from the detonator, located at a distance from the charges, and ends with the low crackling sound from each charge as they are subsequently set off. Blasts typically occur for only a few seconds, depending on their design. It is important to note that no other equipment will be operating during each blast in the blast area but will commence operation once the blasting contractor indicates it is safe to do so. The blasting information provided herein is based on the 18th Edition of the International Society of Explosives Engineers' (ISEE's) *Blasters' Handbook*. (12)

3 REGULATORY SETTING

To limit population exposure to physically and/or psychologically damaging as well as intrusive noise levels, the federal government, the State of California, various county governments, and most municipalities in the state have established standards and ordinances to control noise. In most areas, automobile and truck traffic is the major source of environmental noise. Traffic activity generally produces an average sound level that remains constant with time. Air and rail traffic, and commercial and industrial activities are also major sources of noise in some areas. Federal, state, and local agencies regulate different aspects of environmental noise. Federal and state agencies generally set noise standards for mobile sources such as aircraft and motor vehicles, while regulation of stationary sources is left to local agencies.

3.1 STATE OF CALIFORNIA NOISE REQUIREMENTS

The State of California regulates freeway noise, sets standards for sound transmission, provides occupational noise control criteria, identifies noise standards, and provides guidance for local land use compatibility. State law requires that each county and city adopt a General Plan that includes a Noise Element which is to be prepared per guidelines adopted by the Governor's Office of Planning and Research (OPR). (13) The purpose of the Noise Element is to *limit the exposure of the community to excessive noise levels*. In addition, the California Environmental Quality Act (CEQA) requires that all known environmental effects of a project be analyzed, including environmental noise impacts.

3.2 STATE OF CALIFORNIA GREEN BUILDING STANDARDS CODE

The State of California's Green Building Standards Code contains mandatory measures for nonresidential building construction in Section 5.507 on Environmental Comfort. (14) These noise standards are applied to new construction in California for controlling interior noise levels resulting from exterior noise sources. The regulations specify that acoustical studies must be prepared when non-residential structures are developed in areas where the exterior noise levels exceed 65 dBA CNEL, such as within a noise contour of an airport, freeway, railroad, and other areas where noise contours are not readily available. If the development falls within an airport or freeway 65 dBA CNEL noise contour, the combined sound transmission class (STC) rating of the wall and roof-ceiling assemblies must be at least 50. For those developments in areas where noise contours are not readily available and the noise level exceeds 65 dBA L_{eq} for any hour of operation, a wall and roof-ceiling combined STC rating of 45, and exterior windows with a minimum STC rating of 40 are required (Section 5.507.4.1).

3.3 COUNTY OF RIVERSIDE GENERAL PLAN NOISE ELEMENT

The County of Riverside General Plan Noise Element (Noise Element) establishes polices and requirements to control and abate environmental noise and thereby, protect citizens of County of Riverside from excessive exposure to noise. (15) The Noise Element specifies the maximum allowable exterior noise levels for new developments impacted by transportation noise sources

such as arterial roads, freeways, airports and railroads. In addition, the Noise Element identifies several polices to minimize the impacts of excessive noise levels throughout the community and establishes noise level requirements for all land uses. To protect County of Riverside residents from excessive noise, the Noise Element contains the following policies related to the Project:

- N 1.1 Protect noise-sensitive land uses from high levels of noise by restricting noise-producing land uses from these areas. If the noise-producing land use cannot be relocated, then noise buffers such as setbacks, landscaping, or block walls shall be used.
- N 1.3 Consider the following uses noise-sensitive and discourage these uses in areas in excess of 65 CNEL:
 - Schools
 - Hospitals
 - Rest Homes
 - Long Term Care Facilities
 - Mental Care Facilities
 - Residential Uses
 - Libraries
 - Passive Recreation Uses
 - Places of Worship
- N 1.5 Prevent and mitigate the adverse impacts of excessive noise exposure on the residents, employees, visitors, and noise-sensitive uses of Riverside County.
- N 4.1 Prohibit facility-related noise, received by any sensitive use, from exceeding the following worst-case noise levels:
 - a. 45 dBA 10-minute L_{eq} between 10:00 p.m. and 7:00 a.m.;
 - b. 65 dBA 10-minute L_{eq} between 7:00 a.m. and 10:00 p.m.
- N 13.1 Minimize the impacts of construction noise on adjacent uses within acceptable standards.
- N 13.2 Ensure that construction activities are regulated to establish hours of operation in order to prevent and/or mitigate the generation of excessive or adverse impacts on surrounding areas.
- N 13.3 Condition subdivision approval adjacent to developed/occupied noise-sensitive land uses (see policy N 1.3) by requiring the developer to submit a construction-related noise mitigation plan to the [County] for review and approval prior to issuance of a grading permit. The plan must depict the location of construction equipment and how the noise from this equipment will be mitigated during construction of this project, through the use of such methods as:
 - *i.* Temporary noise attenuation fences;
 - ii. Preferential location and equipment; and
 - *iii.* Use of current noise suppression technology and equipment.
- N 16.3 Prohibit exposure of residential dwellings to perceptible ground vibration from passing trains as perceived at the ground or second floor. Perceptible motion shall be presumed to be a motion velocity of 0.01 inches/second over a range of 1 to 100 Hz.

To ensure noise-sensitive land uses are protected from high levels of noise (N 1.1), Table N-1 of the Noise Element identifies guidelines to evaluate proposed developments based on exterior and interior noise level limits for land uses and requires a noise analysis to determine needed mitigation measures if necessary. The Noise Element identifies residential use as a noise-sensitive land use (N 1.3) and discourages new development in areas with 65 CNEL or greater

existing ambient noise levels. To prevent and mitigate noise impacts for its residents (N 1.5), County of Riverside requires noise attenuation measures for sensitive land use exposed to noise levels higher than 65 CNEL. Policy N 4.1 of the Noise Element sets a stationary-source exterior noise limit not to be exceeded for a cumulative period of more than ten minutes in any hour of 65 dBA L_{eq} for daytime hours of 7:00 a.m. to 10:00 p.m., and 45 dBA L_{eq} during the noise-sensitive nighttime hours of 10:00 p.m. to 7:00 a.m. To prevent high levels of construction noise from impacting noise-sensitive land uses, policies N 13.1 through 13.3 identify construction noise mitigation requirements for new development located near existing noise-sensitive land uses. Policy 16.3 establishes the vibration perception threshold for rail-related vibration levels, used in this analysis as a threshold for determining potential vibration impacts due to Project construction. (15)

3.3.1 LAND USE COMPATIBILITY

The noise criteria identified in the County of Riverside Noise Element (Table N-1) are guidelines to evaluate the land use compatibility of transportation related noise. The compatibility criteria, shown on Exhibit 3-A, provides the County with a planning tool to gauge the compatibility of land uses relative to existing and future exterior noise levels.

The Land Use Compatibility for Community Noise Exposure matrix describes categories of compatibility and not specific noise standards. The warehouse/industrial use of the Project is considered normally acceptable with unmitigated exterior noise levels of less than 70 dBA CNEL based on the Industrial, Manufacturing, Utilities, Agriculture land use compatibility criteria shown on Exhibit 3-A. Residential designated land uses in the Project study area are considered normally acceptable with exterior noise levels below 60 dBA CNEL, and conditionally acceptable with exterior noise levels below 60 dBA CNEL, and conditionally acceptable with exterior noise levels below 60 dBA CNEL. For conditionally acceptable exterior noise levels, of less than 75 dBA CNEL for Project land uses, new construction or development should be undertaken only after a detailed analysis of the noise reduction requirements is made and the needed noise insulation features are included in the design. Conventional construction, but with closed windows and fresh air supply systems or air conditioning will normally suffice. (15)

3.3.2 COUNTY OF RIVERSIDE STATIONARY NOISE STANDARDS

The County of Riverside has set exterior noise limits to control idling trucks, delivery truck activities, backup alarms, as well as loading and unloading of dry goods, roof-top air conditioning units, and parking lot vehicle movements associated with the development of the proposed Oleander Business Park. The County considers noise generated using motor vehicles to be a stationary noise source when operated on private property such as at a loading dock. These facility-related noises, as projected to any portion of any surrounding property containing a *habitable dwelling, hospital, school, library or nursing home*, must not exceed the following worst-case noise levels.

Policy N 4.1 of the Noise Element sets an exterior noise limit not to be exceeded for a cumulative period of more than ten minutes in any hour of 65 dBA L_{eq} for daytime hours of 7:00 a.m. to 10:00 p.m., and 45 dBA L_{eq} during the noise-sensitive nighttime hours of 10:00 p.m. to 7:00 a.m. (15)

Based on several discussions with the County of Riverside Department of Environmental Health (DEH), Office of Industrial Hygiene (OIH), it is important to recognize that the County of Riverside Municipal Code noise level standards, incorrectly identify maximum noise level (L_{max}) standards that should instead reflect the average L_{eq} noise levels. Moreover, the County of Riverside DEH OIH's April 15th, 2015 *Requirements for determining and mitigating, non-transportation noise source impacts to residential properties* also identifies operational (stationary-source) noise level limits using the L_{eq} metric consistent with the direction of the County of Riverside General Plan guidelines and standards Noise Element. Therefore, this report has been prepared consistent with the County of Riverside DEH OIH guidelines and standards using the L_{eq} noise level metric for stationary-source (operational) noise level evaluation.

LAND USE CATEGORY COMMUNITY NOISE EXPOSURE LEVEL Ldn or C					CNEL, dBA		
		55	60	65	70	75	80
Posidential Low Donsity		1	-1	1	1		
Single Family Duplay Mobile	Homes	1		-			
Single Fanniy, Duplex, Mobile	nomes		T	1			
Residential-Multiple Family		1					
				T.			
					-		
Transient Lodging-Motels, Ho	tels						
				1			
						1	
Schools, Libraries, Churches,	Hospitals.	I					
Nursing Homes		1					
						1	
Auditoriums Concert Halls A	mphitheaters	1					
Autoriums, concert muns, A		1	T	1			
Sports Arena, Outdoor Specta	tor sports	T	- 1	1	1		
Playgrounds, Neighborhood P	arks	1	1	1			
							- ÷ 1
Golf Courses, Riding Stables,	Water Recreation,	1	1	1	-		
Cemeteries						T	
				-			
Office Buildings, Businesses, C	Commercial,	1	- 1	- 1			
and Professional					T		
Industrial, Manufacturing, Ut	ilities,						
Agriculture		r	1	1	1		
Legend:		1	1	1	1	1	
Normally Acceptable:	Conditionally Acceptable:	Nor	mally Una	cceptable:	Lannan II.	Clearly U	Inacceptable:
Spectree iand use is satisfactory based upon the assumption that any buildings involved are of normal conventional construction, without	New construction or development should be undertaken only after a detailed analysis of the noise reduction requirements is made and	be di does	construction or scouraged. If no proceed, a detai	evelopment should ew construction or o led analysis of the r	levelopment	New constru generally no costs to mak	ction or development should t be undertaken. Construction e the indoor environment
any special noise insulation requirements.	needed noise insulation features included in the design. Conventional construction, but	reduc	tion requirement insulation featu	its must be made wi ares included in the	th needed design.	acceptable w outdoor envi	ould be prohibitive and the ronment would not be usable.
Source: California Office of Noise Control	with closed windows and fresh air supply systems or air conditioning will normally suffice. Outdoor environment will seem noisy.	Outd	oor areas must b	se shielded.			

EXHIBIT 3-A: LAND USE COMPATIBILITY FOR COMMUNITY NOISE EXPOSURE

Source: County of Riverside General Plan Noise Element, Table N-1.

3.4 CONSTRUCTION NOISE STANDARDS

To control noise impacts associated with the construction of the proposed Project, the County of Riverside has established limits to the hours of operation. Section 9.52.020 of the County's Noise Regulation ordinance indicates that noise associated with any private construction activity located within one-quarter of a mile from an inhabited dwelling is considered exempt between the hours of 6:00 a.m. and 6:00 p.m., during the months of June through September, and 7:00 a.m. and 6:00 p.m., during the months of October through May. (16) Neither the County's General Plan nor Municipal Code establish numeric maximum acceptable construction source noise levels at potentially affected receivers, which would allow for a quantified determination of what CEQA constitutes a *substantial temporary or periodic noise increase*.

To evaluate whether the Project will generate potentially significant construction noise levels at off-site sensitive receiver locations, a construction-related noise level threshold is adopted from the Criteria for Recommended Standard: Occupational Noise Exposure prepared by the National Institute for Occupational Safety and Health (NIOSH). (17) A division of the U.S. Department of Health and Human Services, NIOSH identifies a noise level threshold based on the duration of exposure to the source. The construction related noise level threshold starts at 85 dBA for more than eight hours per day, and for every 3 dBA increase, the exposure time is cut in half. This results in noise level thresholds of 88 dBA for more than four hours per day, 92 dBA for more than one hour per day, 96 dBA for more than 30 minutes per day, and up to 100 dBA for more than 15 minutes per day. (17) For the purposes of this analysis, the lowest, more conservative construction noise level threshold of 85 dBA Leq is used as an acceptable threshold for construction noise at the nearby sensitive receiver locations. Since this construction-related noise level threshold represents the energy average of the noise source over a given time, they are expressed as Leg noise levels. Therefore, the noise level threshold of 85 dBA Leg over a period of eight hours or more is used to evaluate the potential Project-related construction noise level impacts at the nearby sensitive receiver locations.

The Occupational Safety and Health Administration (OSHA) requires hearing protection be provided by employers in workplaces where the noise levels may, over long periods of exposure to high noise levels, endanger the hearing of their employees. Standard 29 CFR, Part 1910 indicates the noise levels under which a hearing conservation program is required to be provided to workers exposed to high noise levels. (10) This analysis does not evaluate the noise exposure of construction workers within the Project site based on CEQA requirements, and instead, evaluates the Project-related construction noise levels at the nearby sensitive receiver locations in the Project study area.

3.5 VIBRATION STANDARDS

The County of Riverside does not have vibration standards for temporary construction, but the County's General Plan Noise Element does contain the human reaction to typical vibration levels. Vibration levels with peak particle velocity of 0.0787 inches per second are considered readily perceptible and above 0.1968 in/sec are considered annoying to people in buildings. Further, County of Riverside General Plan Policy N 16.3 identifies a motion velocity perception threshold for vibration due to passing trains of 0.01 inches per second (in/sec) over the range of one to 100 Hz, which is used in this noise study to assess potential impacts due to Project construction vibration levels. (15)

3.6 MARCH AIR RESERVE BASE/INLAND PORT AIRPORT LAND USE COMPATIBILITY

The March Air Reserve Base/Inland Port Airport (MARB/IPA) is located approximately one mile northeast of the Project site. The *March Air Reserve Base/Inland Port Airport Land Use Compatibility Plan* (MARB/IPA LUCP) includes the policies for determining the land use compatibility of the Project. The MARB/IPA, Map MA-1, indicates that the Project site is located within Compatibility Zone C2, which Table MA-1 Compatibility Zone Factors indicates is considered to have a *moderate* noise impact. Further, the Project site is located outside of the 60 dBA CNEL noise level contour boundary. Moreover, the Basic Compatibility Criteria, listed in Table MA-2 of the MARB/IPA LUCP identifies no prohibited uses other than highly noise-sensitive outdoor nonresidential uses (e.g., sports stadiums, concert halls). (18) The MARB/IPA LUCP does not identify industrial-use specific noise compatibility standards, and therefore, the County of Riverside *Land Use Compatibility for Community Noise Exposure* matrix, previously discussed in Section 3.3, is used to assess potential aircraft-related noise levels at the Project site. The County of Riverside guidelines indicate that industrial uses, such as the Project, are considered *normally acceptable* with exterior noise levels of up to 70 dBA CNEL. (15)

The noise contour boundaries of MARB/IPA are presented on Exhibit 3-B of this report and show that the Project is considered *normally acceptable* land use since it is located outside of the 60 dBA CNEL contour. Further, Table MA-2 indicates that no uses are prohibited in this area except for highly noise-sensitive outdoor nonresidential uses (e.g., sports stadiums, concert halls).

EXHIBIT 3-B: MARB/IPA FUTURE AIRPORT NOISE CONTOURS

3.7 BLASTING REGULATIONS

The blasting contractor is required to obtain blasting permit(s) from the State, and to notify Riverside County Sheriff's Department within 24 hours of planned blasting events. Further, blasting operations are required to satisfy the maximum airblast and vibration levels identified by the U.S. Bureau of Mines (USBM) and Office of Surface Mining and Reclamation Enforcement (OSMRE).

3.7.1 AIRBLAST LIMITS

The OSMRE *Blasting Performance Standards* (Chapter 30 of the Code of Federal Regulations) identifies the maximum air overpressure and vibration levels at the *location of any dwelling, public building, school, church, or community or institutional building.* (19) Section 816.64 indicates that blasting shall be restricted to between sunrise and sunset per OSMRE standards, *unless nighttime blasting is approved by the regulatory authority based upon a showing by the operator that the public will be protected from adverse noise and other impacts.* Section 816.67 identifies maximum airblast limits, in linear dB, based on different frequency levels. For this noise study, the lowest limit of 129 dB is used as a conservative threshold for analyzing blasting airblasts.

3.7.2 VIBRATION LIMITS

Vibration level limits are also identified in the OSMRE *Blasting Performance Standards*. Section 816.67(d)(2) identifies maximum vibration levels allowed at distance ranges from the blasting site. From zero to 300 feet, the maximum vibration level shall not exceed 1.25 inches per second (in/sec) PPV. Between 301 to 5,000 feet, maximum vibration levels shall not exceed 1.0 in/sec PPV, and at distances greater than 5,001 feet, the OSMRE maximum vibration level standard is 0.75 in/sec PPV. (19)

While additional blasting regulations can be imposed by the permitting agency, the OSMRE blasting regulations represent conservative thresholds for the purposes of this noise study to determine potential impacts related to blasting at nearby sensitive uses, based on the lowest OSMRE airblast limit of 129 dB, and 1.0 in/sec PPV for vibration, to present a conservative approach.

4 SIGNIFICANCE CRITERIA

The following significance criteria are based on currently adopted guidance provided by Appendix G of the California Environmental Quality Act (CEQA) Guidelines. (20) For the purposes of this report, impacts would be potentially significant if the Project results in or causes:

- A. Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?
- B. Generation of excessive ground-borne vibration or ground-borne noise levels?
- C. For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?

While the County of Riverside General Plan Guidelines provide direction on noise compatibility and establish noise standards by land use type that are sufficient to assess the significance of noise impacts, they do not define the levels at which increases are considered substantial for use under Guideline A. CEQA Appendix G Guideline C applies to nearby public and private airports, if any, and the Project's land use compatibility.

Other noise impacts of potential concern to the County (i.e., exposure to: railroad noise, highway noise, aircraft/airfield noise, and "other noise") are substantiated to be less-than-significant in the EIR Initial Study and are therefore not further evaluated here.

4.1 NOISE-SENSITIVE RECEIVERS

Noise level increases resulting from the Project are evaluated based on the Appendix G CEQA Guidelines described above at the closest sensitive receiver locations. Under CEQA, consideration must be given to the magnitude of the increase, the existing ambient noise levels, and the location of noise-sensitive receivers to determine if a noise increase represents a significant adverse environmental impact. This approach recognizes *that there is no single noise increase that renders the noise impact significant.* (21)

Unfortunately, there is no completely satisfactory way to measure the subjective effects of noise or of the corresponding human reactions of annoyance and dissatisfaction. This is primarily because of the wide variation in individual thresholds of annoyance and differing individual experiences with noise. Thus, an important way of determining a person's subjective reaction to a new noise is the comparison of it to the existing environment to which one has adapted—the so-called *ambient* environment.

In general, the more a new noise exceeds the previously existing ambient noise level, the less acceptable the new noise will typically be judged. The Federal Interagency Committee on Noise (FICON) (22) developed guidance to be used for the assessment of project-generated increases in noise levels that consider the ambient noise level. The FICON recommendations are based on studies that relate aircraft noise levels to the percentage of persons highly annoyed by aircraft noise. Although the FICON recommendations were specifically developed to assess aircraft noise

impacts, these recommendations are often used in environmental noise impact assessments involving the use of cumulative noise exposure metrics, such as the average-daily noise level (CNEL) and equivalent continuous noise level (L_{eq}).

As previously stated, the approach used in this noise study recognizes *that there is no single noise increase that renders the noise impact significant*, based on a 2008 California Court of Appeal ruling on Gray v. County of Madera. (21) For example, if the ambient noise environment is quiet (<60 dBA) and the new noise source greatly increases the noise levels, an impact may occur if the noise criteria may be exceeded. Therefore, for this analysis, FICON identifies a *readily perceptible* 5 dBA or greater project-related noise level increase is considered a significant impact when the noise criteria for a given land use is exceeded. Per the FICON, in areas where the without project noise levels range from 60 to 65 dBA, a 3 dBA *barely perceptible* noise level increase appears to be appropriate for most people. When the without project noise levels already exceed 65 dBA, any increase in community noise louder than 1.5 dBA or greater is considered a significant impact if the noise criteria for a given land use is exceeded, since it likely contributes to an existing noise exposure exceedance. Table 4-1 below provides a summary of the potential noise impact significance criteria, based on guidance from FICON.

Without Project Noise Level	Potential Significant Impact		
< 60 dBA	5 dBA or more		
60 - 65 dBA	3 dBA or more		
> 65 dBA	1.5 dBA or more		

TABLE 4-1: SIGNIFICANCE OF NOISE IMPACTS AT NOISE-SENSITIVE RECEIVERS

Federal Interagency Committee on Noise (FICON), 1992.

4.2 NON-NOISE-SENSITIVE RECEIVERS

The County of Riverside General Plan Noise Element, Table N-1, *Land Use Compatibility for Community Noise Exposure* was used to establish the satisfactory noise levels of significance for non-noise-sensitive land uses in the Project study area. As previously shown on Exhibit 3-A, the *normally acceptable* exterior noise levels for non-noise-sensitive land uses is 70 dBA CNEL. Noise levels greater than 70 dBA CNEL are considered *conditionally acceptable* per the *Land Use Compatibility for Community Noise Exposure*. (15)

To determine if Project-related traffic noise level increases are significant at off-site non-noisesensitive land uses, a *readily perceptible* 5 dBA and *barely perceptible* 3 dBA criteria were used. When the without Project noise levels at the non-noise-sensitive land uses are below the *normally acceptable* 70 dBA CNEL compatibility criteria, a *readily perceptible* 5 dBA or greater noise level increase is considered a significant impact. When the without Project noise levels are greater than the *normally acceptable* 70 dBA CNEL land use compatibility criteria, a *barely perceptible* 3 dBA or greater noise level increase is considered a significant impact since the noise level criteria is already exceeded. The noise level increases used to determine significant impacts for non-noise-sensitive land uses is generally consistent with the FICON noise level increase thresholds s for noise-sensitive land uses but instead rely on the County of Riverside General Plan Noise Element, Table N-1, Land Use Compatibility for Community Noise Exposure normally acceptable 70 dBA CNEL exterior noise level criteria.

4.3 SIGNIFICANCE CRITERIA SUMMARY

Noise impacts shall be considered significant if any of the following occur as a direct result of the proposed development. Table 4-2 shows the significance criteria summary matrix.

OFF-SITE TRAFFIC NOISE

- When the noise levels at existing and future noise-sensitive land uses (e.g. residential, etc.):
 - are less than 60 dBA CNEL and the Project creates a *readily perceptible* 5 dBA CNEL or greater Project-related noise level increase; or
 - range from 60 to 65 dBA CNEL and the Project creates a *barely perceptible* 3 dBA CNEL or greater Project-related noise level increase; or
 - already exceed 65 dBA CNEL, and the Project creates a community noise level increase of greater than 1.5 dBA CNEL (FICON, 1992).
- When the noise levels at existing and future non-noise-sensitive land uses (e.g., office, commercial, industrial):
 - are less than the County of Riverside General Plan Noise Element, Table N-1, normally acceptable 70 dBA CNEL and the Project creates a readily perceptible 5 dBA CNEL or greater Project related noise level increase; or
 - are greater than the County of Riverside General Plan Noise Element, Table N-1, normally acceptable 70 dBA CNEL and the Project creates a barely perceptible 3 dBA CNEL or greater Project noise level increase.

OPERATIONAL NOISE & VIBRATION

- If Project-related operational (stationary-source) noise levels exceed the exterior 65 dBA L_{eq} daytime or 45 dBA L_{eq} nighttime noise level standards at nearby sensitive receiver locations in the County of Riverside (County of Riverside General Plan Noise Element, Table N-2).
- If the existing ambient noise levels at the nearby noise-sensitive receivers near the Project site:
 - $\circ~$ are less than 60 dBA L_{eq} and the Project creates a readily perceptible 5 dBA L_{eq} or greater Project-related noise level increase; or
 - $\circ~$ range from 60 to 65 dBA L_{eq} and the Project creates a barely perceptible 3 dBA L_{eq} or greater Project-related noise level increase; or
 - $\circ~$ already exceed 65 dBA L_{eq} and the Project creates a community noise level increase of greater than 1.5 dBA L_{eq} (FICON, 1992).
- If Project generated operational vibration levels exceed the County of Riverside vibration standard of 0.01 in/sec RMS at sensitive receiver locations (County of Riverside General Plan, Policy N 16.3).

CONSTRUCTION NOISE & VIBRATION

- If Project-related construction activities create noise levels which exceed the 85 dBA L_{eq} acceptable noise level threshold at the nearby sensitive receiver locations (NIOSH, Criteria for Recommended Standard: Occupational Noise Exposure);
- If short-term Project-generated construction vibration levels exceed the County of Riverside vibration standard of 0.01 in/sec RMS at sensitive receiver locations (County of Riverside General Plan Noise Element, Policy N 16.3).

Analusia	Receiving	Condition(a)	Significance Criteria		
Analysis	Land Use	condition(s)	Daytime	Nighttime	
	Noise-Sensitive ¹	If ambient is < 60 dBA CNEL	≥ 5 dBA CNEL Project increase		
		If ambient is 60 - 65 dBA CNEL	≥ 3 dBA CNEL Project increase		
Off-Site Traffic		If ambient is > 65 dBA CNEL	≥ 1.5 dBA CNEL	Project increase	
Tranic	Non-Noise- Sensitive ^{1,2}	If ambient is < 70 dBA CNEL	≥ 5 dBA CNEL Project increase		
		If ambient is > 70 dBA CNEL	≥ 3 dBA CNEL Project increase		
	Noise- Sensitive	Exterior Noise Level Standards ³	65 dBA L _{eq}	45 dBA L _{eq}	
		If ambient is < 60 dBA L_{eq}^1	≥ 5 dBA L _{eq} Project increase		
Operational		If ambient is 60 - 65 dBA L _{eq} 1	≥ 3 dBA L _{eq} Project increase		
		If ambient is > 65 dBA L _{eq} ¹	≥ 1.5 dBA L _{eq} Project increase		
		Vibration Level Threshold ⁴	0.01 in/	sec RMS	
Construction	Noise-Sensitive	Noise Level Threshold⁵	85 dI	3A L _{eq}	
Construction		Vibration Level Threshold ⁴	0.01 in/	sec RMS	

TABLE 4-2: SIGNIFICANCE CRITERIA SUMMARY

¹ Source: FICON, 1992.

² Source: County of Riverside General Plan Noise Element, Table N-1.

³ Source: County of Riverside General Plan Noise Element, Table N-2.

⁴ Source: County of Riverside General Plan Noise Element, Policy N 16.3.

⁵ Acceptable threshold for construction noise based on the Criteria for Recommended Standard: Occupational Noise Exposure prepared by the National Institute for Occupational Safety and Health.

"Daytime" = 7:00 a.m. to 10:00 p.m.; "Nighttime" = 10:00 p.m. to 7:00 a.m.

This page intentionally left blank

5 EXISTING NOISE LEVEL MEASUREMENTS

To assess the existing noise level environment, 24-hour noise level measurements were taken at six locations in the Project study area. The receiver locations were selected to describe and document the existing noise environment within the Project study area. Exhibit 5-A provides the boundaries of the Project study area and the noise level measurement locations. To fully describe the existing noise conditions, noise level measurements were collected by Urban Crossroads, Inc. on Wednesday, May 29th, 2019. Appendix 5.1 includes study area photos.

5.1 MEASUREMENT PROCEDURE AND CRITERIA

To describe the existing noise environment, the hourly noise levels were measured during typical weekday conditions over a 24-hour period. By collecting individual hourly noise level measurements, it is possible to describe the daytime and nighttime hourly noise levels and calculate the 24-hour CNEL. The long-term noise readings were recorded using Piccolo Type 2 integrating sound level meter and dataloggers. The Piccolo sound level meters were calibrated using a Larson-Davis calibrator, Model CAL 150. All noise meters were programmed in "slow" mode to record noise levels in "A" weighted form. The sound level meters and microphones were equipped with a windscreen during all measurements. All noise level measurement equipment satisfies the American National Standards Institute (ANSI) standard specifications for sound level meters ANSI S1.4-2014/IEC 61672-1:2013. (23)

5.2 NOISE MEASUREMENT LOCATIONS

The long-term noise level measurements were positioned as close to the nearest sensitive receiver locations as possible to assess the existing ambient hourly noise levels surrounding the Project site. Both Caltrans and the FTA recognize that it is not reasonable to collect noise level measurements that can fully represent every part of a private yard, patio, deck, or balcony normally used for human activity when estimating impacts for new development projects. This is demonstrated in the Caltrans general site location guidelines which indicate that, *sites must be free of noise contamination by sources other than sources of interest. Avoid sites located near sources such as barking dogs, lawnmowers, pool pumps, and air conditioners unless it is the express intent of the analyst to measure these sources. (5) Further, FTA guidance states, that it is not necessary nor recommended that existing noise exposure be determined by measuring at every noise-sensitive location in the project area. Rather, the recommended approach is to characterize the noise environment for clusters of sites based on measurements or estimates at representative locations in the community. (3)*

Based on recommendations of Caltrans and the FTA, it is not necessary to collect measurements at each individual building or residence, because each receiver measurement represents a group of buildings that share acoustical equivalence. (3) In other words, the area represented by the receiver shares similar shielding, terrain, and geometric relationship to the reference noise source. Receivers represent a location of noise sensitive areas and are used to estimate the future noise level impacts. Collecting reference ambient noise level measurements at the nearby sensitive receiver locations allows for a comparison of the before and after Project noise levels

and is necessary to assess potential noise impacts due to the Project's contribution to the ambient noise levels.

5.3 NOISE MEASUREMENT RESULTS

The noise measurements presented below focus on the average or equivalent sound levels (L_{eq}). The equivalent sound level (L_{eq}) represents a steady state sound level containing the same total energy as a time varying signal over a given sample period. Table 5-1 identifies the hourly daytime (7:00 a.m. to 10:00 p.m.) and nighttime (10:00 p.m. to 7:00 a.m.) noise levels at each noise level measurement location. Appendix 5.2 provides a summary of the existing hourly ambient noise levels described below:

- Location L1 represents the noise levels on Nandina Avenue, west of the Project site, near existing residential homes. The noise level measurements collected show an overall 24-hour exterior noise level of 55.6 dBA CNEL. The energy (logarithmic) average daytime noise level was calculated at 54.5 dBA L_{eq} with an average nighttime noise level of 46.3 dBA L_{eq}.
- Location L2 represents the noise levels on Kuder Avenue, west of the Project site, near existing rural-residential homes. The noise level measurements collected show an overall 24-hour exterior noise level of 56.3 dBA CNEL. The energy (logarithmic) average daytime noise level was calculated at 55.4 dBA L_{eq} with an average nighttime noise level of 47.2 dBA L_{eq}.
- Location L3 represents the noise levels on Oleander Avenue, southwest of the Project site, near existing rural-residential homes. The 24-hour CNEL indicates that the overall exterior noise level is 65.9 dBA CNEL. The energy (logarithmic) average daytime noise level was calculated at 56.2 dBA L_{eq} with an average nighttime noise level of 53.9 dBA L_{eq}.
- Location L4 represents the noise levels on Nance Street, southwest of the Project site, near existing rural-residential homes. The noise level measurements collected show an overall 24hour exterior noise level of 60.9 dBA CNEL. The energy (logarithmic) average daytime noise level was calculated at 56.2 dBA L_{eq} with an average nighttime noise level of 53.9 dBA L_{eq}.
- Location L5 represents the noise levels west of Decker Road, south of the Project site, near an existing Water Tank Reservoir. The 24-hour CNEL indicates that the overall exterior noise level is 57.8 dBA CNEL. The energy (logarithmic) average daytime noise level was calculated at 55.7 dBA L_{eq} with an average nighttime noise level of 49.4 dBA L_{eq}.
- Location L6 represents the noise levels on Decker Road, south of the Project site, near existing rural-residential homes. The 24-hour CNEL indicates that the overall exterior noise level is 59.1 dBA CNEL. The energy (logarithmic) average daytime noise level was calculated at 56.3 dBA L_{eq} with an average nighttime noise level of 50.8 dBA L_{eq}.

Table 5-1 provides the (energy average) noise levels used to describe the daytime and nighttime ambient conditions. These daytime and nighttime energy average noise levels represent the average of all hourly noise levels observed during these time periods expressed as a single number. Appendix 5.2 provides summary worksheets of the noise levels for each hour as well as the minimum, maximum, L₁, L₂, L₅, L₈, L₂₅, L₅₀, L₉₀, L₉₅, and L₉₉ percentile noise levels observed during the daytime and nighttime periods.

The background ambient noise levels in the Project study area are dominated by the transportation-related noise associated with I-215 and the MARB/IPA, in addition to background

industrial land use activities. This includes the auto and heavy truck activities on study area roadway segments near the noise level measurement locations. The 24-hour existing noise level measurement results are shown on Table 5-1.

Location ¹	Description	Energy Noise (dBA	CNEL	
		Daytime	Nighttime	
L1	Located on Nandina Avenue, west of the Project site, near existing residential homes.	54.5	46.3	55.6
L2	Located on Kuder Avenue, west of the Project site, near existing rural-residential homes.	55.4	47.2	56.3
L3	Located on Oleander Avenue, southwest of the Project site, near existing rural-residential homes.	59.8	59.2	65.9
L4	Located on Nance Street, southwest of the Project site, near existing rural-residential homes.	56.2	53.9	60.9
L5	Located west of Decker Road, south of the Project site, near an existing Water Tank Reservoir.	55.7	49.4	57.8
L6	Located on Decker Road, south of the Project site, near existing rural-residential homes.	56.3	50.8	59.1

TABLE 5-1: 24-HOUR AMBIENT NOISE LEVEL MEASUREMENTS

¹ See Exhibit 5-A for the noise level measurement locations.

² Energy (logarithmic) average levels. The long-term 24-hour measurement worksheets are included in Appendix 5.2.

"Daytime" = 7:00 a.m. to 10:00 p.m.; "Nighttime" = 10:00 p.m. to 7:00 a.m.

EXHIBIT 5-A: NOISE MEASUREMENT LOCATIONS

A Noise Measurement Locations

6 METHODS AND PROCEDURES

The following section outlines the methods and procedures used to model and analyze the future traffic noise environment.

6.1 FHWA TRAFFIC NOISE PREDICTION MODEL

The expected roadway noise level increases from vehicular traffic were calculated by Urban Crossroads, Inc. using a computer program that replicates the Federal Highway Administration (FHWA) Traffic Noise Prediction Model- FHWA-RD-77-108. (24) The FHWA Model arrives at a predicted noise level through a series of adjustments to the Reference Energy Mean Emission Level (REMEL). In California the national REMELs are substituted with the California Vehicle Noise (Calveno) Emission Levels. (25) Adjustments are then made to the REMEL to account for: the roadway classification (e.g., collector, secondary, major or arterial), the roadway active width (i.e., the distance between the center of the outermost travel lanes on each side of the roadway), the total average daily traffic (ADT), the travel speed, the percentages of automobiles, medium trucks, and heavy trucks in the traffic volume, the roadway grade, the angle of view (e.g., whether the roadway view is blocked), the site conditions ("hard" or "soft" relates to the absorption of the ground, pavement, or landscaping), and the percentage of total ADT which flows each hour throughout a 24-hour period. Research conducted by Caltrans has shown that the use of soft site conditions is appropriate for the application of the FHWA traffic noise prediction model used in this analysis. (26)

This methodology is consistent with the County of Riverside Office of Industrial Hygiene *Requirements for Determining and Mitigating Traffic Noise Impacts to Residential Structures,* which specifically requires the FHWA RD-77-108 model to be used in analysis within the County's jurisdiction. (27)

6.2 OFF-SITE TRAFFIC NOISE PREDICTION MODEL INPUTS

Table 6-1 presents the roadway parameters used to assess the Project's off-site transportation noise impacts. Table 6-1 identifies the seven study area roadway segments, the distance from the centerline to adjacent land use based on the functional roadway classifications per the County of Riverside General Plan Circulation Element, and the posted vehicle speeds. Where posted vehicle speeds are unavailable, the 40 mph speed identified in the County of Riverside Office of Industrial Hygiene Noise Study Guidelines is used. The ADT volumes used in this study are presented on Table 6-2 are based on the *Oleander Business Park Traffic Impact Analysis* prepared by Urban Crossroads, Inc., for the following traffic scenarios: Existing (2019) and Opening Year 2021. (2)

ID	Roadway	Segment	Adjacent Planned (Existing if Different) Land Use ¹	Distance from Centerline to Nearest Adjacent Land Use (Feet) ²	Vehicle Speed (mph) ³
1	Harvill Av.	n/o Harley Knox Bl.	Light Industrial	59'	40
2	Harvill Av.	s/o Harley Knox Bl.	Light Industrial	59'	40
3	Nandina Av.	e/o Decker Rd.	Light Industrial (Vacant)	39'	40
4	Harley Knox Bl.	e/o Decker Rd.	Light Industrial (Vacant)	76'	45
5	Harley Knox Bl.	e/o Harvill Av.	Light Industrial (Vacant)	76'	45
6	Harley Knox Bl.	e/o I-215 NB Ramps	Light Industrial (Vacant)	76'	45
7	Oleander Av.	e/o Decker Rd.	Light Industrial (Vacant)	39'	40

TABLE 6-1: OFF-SITE ROADWAY PARAMETERS

¹ Source: Mead Valley Area Plan, Land Use Plan, Figure 3.

² Distance to adjacent land use is based upon the right-of-way distances for each functional roadway classification provided in the General Plan Circulation Element.

³ Sources: Oleander Business Park Traffic Impact Analysis, prepared by Urban Crossroads, Inc. and the County of Riverside Office of Industrial Hygiene noise study guidelines.

			Average Daily Traffic Volumes ¹					
ID Ro	Roadway	Segment	Exis 20	ting 19	Opening Year 2021			
			Without Project	With Project	Without Project	With Project		
1	Harvill Av.	n/o Harley Knox Bl.	549	685	925	1,061		
2	Harvill Av.	s/o Harley Knox Bl.	10,207	10,226	13,074	13,092		
3	Nandina Av.	e/o Decker Rd.	n/a	236	159	295		
4	Harley Knox Bl.	e/o Decker Rd.	n/a	1,193	1,691	2,784		
5	Harley Knox Bl.	e/o Harvill Av.	10,880	12,128	16,678	17,925		
6	Harley Knox Bl.	e/o I-215 NB Ramps	24,923	25,090	37,441	37,607		
7	Oleander Av.	e/o Decker Rd.	n/a	236	1,651	1,787		

TABLE 6-2: AVERAGE DAILY TRAFFIC VOLUMES

¹ Source: Oleander Business Park Traffic Impact Analysis, Urban Crossroads, Inc.

"n/a" = The roadway segment has nominal volumes based on the Traffic Impact Analysis under the given scenario which are not adequate for without and with Project off-site traffic noise evaluation.

To quantify the off-site noise levels, the Project related truck trips were added to the heavy truck category in the FHWA noise prediction model. The addition of the Project related truck trips increases the percentage of heavy trucks in the vehicle mix. This approach recognizes that the FHWA noise prediction model is significantly influenced by the number of heavy trucks in the vehicle mix. Table 6-3 provides the time of day (daytime, evening, and nighttime) vehicle splits. The daily Project truck trip-ends were assigned to the individual off-site study area roadway segments based on the Project truck trip distribution percentages documented in the *Traffic Impact Analysis*. Using the Project truck trips in combination with the Project truck trips and vehicle mix

percentages for each of the study area roadway segments. Table 6-4 shows the traffic flow by vehicle type (vehicle mix) used for all without Project traffic scenarios, and Tables 6-5 to 6-6 show the vehicle mixes used for the with Project traffic scenarios. Due to the added Project truck trips, the increase in Project traffic volumes and the distributions of trucks on the study area road segments, the percentage of autos, medium trucks and heavy trucks will vary for each of the traffic scenarios. This explains why the existing and future traffic volumes and vehicle mixes vary between seemingly identical study area roadway segments.

Vahiela Turna		Total of Time of		
venicie Type	Daytime	Evening	Nighttime	Day Splits
Autos	67.95%	8.88%	23.17%	100.00%
Medium Trucks	74.90%	4.86%	20.23%	100.00%
Heavy Trucks	69.19%	8.07%	22.74%	100.00%

Based on an existing vehicle count taken at Harvill Avenue and Harley Knox Boulevard (Oleander Business Park Traffic Impact Analysis, Urban Crossroads, Inc.). Vehicle mix percentage values rounded to the nearest one-hundredth.

"Daytime" = 7:00 a.m. to 7:00 p.m.; "Evening" = 7:00 p.m. to 10:00 p.m.; "Nighttime" = 10:00 p.m. to 7:00 a.m.

TABLE 6-4: WITHOUT PROJECT CONDITIONS VEHICLE MIX

Classification		Total		
Classification	Autos	Medium Trucks	Heavy Trucks	Total
All Segments	85.75%	5.50%	8.75%	100.00%

Based on an existing vehicle count taken at Harvill Avenue and Harley Knox Boulevard (Oleander Business Park Traffic Impact Analysis, Urban Crossroads, Inc.). Vehicle mix percentage values rounded to the nearest one-hundredth.

			With Project ¹					
ID	Roadway	Segment	Autos	Medium Trucks	Heavy Trucks	Total ²		
1	Harvill Av.	n/o Harley Knox Bl.	83.18%	5.28%	11.54%	100.00%		
2	Harvill Av.	s/o Harley Knox Bl.	85.59%	5.52%	8.89%	100.00%		
3	Nandina Av.	e/o Decker Rd.	78.29%	4.87%	16.84%	100.00%		
4	Harley Knox Bl.	e/o Decker Rd.	73.58%	4.74%	21.69%	100.00%		
5	Harley Knox Bl.	e/o Harvill Av.	84.28%	5.43%	10.29%	100.00%		
6	Harley Knox Bl.	e/o I-215 NB Ramps	85.77%	5.47%	8.75%	100.00%		
7	Oleander Av.	e/o Decker Rd.	78.29%	4.87%	16.84%	100.00%		

TABLE 6-5: EXISTING WITH PROJECT CONDITIONS VEHICLE MIX

¹ Source: Oleander Business Park Traffic Impact Analysis, Urban Crossroads, Inc.

 $^{\rm 2}$ Total of vehicle mix percentage values rounded to the nearest one-hundredth.

			With Project ¹					
ID	Roadway	Segment	Autos	Medium Trucks	Heavy Trucks	Total ²		
1	Harvill Av.	n/o Harley Knox Bl.	84.09%	5.36%	10.55%	100.00%		
2	Harvill Av.	s/o Harley Knox Bl.	85.63%	5.51%	8.86%	100.00%		
3	Nandina Av.	e/o Decker Rd.	79.78%	5.00%	15.22%	100.00%		
4	Harley Knox Bl.	e/o Decker Rd.	80.54%	5.17%	14.29%	100.00%		
5	Harley Knox Bl.	e/o Harvill Av.	84.75%	5.45%	9.79%	100.00%		
6	Harley Knox Bl.	e/o I-215 NB Ramps	85.77%	5.48%	8.75%	100.00%		
7	Oleander Av.	e/o Decker Rd.	84.77%	5.41%	9.82%	100.00%		

TABLE 6-6: OPENING YEAR WITH PROJECT CONDITIONS VEHICLE MIX

¹ Source: Oleander Business Park Traffic Impact Analysis, Urban Crossroads, Inc.

² Total of vehicle mix percentage values rounded to the nearest one-hundredth.

6.3 CONSTRUCTION EQUIPMENT VIBRATION ASSESSMENT

This analysis focuses on the potential ground-borne vibration associated with vehicular traffic and construction activities. Ground-borne vibration levels from automobile traffic are generally overshadowed by vibration generated by heavy trucks that roll over the same uneven roadway surfaces. However, due to the rapid drop-off rate of ground-borne vibration and the short duration of the associated events, vehicular traffic-induced ground-borne vibration is rarely perceptible beyond the roadway right-of-way, and rarely results in vibration levels that cause damage to buildings in the vicinity.

However, while vehicular traffic is rarely perceptible, construction has the potential to result in varying degrees of temporary ground vibration, depending on the specific construction activities and equipment used. Ground vibration levels associated with various types of construction equipment are summarized on Table 6-7. Based on the representative vibration levels presented for various construction equipment types, it is possible to estimate the potential Project construction vibration levels using the following vibration assessment methods defined by the FTA. The FTA provides the following equation: $PPV_{equip} = PPV_{ref} \times (25/D)^{1.5}$

Equipment	PPV (in/sec) at 25 feet
Small bulldozer	0.003
Jackhammer	0.035
Loaded Trucks	0.076
Large bulldozer	0.089

TABLE 6-7: VIBRATION SOURCE LEVELS FOR CONSTRUCTION EQUIPMENT

Source: Federal Transit Administration, Transit Noise and Vibration Impact Assessment, September 2018.

7 OFF-SITE TRANSPORTATION NOISE IMPACTS

To assess the off-site transportation CNEL noise level impacts associated with the proposed Project, noise contours were developed based on the *Oleander Business Park Traffic Impact Analysis*. (2) Noise contour boundaries represent the equal levels of noise exposure and are measured in CNEL from the center of the roadway. Noise contours were developed for the following traffic scenarios:

- Existing (2019) Without / With Project:
 - This scenario refers to the Existing present-day noise conditions, without and with the proposed Project.
- Opening Year 2021 Without / With Project:
 - This scenario below refers to the background noise conditions at future Year 2021 without and with the proposed Project plus ambient growth, and includes all cumulative projects identified in the *Traffic Impact Analysis*.

7.1 TRAFFIC NOISE CONTOURS

Noise contours were used to assess the Project's incremental traffic-related noise impacts at land uses adjacent to roadways conveying Project traffic. The noise contours represent the distance to noise levels of a constant value and are measured from the center of the roadway for the 70, 65, and 60 dBA noise levels. The noise contours do not consider the effect of any existing noise barriers or topography that may attenuate ambient noise levels. In addition, because the noise contours reflect modeling of vehicular noise on area roadways, they appropriately do not reflect noise contributions from the surrounding stationary noise sources within the Project study area. Tables 7-1 through 7-4 present a summary of the exterior traffic noise levels, without barrier attenuation, for the study area roadway segments analyzed from the without Project to the with Project conditions in each of the following timeframes: Existing (2019) and Opening Year 2021. Appendix 7.1 includes a summary of the traffic noise level contours for each of the traffic scenarios.

			Adjacent	CNEL at Nearest	Distance to Contour from Centerline (Feet)		
ID	Road	Segment	Planned (Existing) Adjacent Land Use ¹ Land Use (dBA) ²		70 dBA CNEL	65 dBA CNEL	60 dBA CNEL
1	Harvill Av.	n/o Harley Knox Bl.	Light Industrial	59.4	RW	RW	RW
2	Harvill Av.	s/o Harley Knox Bl.	Light Industrial	72.1	81	175	377
3	Nandina Av.	e/o Decker Rd.	Light Industrial (Vacant)	n/a	n/a	n/a	n/a
4	Harley Knox Bl.	e/o Decker Rd.	Light Industrial (Vacant)	n/a	n/a	n/a	n/a
5	Harley Knox Bl.	e/o Harvill Av.	Light Industrial (Vacant)	72.1	104	224	483
6	Harley Knox Bl.	e/o I-215 NB Ramps	Light Industrial (Vacant)	75.7	181	390	840
7	Oleander Av.	e/o Decker Rd.	Light Industrial (Vacant)	n/a	n/a	n/a	n/a

TABLE 7-1: EXISTING WITHOUT PROJECT CONDITIONS NOISE CONTOURS

¹ Source: Mead Valley Area Plan, Land Use Plan, Figure 3.

² The CNEL is calculated at the boundary of the right-of-way of each roadway and the property line of the nearest adjacent land use.

"RW" = Location of the respective noise contour falls within the right-of-way of the road; "n/a" = The roadway segment has nominal volumes based on the Traffic Impact Analysis under the given scenario which are not adequate for without and with Project off-site traffic noise evaluation.

TABLE 7-2: EXISTING	WITH PROJECT CONDITIC	ONS NOISE CONTOURS
---------------------	-----------------------	--------------------

			Adjacent	CNEL at Nearest	Distance to Contour from Centerline (Feet)		
ID	Road	Segment	Planned (Existing) Land Use ¹	Adjacent Land Use (dBA) ²	70 dBA CNEL	65 dBA CNEL	60 dBA CNEL
1	Harvill Av.	n/o Harley Knox Bl.	Light Industrial	61.2	RW	RW	71
2	Harvill Av.	s/o Harley Knox Bl.	Light Industrial	72.1	82	177	381
3	Nandina Av.	e/o Decker Rd.	Light Industrial (Vacant)	60.0	RW	RW	39
4	Harley Knox Bl.	e/o Decker Rd.	Light Industrial (Vacant)	65.4	RW	81	174
5	Harley Knox Bl.	e/o Harvill Av.	Light Industrial (Vacant)	73.0	121	260	559
6	Harley Knox Bl.	e/o I-215 NB Ramps	Light Industrial (Vacant)	75.7	182	392	844
7	Oleander Av.	e/o Decker Rd.	Light Industrial (Vacant)	60.0	RW	RW	39

¹ Source: Mead Valley Area Plan, Land Use Plan, Figure 3.

² The CNEL is calculated at the boundary of the right-of-way of each roadway and the property line of the nearest adjacent land use.

"RW" = Location of the respective noise contour falls within the right-of-way of the road.

			Adjacent	CNEL at Nearest	Distance to Contour from Centerline (Feet)		
ID	Road	Segment	Planned (Existing) Land Use ¹	Adjacent Land Use (dBA) ²	70 dBA CNEL	65 dBA CNEL	60 dBA CNEL
1	Harvill Av.	n/o Harley Knox Bl.	Light Industrial	61.7	RW	RW	76
2	Harvill Av.	s/o Harley Knox Bl.	Light Industrial	73.2	96	207	445
3	Nandina Av.	e/o Decker Rd.	Light Industrial (Vacant)	56.2	RW	RW	RW
4	Harley Knox Bl.	e/o Decker Rd.	Light Industrial (Vacant)	64.0	RW	RW	140
5	Harley Knox Bl.	e/o Harvill Av.	Light Industrial (Vacant)	73.9	138	298	643
6	Harley Knox Bl.	e/o I-215 NB Ramps	Light Industrial (Vacant)	77.4	237	511	1102
7	Oleander Av.	e/o Decker Rd.	Light Industrial (Vacant)	66.4	RW	48	103

TABLE 7-3: OPENING YEAR WITHOUT PROJECT CONDITIONS NOISE CONTOURS

¹ Source: Mead Valley Area Plan, Land Use Plan, Figure 3.

² The CNEL is calculated at the boundary of the right-of-way of each roadway and the property line of the nearest adjacent land use.

"RW" = Location of the respective noise contour falls within the right-of-way of the road; "n/a" = The roadway segment does not exist under the given scenario.

TABLE 7-4: OPENING YEAR WITH PROJECT CONDITIONS NOISE CONTOURS

			Adjacent	CNEL at Nearest	Distar from C	nce to Co enterline	ontour e (Feet)
ID	Road	Segment	Planned (Existing) Land Use ¹	Adjacent Land Use (dBA) ²	70 dBA CNEL	65 dBA CNEL	60 dBA CNEL
1	Harvill Av.	n/o Harley Knox Bl.	Light Industrial	62.8	RW	RW	91
2	Harvill Av.	s/o Harley Knox Bl.	Light Industrial	73.2	97	208	448
3	Nandina Av.	e/o Decker Rd.	Light Industrial (Vacant)	60.7	RW	RW	43
4	Harley Knox Bl.	e/o Decker Rd.	Light Industrial (Vacant)	67.7	RW	114	246
5	Harley Knox Bl.	e/o Harvill Av.	Light Industrial (Vacant)	74.6	153	329	709
6	Harley Knox Bl.	e/o I-215 NB Ramps	Light Industrial (Vacant)	77.4	238	513	1105
7	Oleander Av.	e/o Decker Rd.	Light Industrial (Vacant)	67.0	RW	53	115

¹ Source: Mead Valley Area Plan, Land Use Plan, Figure 3.

² The CNEL is calculated at the boundary of the right-of-way of each roadway and the property line of the nearest adjacent land use.

"RW" = Location of the respective noise contour falls within the right-of-way of the road.

7.2 EXISTING CONDITIONS 2019 PROJECT TRAFFIC NOISE LEVEL CONTRIBUTIONS

An analysis of Existing 2019 traffic noise levels plus traffic noise generated by the proposed Project has been included in this report. However, the analysis of existing traffic noise levels plus traffic noise generated by the proposed Project scenario will not actually occur since the Project would not be fully constructed and operational until Year 2021 cumulative conditions.

Table 7-1 shows the Existing 2019 without Project conditions CNEL noise levels. The Existing 2019 without Project exterior noise levels are expected to range from 59.4 to 75.7 dBA CNEL, without accounting for any noise attenuation features such as noise barriers or topography. Table 7-2 shows the Existing 2019 with Project conditions will range from 60.0 to 75.7 dBA CNEL. Table 7-5 shows that the Project off-site traffic noise level increases are estimated at1.8 dBA CNEL on Harvill Avenue north of Harley Knox Boulevard and 1.0 dBA or less on the other six study area roadway segments

ID Road		Segment	CN Lai	EL at Adja nd Use (d	acent BA) ¹	Noise- Sensitive Land
			No Project	With Project	Project Addition	036:
1	Harvill Av.	n/o Harley Knox Bl.	59.4	61.2	1.8	No
2	Harvill Av.	s/o Harley Knox Bl.	72.1	72.1	0.1	No
3	Nandina Av.	e/o Decker Rd.	n/a	60.0	n/a	No
4	Harley Knox Bl.	e/o Decker Rd.	n/a	65.4	n/a	No
5	Harley Knox Bl.	e/o Harvill Av.	72.1	73.0	1.0	No
6	Harley Knox Bl.	e/o I-215 NB Ramps	75.7	75.7	0.0	No
7	Oleander Av.	e/o Decker Rd.	n/a	60.0	n/a	No

TABLE 7-5: UNMITIGATED EXISTING WITH PROJECT TRAFFIC NOISE LEVEL INCREASES

¹ The CNEL is calculated at the boundary of the right-of-way of each roadway and the property line of the nearest adjacent land use. Values rounded to the nearest one-tenth.

"n/a" = The roadway segment has nominal volumes based on the Traffic Impact Analysis under the given scenario which are not adequate for without and with Project off-site traffic noise evaluation.

7.3 OPENING YEAR 2021 PROJECT TRAFFIC NOISE LEVEL CONTRIBUTIONS

Table 7-3 presents the Opening Year 2021 without Project conditions CNEL noise levels. The EAC without Project exterior noise levels are expected to range from 56.2 to 77.4dBA CNEL, without accounting for any noise attenuation features such as noise barriers or topography.

Table 7-4 shows the Opening Year 2021 with Project conditions will range from 60.7 to 77.4dBA CNEL. Table 7-8 shows that the Project off-site traffic noise level increases of 4.5 dBA CNEL or less. Based on the significance criteria for off-site traffic noise presented in Table 4-2, land uses adjacent to the study area roadway segments would experience *less than significant* noise level impacts due to unmitigated Project-related traffic noise levels.

ID	Road	Segment	CNI Lai	EL at Adja nd Use (d	icent BA) ¹	Noise- Sensitive Land	Threshold Exceeded? ²
			No Project	With Project	Project Addition	Use?	
1	Harvill Av.	n/o Harley Knox Bl.	61.7	62.8	1.2	No	No
2	Harvill Av.	s/o Harley Knox Bl.	73.2	73.2	0.0	No	No
3	Nandina Av.	e/o Decker Rd.	56.2	60.7	4.5	No	No
4	Harley Knox Bl.	e/o Decker Rd.	64.0	67.7	3.7	No	No
5	Harley Knox Bl.	e/o Harvill Av.	73.9	74.6	0.6	No	No
6	Harley Knox Bl.	e/o I-215 NB Ramps	77.4	77.4	0.0	No	No
7	Oleander Av.	e/o Decker Rd.	66.4	67.0	0.7	No	No

TABLE 7-6: UNMITIGATED OPENING YEAR 2021 WITH PROJECT TRAFFIC NOISE IMPACTS

¹ The CNEL is calculated at the boundary of the right-of-way of each roadway and the property line of the nearest adjacent land use. Values rounded to the nearest one-tenth.

² Significance Criteria (Section 4).

This page intentionally left blank

8 SENSITIVE RECEIVER LOCATIONS

To assess the potential for long-term operational and short-term construction noise impacts, the following sensitive receiver locations, as shown on Exhibit 8-A, were identified as representative locations for analysis. Sensitive receivers are generally defined as locations where people reside or where the presence of unwanted sound could otherwise adversely affect the use of the land. Noise-sensitive land uses are generally considered to include: schools, hospitals, single-family dwellings, mobile home parks, churches, libraries, and recreation areas. Moderately noise-sensitive land uses typically include: multi-family dwellings, hotels, motels, dormitories, outpatient clinics, cemeteries, golf courses, country clubs, athletic/tennis clubs, and equestrian clubs. Land uses that are considered relatively insensitive to noise include business, commercial, and professional developments. Land uses that are typically not affected by noise include: industrial, manufacturing, utilities, agriculture, undeveloped land, parking lots, warehousing, liquid and solid waste facilities, salvage yards, and transit terminals.

Receiver locations are located in outdoor living areas (e.g., backyards) at 10 feet from any existing or proposed barriers or at the building façade, whichever is closer to the Project site, based on FHWA guidance, and consistent with additional guidance provided by Caltrans and the FTA, as previously described in Section 5.2. Sensitive receiver locations in the Project study area include residential uses, as described below. Other sensitive land uses in the Project study area that are located at greater distances than those identified in this noise study will experience lower noise levels than those presented in this report due to the additional attenuation from distance and the shielding of intervening structures.

- R1: Located approximately 2,573 feet west of the Project site, R1 represents existing residential homes west of Day Street. A 24-hour noise measurement was taken near this location, L1, to describe the existing ambient noise environment.
- R2: Location R2 represents the existing residential homes located west of the Project site at roughly 2,012 feet, on the west side of Day Street. A 24-hour noise measurement was taken near this location, L2, to describe the existing ambient noise environment.
- R3: Location R3 represents the existing residential homes on the north side of Old Oleander Avenue at approximately 2,006 feet west of the Project site. A 24-hour noise measurement near this location, L3, is used to describe the existing ambient noise environment.
- R4: Location R4 represents the existing residential homes located roughly 1,702 feet southwest of the Project site, east of Day Street. A 24-hour noise measurement near this location, L4, is used to describe the existing ambient noise environment.
- R5: Located approximately 1,764 feet southwest of the Project site, R5 represents existing residential homes on the east side of Day Street. A 24-hour noise measurement was taken near this location, L4, to describe the existing ambient noise environment.
- R6: Location R6 represents the existing residential homes located southeast of the Project site at roughly 1,282 feet on Redwood Drive. A 24-hour noise measurement was taken near this location, L6, to describe the existing ambient noise environment.

EXHIBIT 8-A: SENSITIVE RECEIVER LOCATIONS

- Distance from receiver to Project site boundary (in feet)

9 OPERATIONAL NOISE IMPACTS

This section analyzes the potential stationary-source operational noise impacts at the nearby receiver locations, identified in Section 8, resulting from operation of the proposed Oleander Business Park Project. Exhibit 9-A identifies the noise source locations used to assess the operational noise levels. Appendix 9.1 includes the detailed calculations for the Project operational noise levels presented in this section.

9.1 **OPERATIONAL NOISE SOURCES**

At the time this noise analysis was prepared, the future tenants of the proposed Project were unknown. The on-site Project-related noise sources are expected to include: idling trucks, delivery truck activities, backup alarms, as well as loading and unloading of dry goods, roof-top air conditioning units, and parking lot vehicle movements. This noise analysis is intended to describe noise level impacts associated with the expected typical 24-hour seven day per week operational activities at the Project site.

9.2 **REFERENCE NOISE LEVELS**

To estimate the Project operational noise impacts, reference noise level measurements were collected from similar types of activities to represent the noise levels expected with the development of the proposed Project. This section provides a detailed description of the reference noise level measurements shown on Table 9-1 used to estimate the Project operational noise impacts. It is important to note that the following projected noise levels assume the worst-case noise environment with the idling trucks, delivery truck activities, backup alarms, as well as loading and unloading of dry goods, roof-top air conditioning units, and parking lot vehicle movements all operating continuously. These sources of noise activity will likely vary throughout the day.

9.2.1 MEASUREMENT PROCEDURES

The reference noise level measurements presented in this section were collected using a Larson Davis LxT Type 1 precisions sound level meter (serial number 01146). The LxT sound level meter was calibrated using a Larson-Davis calibrator, Model CAL 200, was programmed in "slow" mode to record noise levels in "A" weighted form and was located at approximately five feet above the ground elevation for each measurement. The sound level meters and microphones were equipped with a windscreen during all measurements. All noise level measurement equipment satisfies the American National Standards Institute (ANSI) standard specifications for sound level meters ANSI S1.4-2014/IEC 61672-1:2013. (23)

9.2.2 TRUCK IDLING, DELIVERIES, BACKUP ALARMS, UNLOADING/LOADING, AND DOCKING

Short-term reference noise level measurements were collected on Wednesday, January 7th, 2015, by Urban Crossroads, Inc. at the Motivational Fulfillment & Logistics Services distribution facility located at 6810 Bickmore Avenue in the City of Chino. The noise level measurements represent the typical weekday dry goods logistics warehouse operation in a single building, of

roughly 285,000 square feet, with a loading dock area on the western side of the building façade. Up to ten trucks were observed in the loading dock area including a combination of tractor trailer semi-trucks, two-axle delivery trucks, and background forklift operations.

The unloading/docking activity noise level measurement was taken over a fifteen-minute period and represents multiple noise sources taken from the center of loading dock activities generating a reference noise level of 62.8 dBA L_{eq} at a uniform reference distance of 50 feet. At this measurement location, the noise sources associated with employees unloading a docked truck container included the squeaking of the truck's shocks when weight was removed from the truck, employees playing music over a radio, as well as a forklift horn and backup alarm. In addition, during the noise level measurement a truck entered the loading dock area and proceeded to reverse and dock in a nearby loading bay, adding truck engine, idling, and air brakes noise, in addition to on-going idling of an already docked truck.

9.2.3 ENTRY GATE & TRUCK MOVEMENTS

An entry gate and truck movements reference noise level measurement was taken at the southern entry gate of the Motivational Fulfillment & Logistics Services distribution facility over a 15-minute period and represents multiple noise sources producing a reference noise level of 56.0 dBA L_{eq} at 50 feet. The noise sources included at this measurement location account for the rattling and squeaking during normal opening and closing operations, the gate closure equipment, truck engines idling outside the entry gate, truck movements through the entry gate, and background truck court activities and forklift backup alarm noise.

9.2.4 ROOF-TOP AIR CONDITIONING UNITS

To assess the impacts created by the roof-top air conditioning units at the Project buildings, reference noise levels measurements were taken over a four-day total duration at the Santee Walmart on July 27th, 2015. Located at 170 Town Center Parkway in the City of Santee, the noise level measurements describe mechanical roof-top air conditioning units on the roof of an existing Walmart store, with additional roof-top units operating in the background. The reference noise level represents Lennox SCA120 series 10-ton model packaged air conditioning units. At 5 feet from the closest roof-top air conditioning unit, the highest exterior noise level from all four days of the measurement period was measured at 77.2 dBA Leq. Using the uniform reference distance of 50 feet, the noise level is 57.2 dBA Leq. The operating conditions of the reference noise level measurement reflect peak summer cooling requirements with measured temperatures approaching 96 degrees Fahrenheit (°F) with average daytime temperatures of 82°F. The roof-top air condition units were observed to operate the most during the daytime hours for a total of 39 minutes per hour. The noise attenuation provided by a parapet wall is not reflected in this reference noise level measurement.

9.2.5 PARKING LOT VEHICLE MOVEMENTS (AUTOS)

To determine the noise levels associated with parking lot vehicle movements, Urban Crossroads collected reference noise level measurements over a 24-hour period on May 17th, 2017 at the parking lot for the Panasonic Avionics Corporation in the City of Lake Forest. The peak hour of

activity measured over the 24-hour noise level measurement period occurred between 12:00 p.m. to 1:00 p.m., or the typical lunch hour for employees working in the area. The measured reference noise level at 50 feet from parking lot vehicle movements was measured at 41.7 dBA L_{eq}. The parking lot noise levels are mainly due to cars pulling in and out of spaces during peak lunch hour activity and employees talking. Noise associated with parking lot vehicle movements is expected to operate for the entire hour (60 minutes).

Noise Course	Duration	Ref.	Noise Source	Referen Level (c	ce Noise IBA L _{eq})
Noise Source	(hh:mm:ss)	(Feet)	Height (Feet)	@ Ref. Dist.	@ 50 Feet
Truck Unloading/Docking Activity ¹	00:15:00	30'	8'	67.2	62.8
Entry Gate & Truck Movements ¹	00:15:00	20'	8'	64.0	56.0
Roof-Top Air Conditioning Units ²	96:00:00	5'	5'	77.2	57.2
Parking Lot Vehicle Movements ³	01:00:00	10'	5'	52.2	41.7

TABLE 9-1: REFERENCE NOISE LEVEL MEASUREMENTS

¹ Reference noise level measurements were collected from the existing operations of the Motivational Fulfillment & Logistics Services distribution facility located at 6810 Bickmore Avenue in the City of Chino on Wednesday, January 7, 2015. ² As measured by Urban Crossroads, Inc. on 7/27/2015 at the Santee Walmart located at 170 Town Center Parkway. ³ As measured by Urban Crossroads, Inc. on 5/17/2017 at the Panasonic Avionics Corporation parking lot in the City of Lake Forest.

9.3 **PROJECT OPERATIONAL NOISE LEVELS**

Using the reference noise levels to represent the proposed Project operations that include idling trucks, delivery truck activities, backup alarms, as well as loading and unloading of dry goods, roof-top air conditioning units, and parking lot vehicle movements, Urban Crossroads, Inc. calculated the operational source noise levels that are expected to be generated at the Project site and the Project-related noise level increases that would be experienced at each of the sensitive receiver locations. The operational noise level calculations, shown on Table 9-2, account for the distance attenuation provided due to geometric spreading when sound from a localized stationary source (i.e., a point source) propagates uniformly outward in a spherical pattern. Hard site conditions are used in the operational noise analysis which result in noise levels that attenuate (or decrease) at a rate of 6 dBA for each doubling of distance from a point source. The basic noise attenuation equation shown below is used to calculate the distance attenuation based on a reference noise level (SPL1):

 $SPL_2 = SPL_1 - 20log(D_2/D_1)$

Where SPL₂ is the resulting noise level after attenuation, SPL₁ is the source noise level, D_2 is the distance to the reference sound pressure level (SPL₁), and D_1 is the distance to the receiver location. Table 9-2 shows the individual operational noise levels of each noise source at each of the nearby sensitive receiver locations. As indicated on Table 9-2, the Project-only operational noise levels will range from 30.0 to 34.5 dBA Leg at the sensitive receiver locations. The Project operational noise level calculations do not account for any existing or planned noise barriers.

EXHIBIT 9-A: OPERATIONAL NOISE SOURCE LOCATIONS

	1	Combined			
Receiver Location ¹	Truck Unloading/ Docking Activity	Entry Gate & Truck Movements	Roof-Top Air Conditioning Units	Parking Lot Vehicle Movements	Operational Noise Levels (dBA L _{eq})
R1	28.4	21.6	21.4	15.7	30.0
R2	30.4	23.6	23.1	17.2	32.0
R3	30.6	23.8	23.2	17.2	32.2
R4	31.7	25.1	24.2	18.2	33.3
R5	30.9	24.8	24.1	18.0	32.7
R6	32.3	26.4	27.8	20.0	34.5

TABLE 9-2: UNMITIGATED PROJECT-ONLY OPERATIONAL NOISE LEVELS

 $^{\rm 1}$ See Exhibit 9-A for the receiver and noise source locations.

² Reference noise sources as shown on Table 9-1. Individual noise source calculations are provided in Appendix 9.1.

To demonstrate compliance with local noise regulations, the Project-only operational noise levels are evaluated against exterior noise level thresholds based on the County of Riverside exterior noise level standards at nearby noise-sensitive receiver locations. Table 9-3 shows the operational noise levels associated with Oleander Business Park Project will satisfy the County of Riverside 65 dBA L_{eq} daytime and 45 dBA L_{eq} nighttime exterior noise level standards at all nearby receiver locations. Therefore, the operational noise impacts are considered *less than significant*, at the nearby noise-sensitive receiver locations.

TABLE 9-3: UNMITIGATED OPERATIONAL NOISE LEVEL COMPLIANCE

		Threshold Exceeded? ³		
Receiver Location ¹	Locations (dBA L _{eq}) ²	Daytime (65 dBA L _{eq})	Nighttime (45 dBA L _{eq})	
R1	30.0	No	No	
R2	32.0	No	No	
R3	32.2	No	No	
R4	33.3	No	No	
R5	32.7	No	No	
R6	34.5	No	No	

¹ See Exhibit 9-A for the receiver and noise source locations.

² Estimated Project operational noise levels as shown on Table 9-2.

³ Do the estimated Project operational noise levels meet the operational noise level standards?

"Daytime" = 7:00 a.m. to 10:00 p.m.; "Nighttime" = 10:00 p.m. to 7:00 a.m.

9.4 PROJECT OPERATIONAL NOISE LEVEL CONTRIBUTIONS

To describe the Project operational noise level contributions, the Project operational noise levels are combined with the existing ambient noise levels measurements for the nearby receiver locations potentially impacted by Project operational noise sources. Since the units used to measure noise, decibels (dB), are logarithmic units, the Project-operational and existing ambient noise levels cannot be combined using standard arithmetic equations. (5) Instead, they must be logarithmically added using the following base equation:

 $SPL_{Total} = 10log_{10}[10^{SPL1/10} + 10^{SPL2/10} + \dots 10^{SPLn/10}]$

Where "SPL1," "SPL2," etc. are equal to the sound pressure levels being combined, or in this case, the Project-operational and existing ambient noise levels. The difference between the combined Project and ambient noise levels describe the Project noise level contributions to the existing ambient noise environment. Noise levels that would be experienced at receiver locations when Project-source noise is added to the daytime and nighttime ambient conditions are presented on Tables 9-4 and 9-5, respectively.

As indicated on Tables 9-4 and 9-5, the Project will generate an unmitigated daytime operational noise level increase of up to 0.0 dBA L_{eq} and an unmitigated nighttime operational noise level increase of up to 0.1 dBA L_{eq} at the nearby receiver locations. Since the Project-related operational noise level contributions will satisfy the operational noise level increase significance criteria presented in Table 4-2, the increases at the sensitive receiver locations will be *less than significant*.

Receiver Location ¹	Total Project Operational Noise Level ²	Measurement Location ³	Reference Ambient Noise Levels ⁴	Combined Project and Ambient ⁵	Project Increase ⁶	Threshold ⁷	Threshold Exceeded? ⁷
R1	30.0	L1	54.5	54.5	0.0	5.0	No
R2	32.0	L2	55.4	55.4	0.0	5.0	No
R3	32.2	L3	59.8	59.8	0.0	5.0	No
R4	33.3	L4	56.2	56.2	0.0	5.0	No
R5	32.7	L4	56.2	56.2	0.0	5.0	No
R6	34.5	L6	56.3	56.3	0.0	5.0	No

 TABLE 9-4: PROJECT DAYTIME NOISE LEVEL CONTRIBUTIONS

¹ See Exhibit 9-A for the sensitive receiver locations.

² Total Project operational noise levels as shown on Table 9-3.

³ Reference noise level measurement locations as shown on Exhibit 5-A.

⁴ Observed daytime ambient noise levels as shown on Table 5-1.

⁵ Represents the combined ambient conditions plus the Project activities.

⁶ The noise level increase expected with the addition of the proposed Project activities.

⁷ Significance Criteria as defined in Section 4.

Receiver Location ¹	Total Project Operational Noise Level ²	Measurement Location ³	Reference Ambient Noise Levels ⁴	Combined Project and Ambient ⁵	Project Increase ⁶	Threshold ⁷	Threshold Exceeded? ⁷
R1	30.0	L1	46.3	46.4	0.1	5.0	No
R2	32.0	L2	47.2	47.3	0.1	5.0	No
R3	32.2	L3	59.2	59.2	0.0	5.0	No
R4	33.3	L4	53.9	53.9	0.0	5.0	No
R5	32.7	L4	53.9	53.9	0.0	5.0	No
R6	34.5	L6	50.8	50.9	0.1	5.0	No

TABLE 9-5: PROJECT NIGHTTIME NOISE LEVEL CONTRIBUTIONS

¹ See Exhibit 9-A for the sensitive receiver locations.

² Total Project operational noise levels as shown on Table 9-3.

³ Reference noise level measurement locations as shown on Exhibit 5-A.

⁴ Observed nighttime ambient noise levels as shown on Table 5-1.

⁵ Represents the combined ambient conditions plus the Project activities.

⁶ The noise level increase expected with the addition of the proposed Project activities.

⁷ Significance Criteria as defined in Section 4.

9.5 REFLECTION

Field studies conducted by the FHWA have shown that the reflection from barriers and buildings does not substantially increase noise levels. (28) If all the noise striking a structure was reflected back to a given receiving point, the increase would be theoretically limited to 3 dBA. Further, not all of the acoustical energy is reflected back to same point. Some of the energy would go over the structure, some is reflected to points other than the given receiving point, some is scattered by ground coverings (e.g., grass and other plants), and some is blocked by intervening structures and/or obstacles (e.g., the noise source itself). Additionally, some of the reflected energy is lost due to the longer path that the noise must travel. FHWA measurements made to quantify reflective increases in traffic noise have not shown an increase of greater than 1-2 dBA; an increase that is not perceptible to the average human ear.

9.6 **OPERATIONAL VIBRATION IMPACTS**

To assess the potential vibration impacts from truck haul trips associated with operational activities the County of Riverside threshold for vibration of 0.01 in/sec RMS is used. Truck vibration levels are dependent on vehicle characteristics, load, speed, and pavement conditions.

According to the FTA *Transit Noise Impact and Vibration Assessment,* (29) trucks rarely create vibration that exceeds 70 VdB or 0.003 in/sec RMS (4) (unless there are bumps due to frequent potholes in the road. Trucks transiting on site will be travelling at very low speeds so it is expected that delivery truck vibration impacts at nearby homes will satisfy the County of Riverside vibration threshold of 0.01 in/sec RMS, and therefore, will be *less than significant*.

This page intentionally left blank

10 CONSTRUCTION IMPACTS

This section analyzes potential impacts resulting from the short-term construction activities associated with the development of the Project. Exhibit 10-A shows the construction noise source locations in relation to the nearby sensitive receiver locations previously described in Section 8.

10.1 CONSTRUCTION NOISE LEVELS

Noise generated by the Project construction equipment will include a combination of trucks, power tools, concrete mixers, and portable generators that when combined can reach high levels. The number and mix of construction equipment is expected to occur in the following stages:

- Site Preparation
- Grading
- Building Construction
- Architectural Coating
- Paving
- Blasting

This construction noise analysis was prepared using reference noise level measurements taken by Urban Crossroads, Inc. to describe the typical construction activity noise levels for each stage of Project construction. The construction reference noise level measurements represent a list of typical construction activity noise levels. Noise levels generated by heavy construction equipment can range from approximately 68 dBA to more than 80 dBA when measured at 50 feet. However, these noise levels diminish with distance from the construction site at a rate of 6 dBA per doubling of distance. For example, a noise level of 80 dBA measured at 50 feet from the noise source to the receiver would be reduced to 74 dBA at 100 feet from the source to the receiver, and would be further reduced to 68 dBA at 200 feet from the source to the receiver. The construction stages are based on the *Oleander Business Park Air Quality Impact Analysis*. (30)

10.2 CONSTRUCTION REFERENCE NOISE LEVELS

To describe the Project construction noise levels, measurements were collected for similar activities at several construction sites. Table 10-1 provides a summary of the construction reference noise level measurements. Since the reference noise levels were collected at varying distances of 30 feet and 50 feet, all construction noise level measurements presented on Table 10-1 have been adjusted for consistency to describe a uniform reference distance of 50 feet.

EXHIBIT 10-A: CONSTRUCTION NOISE SOURCE LOCATIONS

ID	Noise Source	Duration (h:mm:ss)	Reference Distance From Source (Feet)	Reference Noise Levels @ Reference Distance (dBA L _{eq})	Reference Noise Levels @ 50 Feet (dBA L _{eq}) ⁶
1	Truck Pass-Bys & Dozer Activity ¹	0:01:15	30'	63.6	59.2
2	Dozer Activity ¹	0:01:00	30'	68.6	64.2
3	Construction Vehicle Maintenance Activities ²	0:01:00	30'	71.9	67.5
4	Foundation Trenching ²	0:01:01	30'	72.6	68.2
5	Rough Grading Activities ²	0:05:00	30'	77.9	73.5
6	Framing ³	0:02:00	30'	66.7	62.3
7	Dozer Pass-By ⁴	0:00:32	30'	84.0	79.6
8	Concrete Mixer Truck Movements ⁵	0:01:00	50'	71.2	71.2
9	Concrete Paver Activities ⁵	0:01:00	30'	70.0	65.6
10	Concrete Mixer Pour & Paving Activities⁵	0:01:00	30'	70.3	65.9
11	Concrete Mixer Backup Alarms & Air Brakes ⁵	0:00:20	50'	71.6	71.6
12	Concrete Mixer Pour Activities ⁵	1:00:00	50'	67.7	67.7

 TABLE 10-1: CONSTRUCTION REFERENCE NOISE LEVELS

¹As measured by Urban Crossroads, Inc. on 10/14/15 at a business park construction site located at the northwest corner of Barranca Parkway and Alton Parkway in the City of Irvine.

² As measured by Urban Crossroads, Inc. on 10/20/15 at a construction site located in Rancho Mission Viejo.

³ As measured by Urban Crossroads, Inc. on 10/20/15 at a residential construction site located in Rancho Mission Viejo.

⁴ As measured by Urban Crossroads, Inc. on 10/30/15 during grading operations within an industrial construction site located in the City of Ontario. ⁵ Reference noise level measurements were collected from a nighttime concrete pour at an industrial construction site, located at 27334 San

³ Reference noise level measurements were collected from a nighttime concrete pour at an industrial construct Bernardino Avenue in the City of Redlands, between 1:00 a.m. to 2:00 a.m. on 7/1/15.

⁶ Reference noise levels are calculated at 50 feet using a drop off rate of 6 dBA per doubling of distance (point source).

10.3 CONSTRUCTION NOISE ANALYSIS

Using the reference construction equipment noise levels, calculations of the Project construction noise level impacts at the nearby sensitive receiver locations were completed. Tables 10-2 to 10-6 present the short-term construction noise levels for each stage of construction. Table 10-7 provides a summary of the construction noise levels by stage at the nearby noise-sensitive receiver locations. Based on the stages of construction, the noise impacts associated with the proposed Project are expected to create temporarily high noise levels at the nearby receiver locations. To assess the worst-case construction noise levels, this analysis shows the highest noise impacts when the equipment with the highest reference noise level is operating at the closest point from the edge of primary construction activity to each receiver location.

Reference Construction Activity ¹	Reference Noise Level @ 50 Feet (dBA L _{eq})
Truck Pass-Bys & Dozer Activity	59.2
Dozer Activity	64.2
Dozer Pass-By	79.6
Highest Reference Noise Level at 50 Feet (dBA L_{eq}):	79.6

TABLE 10-2: SITE PREPARATION EQUIPMENT NOISE LEVELS

Receiver Location	Distance to Construction Activity (Feet) ²	Distance Attenuation (dBA L _{eq}) ³	Estimated Noise Barrier Attenuation (dBA L _{eq}) ⁴	Construction Noise Level (dBA L _{eq})
R1	2,573'	-34.2	0.0	45.4
R2	2,012'	-32.1	0.0	47.5
R3	2,006'	-32.1	0.0	47.5
R4	1,702'	-30.6	0.0	49.0
R5	1,764'	-31.0	0.0	48.6
R6	1,282'	-28.2	0.0	51.4

¹ Reference construction noise level measurements taken by Urban Crossroads, Inc.

² Distance from the nearest point of construction activity to the nearest receiver.

³ Point (stationary) source drop off rate of 6.0 dBA per doubling of distance.

Reference Construction Activity ¹	Reference Noise Level @ 50 Feet (dBA L _{eq})	
Truck Pass-Bys & Dozer Activity	59.2	
Dozer Activity	64.2	
Rough Grading Activities	73.5	
Highest Reference Noise Level at 50 Feet (dBA L_{eq}):	73.5	

TABLE 10-3: GRADING EQUIPMENT NOISE LEVELS

Receiver Location	Distance to Construction Activity (Feet) ²	Distance Attenuation (dBA L _{eq}) ³	Estimated Noise Barrier Attenuation (dBA L _{eq}) ⁴	Construction Noise Level (dBA Leq)
R1	2,573'	-34.2	0.0	39.3
R2	2,012'	-32.1	0.0	41.4
R3	2,006'	-32.1	0.0	41.4
R4	1,702'	-30.6	0.0	42.9
R5	1,764'	-31.0	0.0	42.5
R6	1,282'	-28.2	0.0	45.3

¹ Reference construction noise level measurements taken by Urban Crossroads, Inc.

 $^{\rm 2}$ Distance from the nearest point of construction activity to the nearest receiver.

³ Point (stationary) source drop off rate of 6.0 dBA per doubling of distance.

Reference Construction Activity ¹	Reference Noise Level @ 50 Feet (dBA L _{eq})	
Construction Vehicle Maintenance Activities	67.5	
Foundation Trenching	68.2	
Framing	62.3	
Highest Reference Noise Level at 50 Feet (dBA L_{eq}):	68.2	

TABLE 10-4: BUILDING CONSTRUCTION EQUIPMENT NOISE LEVELS

Receiver Location	Distance to Construction Activity (Feet) ²	Distance Attenuation (dBA L _{eq}) ³	Estimated Noise Barrier Attenuation (dBA L _{eq}) ⁴	Construction Noise Level (dBA Leq)
R1	2,573'	-34.2	0.0	34.0
R2	2,012'	-32.1	0.0	36.1
R3	2,006'	-32.1	0.0	36.1
R4	1,702'	-30.6	0.0	37.6
R5	1,764'	-31.0	0.0	37.2
R6	1,282'	-28.2	0.0	40.0

¹ Reference construction noise level measurements taken by Urban Crossroads, Inc.

² Distance from the nearest point of construction activity to the nearest receiver.

³ Point (stationary) source drop off rate of 6.0 dBA per doubling of distance.

Reference Construction Activity ¹	Reference Noise Level @ 50 Feet (dBA L _{eq})		
Construction Vehicle Maintenance Activities	67.5		
Framing	62.3		
Highest Reference Noise Level at 50 Feet (dBA L_{eq}):	67.5		

TABLE 10-5: ARCHITECTURAL COATING EQUIPMENT NOISE LEVELS

Receiver Location	Distance to Construction Activity (Feet) ²	Distance Attenuation (dBA L _{eq}) ³	Estimated Noise Barrier Attenuation (dBA L _{eq}) ⁴	Construction Noise Level (dBA Leq)
R1	2,573'	-34.2	0.0	33.3
R2	2,012'	-32.1	0.0	35.4
R3	2,006'	-32.1	0.0	35.4
R4	1,702'	-30.6	0.0	36.9
R5	1,764'	-31.0	0.0	36.5
R6	1,282'	-28.2	0.0	39.3

¹ Reference construction noise level measurements taken by Urban Crossroads, Inc.

 $^{\rm 2}$ Distance from the nearest point of construction activity to the nearest receiver.

³ Point (stationary) source drop off rate of 6.0 dBA per doubling of distance.

Reference Construction Activity ¹	Reference Noise Level @ 50 Feet (dBA L _{eq})
Concrete Mixer Truck Movements	71.2
Concrete Paver Activities	65.6
Concrete Mixer Pour & Paving Activities	65.9
Concrete Mixer Backup Alarms & Air Brakes	71.6
Concrete Mixer Pour Activities	67.7
Highest Reference Noise Level at 50 Feet (dBA L_{eq}):	71.6

TABLE 10-6: PAVING EQUIPMENT NOISE LEVELS

Receiver Location	Distance to Construction Activity (Feet) ²	Distance Attenuation (dBA L _{eq}) ³	Estimated Noise Barrier Attenuation (dBA L _{eq}) ⁴	Construction Noise Level (dBA L _{eq})
R1	2,573'	-34.2	0.0	37.4
R2	2,012'	-32.1	0.0	39.5
R3	2,006'	-32.1	0.0	39.5
R4	1,702'	-30.6	0.0	41.0
R5	1,764'	-31.0	0.0	40.6
R6	1,282'	-28.2	0.0	43.4

 1 Reference construction noise level measurements taken by Urban Crossroads, Inc.

 $^{\rm 2}$ Distance from the nearest point of construction activity to the nearest receiver.

 $^{\rm 3}$ Point (stationary) source drop off rate of 6.0 dBA per doubling of distance.

⁴ Estimated barrier attenuation from existing barriers/berms in the Project study area.

10.4 CONSTRUCTION NOISE LEVEL COMPLIANCE

The construction noise analysis shows that the highest construction noise levels will occur when construction activities take place at the closest point from primary Project construction activity to each of the nearby receiver locations. As shown on Table 10-7, the unmitigated construction noise levels are expected to range from 33.2 to 51.4 dBA L_{eq} at the nearby receiver locations.

	Construction Noise Level (dBA Leq)						
Receiver Location ¹	Site Preparation	Grading	Building Construction	Architectural Coating	Paving	Highest Activity Noise Levels ²	
R1	45.3	39.2	33.9	33.2	37.4	45.3	
R2	47.5	41.4	36.1	35.4	39.5	47.5	
R3	47.5	41.4	36.1	35.4	39.5	47.5	
R4	48.9	42.8	37.5	36.8	41.0	48.9	
R5	48.6	42.5	37.2	36.5	40.6	48.6	
R6	51.4	45.3	40.0	39.3	43.4	51.4	

TABLE 10-7: UNMITIGATED CONSTRUCTION EQUIPMENT NOISE LEVEL SUMMARY (DBA LEQ)

¹Noise receiver locations are shown on Exhibit 10-A.

² Estimated construction noise levels during peak operating conditions.

To evaluate whether the Project will generate potentially significant short-term noise levels at off-site sensitive receiver locations a construction-related the NIOSH noise level threshold of 85 dBA L_{eq} is used as acceptable thresholds for construction noise at the nearby sensitive receiver locations. Table 10-8 shows the highest construction noise levels at the potentially impacted receiver locations are expected at 51.4 dBA L_{eq} or less and will satisfy the NIOSH 85 dBA L_{eq} significance threshold during temporary Project construction activities. The noise impact due to unmitigated Project construction noise levels is, therefore, considered a *less than significant* impact at all nearby sensitive receiver locations.

TABLE 10-8: CONSTRUCTION EQUIPMENT NOISE LEVEL COMPLIANCE (DBA LEQ)

. .	Construction Noise Levels (dBA Leq)					
Receiver Location ¹	Highest Construction Noise Levels ²	Threshold ³	Threshold Exceeded? ⁴			
R1	45.3	85	No			
R2	47.5	85	No			
R3	47.5	85	No			
R4	48.9	85	No			
R5	48.6	85	No			
R6	51.4	85	No			

¹Noise receiver locations are shown on Exhibit 10-A.

² Estimated construction noise levels during peak operating conditions, as shown on Table 10-7.

³ Construction noise thresholds as shown on Table 4-2.

⁴ Do the estimated Project construction noise levels satisfy the construction noise level threshold?

10.5 CONSTRUCTION VIBRATION IMPACTS

Construction activity can result in varying degrees of ground vibration, depending on the equipment and methods used, distance to the affected structures and soil type. It is expected that ground-borne vibration from Project construction activities would cause only intermittent, localized intrusion. The proposed Project's construction activities most likely to cause vibration impacts are:

- Heavy Construction Equipment: Although all heavy mobile construction equipment has the potential of causing at least some perceptible vibration while operating close to buildings, the vibration is usually short-term and is not of sufficient magnitude to cause building damage.
- Trucks: Trucks hauling building materials to construction sites can be sources of vibration intrusion if the haul routes pass through residential neighborhoods on streets with bumps or potholes. Repairing the bumps and potholes generally eliminates the problem.

Ground-borne vibration levels resulting from construction activities occurring within the Project site were estimated by data published by the Federal Transit Administration. Construction activities that would have the potential to generate low levels of ground-borne vibration within the Project site include grading. Using the vibration source level of construction equipment provided on Table 6-7 and the construction vibration assessment methodology published by the FTA, it is possible to estimate the Project vibration impacts. Table 10-9 presents the expected Project related vibration levels at the nearby receiver locations.

At distances ranging from 1,223 to 2,630 feet from Project construction activities, construction vibration velocity levels are estimated at 0.0002 in/sec RMS and will remain below the County of Riverside threshold of 0.01 in/sec RMS at all receiver locations, as shown on Table 10-9. Therefore, the Project-related vibration impacts are considered *less than significant* during the construction activities at the Project site.

Further, the Project-related construction vibration levels do not represent levels capable of causing building damage to nearby residential homes. The FTA identifies construction vibration levels capable of building damage ranging from 0.12 to 0.5 in/sec PPV. (3) The peak Project-construction vibration levels shown on Table 10-9, of 0.0002 in/sec PPV, are below the FTA vibration levels for building damage at the residential homes near the Project site. Moreover, the impacts at the site of the closest sensitive receivers are unlikely to be sustained during the entire construction period, but will occur rather only during the times that heavy construction equipment is operating adjacent to the Project site perimeter.

Dis	Distance	Receiver PPV Levels (in/sec) ²					Velocity	Throshold	
Receiver ¹	Const. Activity (Feet)	Small Bulldozer	Jack- hammer	Loaded Trucks	Large Bulldozer	Peak Vibration	Levels (in/sec) RMS ³	(in/sec) RMS ⁴	Threshold Exceeded? ⁵
R1	2,573'	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001	0.01	No
R2	2,012'	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001	0.01	No
R3	2,006'	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001	0.01	No
R4	1,702'	0.0000	0.0001	0.0001	0.0002	0.0002	0.0001	0.01	No
R5	1,764'	0.0000	0.0001	0.0001	0.0002	0.0002	0.0001	0.01	No
R6	1,282'	0.0000	0.0001	0.0002	0.0002	0.0002	0.0002	0.01	No

TABLE 10-9: PROJECT CONSTRUCTION VIBRATION LEVELS

¹Receiver locations are shown on Exhibit 10-A.

² Based on the Vibration Source Levels of Construction Equipment included on Table 6-7.

³ Vibration levels in PPV are converted to RMS velocity using a 0.71 conversion factor identified in the Caltrans Transportation

and Construction Vibration Guidance Manual, September 2013.

⁴ Source: County of Riverside General Plan Noise Element, Policy N 16.3.

⁵ Does the vibration level exceed the maximum acceptable vibration threshold?

10.6 BLASTING IMPACTS

Blasting may be required for hard rock areas within the Project site during construction. The blasting contractor is required to obtain blasting permit(s) from the State, and to notify Riverside County Sheriff's Department within 24 hours of planned blasting events.

Based on information provided by AMPCO Contracting, Inc., the maximum charge weight of blasts within the hard rock areas would depend on distance to nearby receivers, and range from 25 pounds at 200 feet, or 100 pounds at 400 feet, or 210 pounds at 600 feet. At the time of this analysis, the exact blasting locations were unknown, therefore, the Project construction activity distances from each receiver location previously shown on Exhibit 10-A are used to evaluate potential blasting impacts.

To calculate the worst-case airblast and vibration levels, this analysis uses the closest receiver distance of 1,282 feet at receiver location R6. The methodology used herein is provided in the International Society of Explosives Engineer's (ISEE's) *Blasters' Handbook*. (12) As previously discussed in Section 3.7, blasting activities are required to satisfy the maximum airblast and vibration levels identified by the USBM and OSMRE. For this analysis the lowest airblast limit of 129 dB is used a conservative threshold for airblast analysis. In addition, the vibration level limit of 1.0 in/sec PPV is used based on the distance from the potential blasting sites to nearby sensitive uses.

Since the actual specifications of each blast will vary in maximum charge weight, location, and other parameters required to calculate the actual airblast and vibration levels experienced at nearby sensitive receiver locations, this noise study describes potential impacts based on the worst-case maximum charge weight of 210 pounds at the worst-case blasting location of 1,282 feet from the potential blasting area limits.

At 1,282 feet from the worst-case blasting location closest to receiver location R6, airblasts are estimated at 119.4 dB, and vibration levels of 0.19 in/sec PPV. Therefore, the worst-case airblast and vibration levels at the closest sensitive receiver location will satisfy the airblast and vibration level thresholds of 129 dB and 1.0 in/sec PPV, respectively. The airblast and vibration calculations per ISEE guidance are provided in Appendix 10.1 based on information provided by the blasting contractor.

Further, the worst-case airblast and vibration levels do not include any additional attenuation provided by the existing topography (e.g., berms) and/or barriers between the Project and the nearby receiver locations, and therefore, may overstate airblast and vibration levels generated by Project blasting activities. At greater distances to the remaining sensitive receiver locations the airblast and vibration levels would be further reduced due to the additional attenuation provided by the added distance and intervening topography and structures in the Project study area.

Therefore, since the worst-case airblast and vibration levels at the closest receiver location would remain below the airblast and vibration level thresholds, Project-related blasting impacts are considered *less than significant*. In addition, the blasting contractor is required to design all blasts such that they remain below the thresholds identified by the USBM and OSMRE at the time of Project blasting activities and must satisfy the permitting requirements of the State and Riverside County Sheriff's Department. Therefore, impacts related to Project blasting activities are considered *less than significant*.

11 REFERENCES

- 1. State of California. California Environmental Quality Act, Appendix G. 2018.
- 2. Urban Crossroads, Inc. Oleander Business Park Traffic Impact Analysis. May 2019.
- 3. U.S. Department of Transportation, Federal Transit Administration. *Transit Noise and Vibration Impact Assessment.* September 2018.
- 4. California Department of Transportation. *Transportation and Construction Vibration Guidance Manual.* September 2019.
- 5. California Department of Transportation Environmental Program. *Technical Noise Supplement A Technical Supplement to the Traffic Noise Analysis Protocol.* Sacramento, CA : s.n., September 2013.
- 6. Environmental Protection Agency Office of Noise Abatement and Control. Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety. March 1974. EPA/ONAC 550/9/74-004.
- 7. U.S. Department of Transportation, Federal Highway Administration, Office of Environment and Planning, Noise and Air Quality Branch. *Highway Traffic Noise Analysis and Abatement Policy and Guidance*. December 2011.
- 8. U.S. Department of Transportation, Federal Highway Administration. *Highway Traffic Noise in the United States, Problem and Response.* April 2000. p. 3.
- 9. U.S. Environmental Protection Agency Office of Noise Abatement and Control. *Noise Effects Handbook-A Desk Reference to Health and Welfare Effects of Noise.* October 1979 (revised July 1981). EPA 550/9/82/106.
- 10. Occupational Safety and Health Administration. Standard 29 CRF, Part 1910.
- 11. California Department of Transportation. *Transportation and Construction Vibration Guidance Manual.* September 2013.
- 12. International Society of Explosives Engineer's. Blasters' Handbook, 18th Edition. 2014.
- 13. Office of Planning and Research. State of California General Plan Guidelines. October 2017.
- 14. State of California. 2016 California Green Building Standards Code. January 2017.
- 15. County of Riverside. General Plan Noise Element. December 2015.
- 16. —. Municipal Code, Chapter 9.52 Noise Regulation.
- 17. National Institute for Occupational Safety and Health. Criteria for Recommended Standard: Occupational Noise Exposure. June 1998.
- 18. Riverside County Airport Land Use Commission. March Air Reserve Base/Inland Port Airport Land Use Compatibility Plan. November 2014.
- 19. Office of Surface Mining Reclamation and Enforcement. Blasting Performance Standards, Code of Federal Regulations Chapter 30.
- 20. **State of California.** *California Environmental Quality Act, Appendix G & Amendments and Additions to the State CEQA Guidelines.* 2019.
- 21. California Court of Appeal. *Gray v. County of Madera, F053661.* 167 Cal.App.4th 1099; Cal.Rptr.3d, October 2008.
- 22. Federal Interagency Committee on Noise. Federal Agency Review of Selected Airport Noise Analysis Issues. August 1992.

- 23. American National Standards Institute (ANSI). Specification for Sound Level Meters ANSI S1.4-2014/IEC 61672-1:2013.
- 24. U.S. Department of Transportation, Federal Highway Administration. FHWA Highway Traffic Noise Prediction Model. December 1978. FHWA-RD-77-108.
- 25. California Department of Transportation Environmental Program, Office of Environmental Engineering. Use of California Vehicle Noise Reference Energy Mean Emission Levels (Calveno REMELS) in FHWA Highway Traffic Noise Prediction. September 1995. TAN 95-03.
- 26. **California Department of Transportation.** *Traffic Noise Attenuation as a Function of Ground and Vegetation Final Report.* June 1995. FHWA/CA/TL-95/23.
- 27. **County of Riverside, Office of Industrial Hygiene.** *Requirements for Determining and Mitigating Traffic Noise Impacts to Residential Structures.* April 2015.
- 28. U.S. Department of Transportation, Federal Highway Administration, Office of Environment and Planning, Noise and Air Quality Branch. *Highway Traffic Noise Analysis and Abatement Policy and Guidance*. June, 1995.
- 29. U.S. Department of Transportation, Federal Transit Administration. *Transit Noise and Vibration Impact Assessment*. September 2018.
- 30. Urban Crossroads, Inc. Oleander Business Park Air Quality Impact Analysis. June 2019.

12 CERTIFICATION

The contents of this noise study report represent an accurate depiction of the noise environment and impacts associated with the proposed Oleander Business Park Project. The information contained in this noise study report is based on the best available data at the time of preparation. If you have any questions, please contact me directly at (949) 336-5979.

Bill Lawson, P.E., INCE Principal URBAN CROSSROADS, INC. 260 E. Baker Street, Suite 200 Costa Mesa, CA 92626 (949) 336-5979 blawson@urbanxroads.com

EDUCATION

Master of Science in Civil and Environmental Engineering California Polytechnic State University, San Luis Obispo • December, 1993

Bachelor of Science in City and Regional Planning California Polytechnic State University, San Luis Obispo • June, 1992

PROFESSIONAL REGISTRATIONS

PE – Registered Professional Traffic Engineer – TR 2537 • January, 2009
AICP – American Institute of Certified Planners – 013011 • June, 1997–January 1, 2012
PTP – Professional Transportation Planner • May, 2007 – May, 2013
INCE – Institute of Noise Control Engineering • March, 2004

PROFESSIONAL AFFILIATIONS

ASA – Acoustical Society of America ITE – Institute of Transportation Engineers

PROFESSIONAL CERTIFICATIONS

Certified Acoustical Consultant – County of Orange • February, 2011 FHWA-NHI-142051 Highway Traffic Noise Certificate of Training • February, 2013

This page intentionally left blank

APPENDIX 3.1:

COUNTY OF RIVERSIDE MUNICIPAL CODE

This page intentionally left blank

9.52.010 - Intent.

At certain levels, sound becomes noise and may jeopardize the health, safety or general welfare of Riverside County residents and degrade their quality of life. Pursuant to its police power, the board of supervisors declares that noise shall be regulated in the manner described in this chapter. This chapter is intended to establish county-wide standards regulating noise. This chapter is not intended to establish thresholds of significance for the purpose of any analysis required by the California Environmental Quality Act and no such thresholds are established.

(Ord. 847 § 1, 2006)

9.52.020 - Exemptions.

Sound emanating from the following sources is exempt from the provisions of this chapter:

- A. Facilities owned or operated by or for a governmental agency;
- B. Capital improvement projects of a governmental agency;
- C. The maintenance or repair of public properties;
- D. Public safety personnel in the course of executing their official duties, including, but not limited to, sworn peace officers, emergency personnel and public utility personnel. This exemption includes, without limitation, sound emanating from all equipment used by such personnel, whether stationary or mobile;
- E. Public or private schools and school-sponsored activities;
- F. Agricultural operations on land designated "Agriculture" in the Riverside County general plan, or land zoned A-l (light agriculture), A-P (light agriculture with poultry), A-2 (heavy agriculture), A-D (agriculture-dairy) or C/V (citrus/vineyard), provided such operations are carried out in a manner consistent with accepted industry standards. This exemption includes, without limitation, sound emanating from all equipment used during such operations, whether stationary or mobile;
- G. Wind energy conversion systems (WECS), provided such systems comply with the WECS noise provisions of Riverside County Ordinance No. 348;
- H. Private construction projects located one-quarter of a mile or more from an inhabited dwelling;
- I. Private construction projects located within one-quarter of a mile from an inhabited dwelling, provided that:
 - 1. Construction does not occur between the hours of six p.m. and six a.m. during the months of June through September, and
 - 2. Construction does not occur between the hours of six p.m. and seven a.m. during the months of October through May;
- J. Property maintenance, including, but not limited to, the operation of lawnmowers, leaf blowers, etc., provided such maintenance occurs between the hours of seven a.m. and eight p.m.;
- K. Motor vehicles, other than off-highway vehicles. This exemption does not include sound emanating from motor vehicle sound systems;
- L. Heating and air conditioning equipment;
- M. Safety, warning and alarm devices, including, but not limited to, house and car alarms, and other warning devices that are designed to protect the public health, safety, and welfare;
- N. The discharge of firearms consistent with all state laws.

This page intentionally left blank

APPENDIX 5.1:

STUDY AREA PHOTOS

This page intentionally left blank

JN:10720 Study Area Photos

L1 East 33, 51' 57.740000", 117, 16' 57.360000"

L1 North 33, 51' 57.740000", 117, 16' 57.390000"

L1 South 33, 51' 57.740000", 117, 16' 57.470000"

L1 West 33, 51' 57.740000", 117, 16' 57.420000"

L2 East 33, 51' 44.410000", 117, 16' 44.700000"

L2 North 33, 51' 44.390000", 117, 16' 44.730000"

JN:10720 Study Area Photos

L2 South 33, 51' 44.390000", 117, 16' 44.700000"

L2 West 33, 51' 44.380000", 117, 16' 44.750000"

L3 East 33, 51' 31.680000", 117, 16' 48.080000"

L3 North 33, 51' 31.690000", 117, 16' 48.110000"

L3 South 33, 51' 31.680000", 117, 16' 48.130000"

L3 West 33, 51' 31.690000", 117, 16' 48.130000"

L5 East 33, 51' 19.910000", 117, 16' 23.660000"

L5 North 33, 51' 19.910000", 117, 16' 23.690000"

L4 South 33, 51' 19.760000", 117, 16' 37.590000"

L4 North 33, 51' 19.780000", 117, 16' 37.590000"

L4 East 33, 51' 19.770000", 117, 16' 37.590000"

JN:10720 Study Area Photos

79

JN:10720 Study Area Photos

L5 South 33, 51' 19.980000", 117, 16' 23.690000"

L5 West 33, 51' 19.880000", 117, 16' 23.690000"

L6 East 33, 51' 23.890000", 117, 16' 12.340000"

L6 North 33, 51' 23.700000", 117, 16' 12.290000"

L6 South 33, 51' 23.930000", 117, 16' 12.340000"

L6 West 33, 51' 23.680000", 117, 16' 12.320000"

APPENDIX 5.2:

NOISE LEVEL MEASUREMENT WORKSHEETS

This page intentionally left blank

Date: Project:	Wednesday Oleander Bı	/, May 29, 20: usiness Park	19		Location:	L1 - Located near existin _§	on Nandina 3 residential	Avenue, we homes.	st of the Proj	ect site,	Meter:	Piccolo I			JN: Analyst:	10720 R. Saber
(A8b) _{ре} J γhuoH 888767090907458 70070707070707070	↓↓↓↓↓↓↓↓↓↓↓↓↓		m	5.44 ℃	۵ الم	∠' <mark>b77</mark> ∞	2 μ	9'ες 11 μομ τ.79 Ο	eginning 12 12 12 12 12 12 12 12 12 12 12 12 12	7.02	16 54.8 16 16 16 16 16 16 16 16 16 16 16 16 16	6 <mark>.24</mark>	13 49.1 13 49.1	۶ <mark>25.3</mark>	21 48.8	41'P
Timeframe	Hour	L eq	L _{max}	L _{min}	L1%	12%	15%	78%	125%	150%	%067	195%	7667	L eq	Adj.	Adj. L _{eq}
	0 -	41.7	50.7	39.2 26.6	45.0	44.0	44.0	43.0	42.0	41.0	39.0	39.0	39.0	41.7	10.0	51.7
+42:IN	- 7 4	40.8 41.3	48.0 48.0	38.00 38.00 20.00	45.0	43.0 45.0	44.0 44.0	41.0 44.0	41.0 41.0	41.0	39.0 39.0	39.0 39.0	39.0 39.0	40.8 41.3	10.0	51.3 51.3 52.6
INIBILI	04	42.0 44.5	40.0 54.2	41.1	48.0	44.0	46.0	44.0	43.0	44.0	41.0	41.0	42.0	42.0 44.5	10.0	54.5
	οu	49.4 50.8	74.2 72.6	39.4 40.4	60.0 63.0	56.0 59.0	50.0 53.0	49.0 50.0	47.0 47.0	45.0 45.0	42.0 41.0	41.0 41.0	40.0 41.0	49.4 50.8	10.0 10.0	59.4 60.8
	7	56.7	83.1	39.1	67.0	61.0	51.0	48.0	43.0	41.0	39.0	39.0	39.0	56.7	0.0	56.7
	∞ c	44.7	70.9	36.4	53.0	50.0	48.0	46.0	42.0	39.0	39.0	37.0	36.0	44.7	0.0	44.7 42.0
	10 س	43.8 62.1	00.7 82.8	30.4 36.4	0.2c 76.0	49.0 74.0	46.U 66.0	44.0 62.0	40.0 49.0	39.0 43.0	38.0 38.0	30.0 36.0	36.0	43.8 62.1	0.0	43.ð 62.1
	11	53.6	77.7	36.4	64.0	57.0	50.0	46.0	41.0	39.0	36.0	36.0	36.0	53.6	0.0	53.6
Dav	12	58.1	80.2	36.4	73.0	67.0	56.0	51.0	43.0	39.0	36.0	36.0	36.0	58.1	0.0	58.1
	13	53.1 50.4	79.2	36.4 36.4	59.0 63.0	53.0 57.0	49.0 51.0	47.0 49.0	45.0 45.0	41.0 42.0	37.0 39.0	36.0	36.0 36.0	53.1 50.4	0.0	53.1 50.4
	15	53.5	82.0	36.4	65.0	60.0	52.0	48.0	43.0	40.0	36.0	36.0	36.0	53.5	0.0	53.5
	16	54.8	82.4	36.4	63.0	56.0	49.0	48.0	43.0	41.0	36.0	36.0	36.0	54.8	0.0	54.8
	17 18	45.9 45.3	69.6 70.0	36.4 36.4	54.0 55.0	51.0 51.0	48.0 47.0	47.0 45.0	44.0 42.0	41.0 39.0	38.0 36.0	36.0 36.0	36.0 36.0	45.9 45.3	0.0	45.9 45.3
	19	49.1	68.4	36.4	61.0	59.0	54.0	52.0	45.0	41.0	39.0	39.0	36.0	49.1	5.0	54.1
Evening	20	52.3 45.7	78.8	39.2 39.0	61.0 49.0	55.0 47.0	51.0 45.0	50.0 45.0	44.0	42.0	39.0	39.0	39.0	52.3 45.2	2.0 2.0	57.3 50.2
	22	48.8	80.1	39.1	51.0	49.0	46.0	45.0	43.0	41.0	39.0	39.0	39.0	48.8	10.0	58.8
Night	23	41.6	63.4	36.4	46.0	43.0	42.0	42.0	41.0	39.0	36.0	36.0	36.0	41.6	10.0	51.6
Timeframe	Hour	L _{eq}	L _{max}	L _{min}	L1%	L2%	L5%	%87	125%	150%	%067	<i>%36</i> 7	%667		L _{eq} (dBA)	
Day	Min Max	43.8 62.1	66.7 83.1	36.4 39.1	52.0 76.0	49.0 74.0	46.0 66.0	44.0 62.0	40.0 49.0	39.0 43.0	36.0 39.0	36.0 39.0	36.0 39.0	24-Hour	Daytime	Nighttime
Energy	Average	55.2	Avei	rage:	62.0	57.2	51.1	48.4	43.2	40.3	37.3	36.4	36.3	C) 0		C 7V
Evening	Min	45.2 52.2	68.4 70.0	36.4	49.0	47.0 70.0	45.0	45.0	43.0	41.0	39.0	39.0	36.0	0.20	0.4.0	40.0
Fnerav	Average	22.3 10.8	/ð.ð Δν.	59.2 rage:	01.0	0.90 53.7	50.0 50.0	0.26	0.04 0.04	42.0	39.0	39.0	39.0	- 47	nour civer (c	DA)
Night	Min	40.8	48.0	36.4	45.0	43.0	42.0	41.0	41.0	39.0	36.0	36.0	36.0			
ואופוור	Max	50.8	80.1	41.1	63.0	59.0	53.0	50.0	47.0	45.0	43.0	42.0	42.0		0.00	
Energy	Average	46.3	Ave	rage:	49.9	47.8	45.7	44.9	43.2	41.9	39.9	39.7	39.4			

Date: Project:	Wednesda Oleander E	y, May 29, 20 [:] 3usiness Park	19		Location:	L2 - Locate existing rur	d on Kuder A al-residentia	venue, west I homes.	of the Proje	ect site, near	Meter:	Piccolo I			JN: Analyst:	10720 R. Saber
							Hourly L _{eq}	dBA Reading	s (unadjusted	ĥ						
(A8b) 75.(70.(70.(
ר [®] (נ								8								
Hourly 50.0 50.0 70.0 70.0 70.0 70.0 70.0 70.0	9'77	2'Et 6'Tt	Þ.91	S:8t	2.12	5.24	L <mark>.</mark> 9t	0.62		0.92	8.52	5.02	5.02 2.52	2 <mark>.9</mark> ₽	8.54	45.0
35.(, -	, n	, u	; u	, «	γ σ		⁽	, r			18		, ¹ , ¹	, , , , , , , , , , , , , , , , , , , ,
	D	7 T	n	t 1	D	0	ח	Hour B	L2 leginning	+т ст		лт (CT OT	04	77 17	62
Timeframe	Hour	L eq	L max	L _{min}	11%	L2%	L5%	78%	125%	150%	%067	762%	%667	L eq	Adj.	Adj. L _{eq}
	0	44.6	52.4	40.4	48.0	47.0	46.0	46.0	45.0	44.0	42.0	42.0	41.0	44.6	10.0	54.6
	Ч	41.9	50.3	38.6	46.0	45.0	44.0	43.0	42.0	41.0	40.0	40.0	39.0	41.9	10.0	51.9
	5	43.2	59.1	40.1	47.0	46.0	45.0	44.0	43.0	42.0	41.0	40.0	40.0	43.2	10.0	53.2
Night	€ 4	49.4	74.4 69 5	42.7	61.0 61.0	56.0 56.0	50.0 49.0	48.0	45.0	44.0	43.0	43.0	43.0	49.4 48.7	10.0	59.4 58.7
	ιυ	48.5	68.1	41.5	55.0	53.0	51.0	50.0	49.0	47.0	43.0	43.0	42.0	48.5	10.0	58.5
	9	51.2	68.2	43.3	61.0	59.0	55.0	53.0	50.0	48.0	45.0	44.0	44.0	51.2	10.0	61.2
	2	44.2	56.4	39.4 20.1	51.0	50.0	47.0	46.0	44.0	43.0	40.0	40.0	40.0	44.2	0.0	44.2
	×	45.3	67.4 67.0	38.5 7 0 C	0.55.U	52.U	49.0	47.0	43.0	41.0	40.0	0.95	38.0	45.3	0.0	45.3 7.27
	5 u	40./ 63.8	87.4 84.4	38.6 38.6	0.8c	0.66	0.Uc	47.U	43.U	40.0	38.U	38.U 40.0	30.0	40./ 63.8	0.0	40.7 63.8
	11	59.0	85.9	38.5	72.0	67.0	57.0	54.0	49.0	44.0	40.0	39.0	38.0	59.0	0.0	59.0
Dav	12	57.2	78.6	38.6	72.0	66.0	59.0	56.0	49.0	46.0	41.0	40.0	40.0	57.2	0.0	57.2
۲ay	13	56.0	81.1	39.8	60.0	56.0	50.0	49.0	46.0	44.0	41.0	40.0	40.0	56.0	0.0	56.0
	14	50.7	74.5	39.4	61.0	57.0	53.0	51.0	48.0	45.0	42.0	41.0	40.0	50.7	0.0	50.7
	15	53.8	1.17	38.5	67.0 17.0	63.0	53.0	49.0	46.0	43.0	40.0	40.0	38.0	53.8	0.0	53.8
	17	47.9 50.5	75.1	39.6 38.6	58.0	54.0	0.16	0.0c 49.0	45.0	44.0	41.0	40.0	40.0	50.5	0.0	47.9 50.5
	18	53.2	72.8	38.6	67.0	64.0	56.0	53.0	47.0	44.0	41.0	40.0	39.0	53.2	0.0	53.2
	19	50.5	68.8	39.3	62.0	60.0	56.0	53.0	47.0	44.0	41.0	41.0	40.0	50.5	5.0	55.5
Evening	20	46.7 47 8	57.7 70.0	40.3	54.0 57.0	53.0	51.0 49.0	50.0	46.0	44.0	42.0	41.0	41.0	46.7	2.0	51.7 52.8
	22	43.8	58.3	40.3	48.0	46.0	46.0	45.0	44.0	43.0	41.0	41.0	40.0	43.8	10.0	53.8
NIGNT	23	42.0	56.2	35.6	48.0	46.0	44.0	43.0	42.0	41.0	38.0	38.0	38.0	42.0	10.0	52.0
Timeframe	Hour	L eq	L _{max}	L _{min}	L1%	L2%	72%	%87	125%	720%	%067	767	%667		L _{eq} (dBA)	
Day	Min	44.2	56.4	38.5	51.0	50.0	47.0	46.0	43.0	40.0	38.0	38.0	38.0	24-Hour	Daytime	Nighttime
Energy	Average	56.2	Aver	rage:	63.0	59.3	0.00 53.6	51.3	46.6	40.0	40.4	39.8	39.2	r C L	S L L	
Evoning	Min	46.7	57.7	39.3	54.0	51.0	49.0	47.0	45.0	44.0	41.0	41.0	40.0	7.50	70.4	41.2
99	Max	50.5	70.0	41.2	62.0	60.0	56.0	53.0	47.0	44.0	42.0	42.0	41.0	24	I-Hour CNET (dBA)
Energy	Average	48.6	Ave	rage:	57.7	54.7	52.0	50.0	46.0	44.0	41.7	41.3	40.7			
Night	Min Max	41.9 51.2	50.3 74.4	35.b 43.3	46.U 61.0	45.U 59.0	44.U 55.0	43.U 53.0	42.U 50.0	41.U 48.0	38.U 45.0	38.U 44.0	38.U 44.0	_	56.3	
Energy	Average	47.2	Avei	age:	52.8	50.4	47.8	46.6	45.0	43.8	41.8	41.6	41.0			

24-Hour Noise Level Measurement Summary

Ó	

							24-Hou	ır Noise L	evel Me	asuremen	nt Sumn	nary							
Date: Project:	Wednesda Oleander E	y, May 29, 20 Jusiness Park	119		ГО	cation: 5	.3 - Located ite, near exi	on Oleande sting rural-	er Avenue, residentia	southwest I homes.	: of the Pr	oject	Meter:	Piccolo I				JN: Analyst:	10720 R. Saber
								Hourly L _{eq}	dBA Readii	ngs (unadjus	sted)								
() 80.0 10 10 10 10 10 10 10 10 10 10 10 10 10																			
(dB ≱ 75.0																			
22.00 20.00 20.000				2	6	0.99	5.2		9'1	7			8		t	3	9		•
Hour 450.0	6.84	5.24	2°2S	.es	65		29	6 [.] 95	E 85 89 19	.65	9:95	5 ⁻ 25	19 	6 ⁻ 95	<mark>7'/S</mark>	:*************************************	·65	6.52	/'85
1.05	0	1 2	m	4	ъ	6	∞	6	10 11	12	13	14	15 16	5 17	18	19	20	21 22	23
									Hour	r Beginning									
Timeframe	Hour	L eq	L _{max}	L _{min}		11%	12%	75%	%87	1259	7 %	50%	%067	762%	667	%	L _{eq}	Adj.	Adj. L _{eq}
	0	48.9	77.0	40.2		56.0	50.0	44.0	43.0	42.(41.0	40.0	40.0	40.	0	48.9	10.0	58.9
	1	50.0	77.8	39.1		55.0	52.0	49.0	48.0	44.(0	41.0	40.0	39.0	39.	0	50.0	10.0	60.0
	5	45.2	73.6	39.3		49.0	47.0	45.0	44.0	42.(0 1	41.0	40.0	40.0	40.	0	45.2	10.0	55.2
Night	m r	57.7	87.7	41.5		69.0	63.0 63.0	51.0	48.0 55.0	45.(0.0	44.0	43.0 45.0	42.0	42.	0 0	57.7 50.2	10.0	67.7 60.7
	4 U	59.9 59.9	84.6	42.5		74.0	70.0	61.0 61.0	58.0	52.0		49.0 50.0	45.0	44.0	45. 45.		59.9	10.0 10.0	2.60 69.9
	9	66.0	88.7	44.0		77.0	75.0	73.0	71.0	56.(50.0	46.0	46.0	45.	0	66.0	10.0	76.0
	7	64.8	85.2	40.2		76.0	75.0	72.0	70.0	57.(C	48.0	44.0	43.0	41.	0	64.8	0.0	64.8
	∞	62.2	85.2	39.3		74.0	72.0	68.0	64.0	51.(0	45.0	41.0	41.0	40.	0	62.2	0.0	62.2
	б (56.9	76.9	37.5		71.0	68.0	60.0	55.0	46.(0	42.0	39.0	39.0	38.	0	56.9	0.0	56.9
	10	61.6 Fo 2	83.3	37.6		74.0	72.0	67.0 62.0	64.0	51.(45.0	40.0	40.0	39.		61.6 502	0.0	61.6 F 0 2
	11	5.0C	76.6	39.4	0 =	72.0	0.69	65.0	62.0 62.0	49.0 56.0		44.0	40.0 43.0	42.0	.ec 41.		59.2	0.0	5.0c 59.2
Day	13	56.6	80.0	39.3		70.0	67.0	61.0	56.0	47.(44.0	41.0	40.0	40.	0	56.6	0.0	56.6
	14	57.5	80.4	39.5		70.0	68.0	63.0	59.0	50.(0	46.0	43.0	42.0	40.	0	57.5	0.0	57.5
	15	58.8	83.9	39.3	~	71.0	69.0	64.0	61.0	50.(0	45.0	42.0	41.0	40.	0	58.8	0.0	58.8
	16 11	61.3	86.5	40.1		73.0	70.0	67.0	64.0	51.(0	46.0	42.0	42.0	41.	0 0	61.3 55.0	0.0	61.3 55.0
	1/ 18	57.4	77.2	41.2		71.0	0.00 69.0	63.U 62.0	57.0	.0c 0.64		47.0	44.0 43.0	43.0	42.		57.4	0.0	57.4
	19	58.3	84.1	40.4		71.0	69.0	63.0	59.0	51.(46.0	42.0	42.0	41.	0	58.3	5.0	63.3
Evening	20	59.6	87.3	40.3	~	72.0	0.69	62.0	59.0	48.(0 (44.0	41.0	41.0	40.	0 0	59.6	5.0	64.6
	71	1./c	84.1 0	39.3		/0.0	66.U	57.0	52.0	45.		42.0	40.0	40.0	39. 29		1./ز 2. î	5.0	1.20 22.2
Night	22	53.9	77.2	39.1		68.0	63.0	52.0	49.0	43.(0	41.0	40.0	39.0	39.		53.9	10.0	63.9
Timeframe	23 Hour	L an	91.2	57.6 L min		03.U	0.00 L2%	47.0 L5%	45.U	L259	7 9	40.0 50%	59.0 190%	36.0 195%	·/c	- %	50.4	L an (dBA)	00.4
	Min	56.6	76.2	37.5		70.0	67.0	60.0	55.0	46.(42.0	39.0	39.0	38.	0			
Uay	Max	64.8	86.5	41.5		76.0	75.0	72.0	70.0	57.(0	48.0	44.0	43.0	42.	0	IDOU-+	nujulie	MIGHTER
Energy	Average	60.1	A	verage:		72.0	69.7	64.6	60.8	50.(9	45.6	41.8	41.3	40.	ک س	9 0	д 2	C 05
Evening	Min	57.1 E0.6	84.1	39.3	~	70.0	66.0 60.0	57.0	52.0	45.(0	42.0	40.0	40.0	39.				3.00
Energy	Average	5.85	00 A	verage:		71.0	68.0	60.7	56.7	18. 18.		40.0	42.0	41.0	40.		1-+7	our civer (c	(Ma)
	Min	45.2	73.6	37.6		19.0	47.0	44.0	43.0	41.(40.0	39.0	38.0	37.	0			
Nignt	Max	66.0	91.2	44.0		77.0	75.0	73.0	71.0	56.0	0	50.0	47.0	46.0	45.	0		0 0.7	
Energy	Average	59.2	A	verage:		54.4	59.9	53.1	51.2	46.4	+	44.1	42.2	41.6	41.	1			

		b																								00	2	ſ		
42:0	23	Adj. L _e	54.3	51.9	51.3	53.8	56.3	2-7 7-7	53.8	45.5	47.3	63.5	55.4	61.2	56.9	48.3	51.6	44.9	57.8	50.1 102	55.7	49.9	58.6	52.0		Ninhttin		с С		(BA)
9:87	22	Adj.	10.0	10.0	10.0	10.0	10.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	10.0	10.0	_{eq} (dBA)	Dautimo		C 95	1.00	ur CNEL (o
6'77	0 21	bə .	4.3	1.9	.1.3	3.8	6.3	2.2 2.2	0.0 3.8	5.5	7.3	3.5	5.4	1.2	6.9	8.3 9	1.6	4.9	7.8	4.0	0.7	4.9	8.6	.2.0	7	Hour		ۍ ار	?	24-H0I
T.A.	19 2		4	4	4	4	4 (4	4	9	Ю	9	IJ	4	Ю	4			<u>, п</u>	4	4	4		-776	1		5	
0.42	18	%667	41.0	39.0	39.0	40.0	43.0	44.0	40.0 40.0	39.0	38.0	39.0	36.0	38.0	39.0	39.0	38.0	38.0	40.0	0.66	40.0	40.0	40.0	39.0	%667	36.0	40.0	38.6	39.0	40.0
8.72	17	195%	42.0	39.0	40.0	42.0	43.0	45.0	46.0 41.0	39.0	39.0	39.0	37.0	39.0	39.0	39.0	39.0	39.0	41.0	0.60	41.0	41.0	40.0	39.0	762%	37.0	41.0	39.2	40.0	41.0
6' <mark>##</mark>	16	0%	2.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0	0.0	3.0	0.0	0.0	0.0	0.6	0.0	0.1	0.0	0	0.0	L.0	0.0	0%	3.0	2.0	9.7	l.0	2.0
9'75	15	167	42	30	40	42	4	46	4)	30	30	40	38	40	00 30	40	30	30	41	4	4	42	41	35	167	38	42	30	41	42
5.8 4	14	150%	43.0	41.0	40.0	43.0	45.0	47.0	49.0 45.0	42.0	42.0	45.0	41.0	50.0	42.0	43.0	42.0	42.0	45.0	0.64	43.0	43.0	43.0	41.0	720%	41.0	50.0	43.5	43.0	44.0
6'95	12 13 ning	L25%	44.0	42.0	41.0	44.0	47.0	49.0 E1 0	51.0 47.0	45.0	44.0	51.0	46.0	59.0	44.0	46.0	44.0	44.0	49.0	40.0	46.0	45.0	44.0	42.0	125%	44.0	59.0	47.1	45.0	47.0
***S	11 () our Begin	%	0.0	0.0	0.	0.0	0. 0	<u> </u>	0.0	0.	0.0	0.1	0.1	0.0	0	0.0	0.	0.	<u>o</u> c			0.	0.0	0.0	%	0.0	0.0	.2	<u>.</u>	0.0
93.5	10 H	87	45	43	42	45	45	5 7 7	20	49	49	64	58	99	48	20	48	48	57		2.5	47	46	43	87	48	99	23	47	53
47.3	б	L5%	45.0	43.0	42.0	45.0	50.0	56.U	52.0	51.0	51.0	68.0	62.0	67.0	51.0	51.0	51.0	49.0	60.0	0.00	57.0	48.0	47.0	44.0	72%	49.0	68.0	55.8	48.0	57.0
S'S7	Ø	L2%	47.0	43.0	43.0	46.0	51.0	0.69	56.0	53.0	55.0	73.0	65.0	68.0	61.0	55.0	57.0	52.0	65.0 64.0	62 U	61.0 61.0	50.0	54.0	46.0	L2%	52.0	73.0	60.3	50.0	62.0
9'55	9	11%	48.0	44.0	43.0	47.0	52.0 37 0	0.6/	62.0	54.0	58.0	77.0	67.0	71.0	67.0	57.0	61.0	54.0	67.0	67.0	63.0	51.0	59.0	47.0	L1%	54.0	77.0	63.5	51.0	67.0
2'29 70'7	ц	L _{min}	40.7	38.9	39.0	40.6	42.6	144.1 10 0 C 1	42.8	38.9	37.7	38.6	36.0	36.8	38.4	38.8	37.0	37.8	38.9	30.0	40.7	40.6	39.0	38.8	L _{min}	36.0	40.0	ge:	39.0	40.7
8.84	r M	L _{max}	65.3	60.2	44.8	54.1	56.9	88.1 70 F	79.3	59.8	68.5	84.1	77.1	83.4	82.8	70.7	78.5	59.8	86.9	0 92	68.7	56.1	77.5	52.7	L _{max}	59.8	86.9	Avera	56.1	76.9
4113	2	L eq	44.3	41.9	41.3	43.8	46.3	62.2 EE 6	53.8	45.5	47.3	63.5	55.4	61.2	56.9	48.3	51.6	44.9	57.8	0.4C	50.7	44.9	48.6	42.0	L eq	44.9	63.5	56.9	44.9	54.1
6117 6177 8778	0	Hour	0	1	2	ς γ	4 L	μ	0	~ ∞	6	10	11	12	13	14	15	16	17	10	20	21	22	23	Hour	Min	Max	rage	Min	Max
(A8b) թJ γInoH ∞∞∪00000000000000000000000000000000000		imeframe				Night								Dav	6						Evening	þ	A 11 - 11 - 4	INIBIU	imeframe	Dav	655	Energy Ave	Evening)

Analyst: R. Saber JN: 10720

Meter: Piccolo I

L4 - Located on Nance Street, southwest of the Project site, near existing rural-residential homes.

Date: Wednesday, May 29, 2019 Project: Oleander Business Park

24-Hour Noise Level Measurement Summary

60.9

40.0 39.7 39.0 45.0 41.1

41.0 40.7 39.0 46.0 41.8

<mark>42.0</mark> 41.7 39.0 47.0 42.1

<mark>44.0</mark> 43.3 40.0 49.0 43.6

47.0 46.0 41.0 51.0 44.9

<mark>53.0</mark> 50.7 42.0 53.0 46.6

57.0 53.7 42.0 56.0 47.4

62.0 57.7 43.0 65.0 50.9

67.0 60.3 43.0 75.0 53.7

38.8 44.1

44.8 88.1

41.3 62.2 53.9

Min Max

Night

Energy Average

Average:

51.3

Energy Average

Average

URBAN	CROSSROADS
Ć	

The field of the fiel	-					45.3	45.8	17 9		49.3	50.6	50 Q	. c		52.6	 DP-	Avera	2.1	40	Δνεταρε	Fnerøv
The sector of the sector of the sector of the sector of the sector. The sector of the sector. The sector of the sector.		57.8		11.0 17.0	7 7	43.0 48.0	44.0 49.0	15.0 51.0		46.C	47.0 53.0	48.0 54 0	0.0	49 7.7	49.0 57 0	40.9 47.2	53.4 64 9	0.0	4 ۲	Min	Night
Other Mutuality Mutuali				13.7	7	44.3	44.7	t7.7	7	49.3	53.3	54.3	0.0	56	58.0	ge:	Avera	2.1	52	Average	Energy
Optimulation, Markay, Table Control for learning from the Proper Plant, Markay, Table Description from the Plant, Markay, Table Markay, Table Markay, Table Proper Control for learning from the Plant, Markay, Table Proper Plant, Markay, T	dBA)	our CNEL (24-H	+2.U		42.U 46.0	43.U 46.0	19.0		48.U 50.C	55.0 55.0	57.0	0.00	2 09 2 09	54.U 62.0	41.8 45.2	61.6 80.1	۲.6 4.6	4 LQ	Max	Evening
The matrix for the former of the fo	49.4	55.7	54.7	9.7		39.8	40.5	12.8	-	45.1	50.1	51.8	5	55	58.2	ge:	Avera	5.3	5(Average	Energy
One: Control (M, M, Z) Control (M, Z) Contro (M, Z)	Nighttime	Daytime	24-Hour	12.0	7	42.0	43.0	16.0	7	51.0	64.0	68.0	0.0	75	79.0	41.8	88.7	5.6	65	Max	Day
Other Fundamentation Control		- ha		8.0		39.0	39.0	11.0	7	42.C	47.0	48.0	0.0	49	51.0	37.9	57.9	eu 1.3	44	Min	
Operational functions Controls Control for function of the function Control for function Cont	0.00	L (dBA)	40.0	0.1t		43.0 195%	44.0 190%	50%		125%	47.0 18%	46.U	0. %	49	49.0	40.9	133.4	0.0	4	23 Hour	Timeframe
The function (M, M, P_2) 2019 The function (M, P_2) 2019	58.4	10.0	48.4	45.0		45.0	46.0	18.0		49.0	50.0	50.0	0.0	51	51.0	44.1	57.1	8.4	48	22	Night
Optimulation, Mark 9, 2019 Location, La Located water of Deterr Fload, south of the Project sile, mark and south of the Project sile, project. Ober of the Project sile, mark and south of the Project sile, m	54.9	5.0	49.9	15.0	~	46.0	46.0	19.0	7	50.C	52.0	52.0	0.	53	54.0	45.2	61.6	9.9	45	21	
Druge: Weinforder, MW, 9, 2019 Condition: Is not set of the Project sNo. Matter in the Project sNo. Matter in the Project sNo. Project: Obender Buckness Park. In an existing Water Tank Restront.	55.1	5.0	50.1	14.0	7	45.0	45.0	19.0	7	50.0	53.0	54.0	0.0	55	58.0	43.9	62.3	0.1	50	20	Evening
Dref: Vietring Located west of Decker fraid south of the Poject site, and solid wider fraid Reservoir. Located west of Decker fraid south of the Poject site, and solid wider fraid Reservoir. Note: Dref: Note:	59.6	5.0	54.6	12.0	7	42.0	43.0	15.0	7	48.C	55.0	57.0	0.0	60	62.0	41.8	80.1	4.6	54	19	
Other: Vector: Cleanance: Meter: Procession Meter: Procession Meter:	45.9	0.0	44.7	0.6		39.0 39.0	39.0	42.0 42.0		44.0	48.0 48.0	49.0	0.0	22	54.0	37.9	00.00 66.4	6.9	4 4	18	
Drive: Vectore factory, May 29, 2015 Locatine: Locatine: Locatine: Locatine: Locatine: Meter: Piece:	44.3 AA 7	0.0	44.3 77 7	0.63	., (1	39.0	39.U	12 O		44.0	47.0	49.0		τ Γ	53.0	38.b 30.1	60.6	4.3 7 7	4 <	10 17	
	46.6	0.0	46.6	0.0		39.0	39.0	11.0		42.C	47.0	49.0	0.	54	57.0	37.9	71.9	5.6	4(15	
Data Location Location <thlocation< th=""> <thlocation< th=""> <thlo< td=""><th>48.9</th><td>0.0</td><td>48.9</td><td><u>19.0</u></td><td>,</td><td>39.0</td><td>40.0</td><td>12.0</td><td>7</td><td>43.C</td><td>47.0</td><td>49.0</td><td>0.0</td><td>53</td><td>55.0</td><td>38.8</td><td>76.1</td><td>8.9</td><td>48</td><td>14</td><td></td></thlo<></thlocation<></thlocation<>	48.9	0.0	48.9	<u>19.0</u>	,	39.0	40.0	12.0	7	43.C	47.0	49.0	0.0	53	55.0	38.8	76.1	8.9	48	14	
Data Location Location Location Location Location Mrit M	58.5	0.0	58.5	0.6	(1)	39.0	40.0	12.0	7	44.0	49.0	51.0	0.	56	60.0	39.6	85.7	8.5	25	13	Day
Date: Metric Floringet Jik, Project: Metric: Fractions Listing Listing Ametric Lis	51.2	0.0	54.7	0.0		39.0 40.0	40.0 41.0	12.0 15.0		45.C	56.0	57.0	0.0	5 7 7 7 7 8	61.0 68.0	39.5 39.7	74.5	1.2	<u>л</u> г	11 (1	
Data: Weahesder, May 29, 2019 Decision. Location west of Decker Road, south of the Project site, Meter: FiccioI. Meter: FiccioI. Meter: FiccioI. Meter: FiccioI. Poyer: Deamder Business Park near an existing Water Tark Reservoli. near an existing Water Tark Reservoli. Meter: FiccioI. Meter: FiccioII. Manuplicity Field Manuplicity Field Meter: FiccioII. Meter: FiccioII. Manuplicity Field Manuplicity Field Meter: FiccioII. Meter: FiccioII. Meter: FiccioII. Manuplicity Field Manuplici Manuplicity Field Manuplici Manup	65.6	0.0	65.6	10.0	7	41.0	42.0	16.0	7	51.0	64.0	68.0	0.	75	79.0	40.1	88.7	5.6	9	10	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	44.7	0.0	44.7	11.0	7	41.0	42.0	13.0	7	44.C	47.0	48.0	0.0	49	51.0	40.7	63.3	4.7	4	6	
Date: Wednesday, May 23, 2013 Location: Location west of Decider Road, south of the Project site. Meter: Piccion In: 1070 Project: Inder Business Park Inder Business Park Inder Business Park Inder Project site. Meter: Piccion In: 1070 Project: Inder Business Park Inder Project site. Meter: Piccion Inder Project site. Inder Projec	46.4	0.0	46.4	11.0		41.0	41.0	13.0		44.0	48.0	49.0	0 0	22	55.0	40.9		5.4	4 t	~ ∞	
Dre: Wedresday, May 2, 2015 Techological Lange and Lan	61.0 45 7	10.0	51.0	13.U		44.0	44.0	19.0		52.C	53.0	54.0	0.0	55 7	56.0	42.9	64.9	1.0		ז o	
Drafter Wednesday, May 29, 2013Location west of Decker Road, south of the Project site, 	61.5	10.0	51.5	17.0	7	48.0	49.0	50.0		52.C	53.0	53.0	0.	55	57.0	47.2	60.7	1.5	.0 1	IJ	
Drate: We dready, May 29, 2019 Location: I5 - Located west of Decker Road, south of the Project site. Meter: Piccolo1 Meter: Piccolo1 M: 10720 Project: Oleander Business Park Location: I5 - Location Water Tank Reservoir. Meter: Piccolo1 Meter: Piccolo1 Minister Project: Road, south of the Project site. Meter: Piccolo1 Minister Project Site. M: 10720 Project: Oleander Business Park Meter: Piccolo1 Meter: Piccolo1 M: 10720 State Project Site Meter: Piccolo1 Meter: Piccolo1 M: 10720 Meter: Piccolo1 Meter: Piccolo1 Meter: Piccolo1 M: 107 M: 107 Meter: Piccolo1 Meter: Piccolo1 M: 107 M: 107 M: 107 Meter: Piccolo1 M: 102 M: 102 M: 107 M:	61.5	10.0	51.5	17.0	7	48.0	48.0	51.0		52.0	53.0	53.0	0.	54	56.0	47.1	63.9	1.5	5	4	,
Date: Wednesday, May 29, 2019 Location: Located west of Decker Road, south of the Project site, Neter: Meter: Piccolo Meter: Piccolo Miningation Project: Oleander Business Park Located west of Decker Road, south of the Project site, Neter: Meter: Piccolo Meter: Piccolo Miningation Miniioion Min	59.3	10.0	49.3	H.O		46.0	46.0	18.0		50.0	52.0	52.0	0.0	23	53.0	44.9	55.5	9.3	4	4 M	Night
Date: Weter: Factorial Meter: Factorial Meter: Factorial Meter: Mater: Mater	56.9	10.0	46.9	14.0		44.0 4 E O	45.0 45.0	16.0		47.0	48.0	48.0	0.0	49	49.0	43.3 42.0	53.7	6.0	4(-1 c	
Date:Wednesday, May 29, 2019Location:Located west of Decker Road, south of the Project site, near an existing Water Tank Reservoir.Located west of Decker Road, south of the Project site, Meter:Meter:Piccolo IIII: 1020Roger:DiameLocated west of Decker Road, south of the Project site, near an existing Water Tank Reservoir.Located west of Decker Road, south of the Project site, Meter:Meter:Piccolo IIII: 1000SinceBit III: 1000DiameDiameLocated west of Decker Road, south of the Project site, Mater Tank Reservoir.Meter:Piccolo IIII: 1000SinceDiameDiameDiameDiameDiameDiameDiameDiameDiameDiameSinceDiame<	57.9	10.0	47.9	4.0	7	45.0	45.0	17.0	7 (48.C	50.0	50.0	0	51	51.0	44.0	54.0	7.9	47	0	
Date:Wednesday, May 29, 2019Location:Location:Location:Location:In: 10720 <i>Project:</i> Olander Business ParkLocation:Location:In: 10720In: 10720 <i>Project:</i> Olander Business ParkInter:Inter:Inter:Inter:Inter: <i>Project:</i> Olander ParkOlander ParkInter:Inter: <th>Adj. L _{eq}</th> <th>Adj.</th> <th>L eq</th> <th>%66</th> <th>7</th> <th>762%</th> <th>%067</th> <th>50%</th> <th>6 L:</th> <th>L25%</th> <th>%87</th> <th>L5%</th> <th>%</th> <th>12</th> <th>11%</th> <th>L _{min}</th> <th>L _{max}</th> <th>bə</th> <th>7</th> <th>Hour</th> <th>Timeframe</th>	Adj. L _{eq}	Adj.	L eq	%66	7	762 %	%067	50%	6 L:	L25%	%87	L5%	%	12	11%	L _{min}	L _{max}	bə	7	Hour	Timeframe
Date: Wednesday, May 29, 2019 Located west of Decker Road, south of the Project site, Meter: Piccolo1 IN: 10720 Project: Date: Wednesday, May 29, 2019 Located west of Decker Road, south of the Project site, Meter: Piccolo1 IN: 10720 Project: Date: Meter: Piccolo1 Located west of Decker Road, south of the Project site, Meter: Piccolo1 IN: 10720 Project: Discolor Located west of Decker Road, south of the Project site, Meter: Piccolo1 IN: 10720 IN: 10720 Project: Discolor Location: Location: Located west of Decker Road, south of the Project site, Meter: Piccolor IN: 10720 Reservoir: Mainty Lage Meter: Meter: Meter: Meter: Piccolor IN: 10720 Reservoir: Mainty Lage Meter: Meter: Meter: Meter: Meter: Piccolor IN: 10720 Reservoir: Meter: Meter: Meter: Meter: Meter: Meter: IN: 10720 IN: 10										eginning	Hour B										
Date: Wednesday, May 29, 2019 Located west of Decker Road, south of the Project site, IN: 10720 Project: Oleander Business Park Meter: Piccolo1 IN: 10720 Park Meter: Piccolo1	23	21 22	20 2	19	18	17	5 16	14 1	13	12	11	9 10	∞	2	9	4	, С	5	, LI	0	
Date: Wednesday, May 29, 2019 Located west of Decker Road, south of the Project site, JN: 10720 Project: Oleander Business Park JN: 10720 JN: 10720 Project: Oleander Business Park Mater: Piccolo I JN: 10720 Project: Oleander Business Park Mater: Piccolo I JN: 10720 Project: Oleander Business Park Mater: Piccolo I JN: 10720 Project: Oleander Business Park Mater: Piccolo I JN: 10720 Project: Oleander Business Park Mater: Piccolo I JN: 10720 Project: Oleander Business Park Mater: Piccolo I JN: 10720 Project: Oleander Business Park Mater: Piccolo I JN: 10720 Project: Oleander Business Park Mater: Piccolo I JN: 10720 Project: Oleander Business Park Houth Lea Analyst: R. Saber Project: Oleander Business Park Houth Lea Analyst: R. Saber Project: Oleander Business Park Houth Lea Analyst: R. Saber Project: Oleander Business Park Houth Lea Analyst: R. Saber Project: Oleander Business Park Houth Lea Analyst: R. Saber Project: Oleander Placetings (unadjusted) Houth Lea Houth Lea Project:	.9 4	*8t	·05	723	5 2	. '77	• 7 4	.84	S I	72	TS		<mark>.94</mark>	<mark></mark>	ד5.	TS	:67	.84	5 9 7	7.74	0H 940.00
Date: Wednesday, May 29, 2019 Location: L5 - Located west of Decker Road, south of the Project site, IN: 10720 Project: Oleander Business Park Inear an existing Water Tank Reservoir. Meter: Piccolo I IN: 10720 Project: Oleander Business Park Inear an existing Water Tank Reservoir. Meter: Piccolo I IN: 10720 Project: Oleander Business Park Inear an existing Water Tank Reservoir. Meter: Piccolo I IN: 10720 Reservoir. Inear an existing Water Tank Reservoir. Meter: Piccolo I IN: 10720 Project: Oleander Business Park Inear an existing Water Tank Reservoir. Analyst: R. Saber Reservoir. Inear an existing Water Tank Reservoir. Analyst: R. Saber Reservoir. Inear an existing Water Tank Reservoir. Analyst: R. Saber Reservoir. Inear an existing Water Tank Reservoir. Analyst: R. Saber Reservoir. Inear an existing Water Tank Reservoir. Inear an existing Water Tank Reservoir. Reservoir. Inear an existing Water Tank Reservoir. Inear an existing Water Tank Reservoir. Reservoir. Inear an existing Water Tank Reservoir. Inear an existing Water Tank Reservoir. Reservoir. Inear an existing Water Tank Reservoir. Inear an existing Water Tank Reserv				9					5.8			<mark>9:59</mark>									ວີດີດີ ກິນດີຍີ າມຸ} ۲
Date: Wednesday, May 29, 2019 Location: L5 - Located west of Decker Road, south of the Project site, Meter: Piccolo I JN: 10720 Project: Oleander Business Park Inear an existing Water Tank Reservoir. Analyst: R. Saber Project: Oleander Business Park Inear an existing Water Tank Reservoir. Analyst: R. Saber 80:0 Inear an existing Water Tank Reservoir. Inear an existing Water Tank Reservoir. Analyst: R. Saber																					A 8b)
Date: Wednesday, May 29, 2019 Location: L5 - Located west of Decker Road, south of the Project site, Meter: Piccolo I JN: 10720 Project: Oleander Business Park Neater: Piccolo I Analyst: R. Saber Hourly Lee dBA Readings (unadjusted) Location Hourly Lee BA Readings (unadjusted)																					, 85. 80.
Date: Wednesday, May 29, 2019 Project: Oleander Business Park									ted)	s (unadjus	A Reading	urly L _{eq} dB	ЮН								
Date: Wednesday, May 29, 2019 Location: L5 - Located west of Decker Road, south of the Project site, Meter: Piccolo I	R. Saber	Analyst.								oir.	nk Reserve	Water Tar	ın existing	near a				s Park	- Business	Oleander	Project:
	10720	:NL				Piccolo I	Meter:	site,	e Project	outh of th	er Road, se	t of Decke	cated wes	י: ו: רס	Location			29, 2019	av, May	Wednesd	Date:

24-Hour Noise Level Measurement Summary

							Houriy L eq	aBA Keading	js (unadjuste	a)							
85.(85.(75.0																	
92.0 99.0 99.0																	
1 9 1								<mark>z:29</mark>	5	S				8.			
001 70.0 70.0	5.1	S'(Þ.8	£.8 8.	2.(לי דינ	0.	T.8	<mark>6.9</mark>	85. 28.	T .(6.0 6.0	Þ .	85	T.2	0.	6.
H 35.0	87 87	25	5		57	94	744		5		57	57 57	25		725	CS 87	57
	0	1 2	ς Γ	4 5	9	7 8	б	10 11	12	13 14	15	16 17	18	19	20	21 22	23
								Hour	Beginning								
imeframe	Hour	L eq	L max	L _{min}	L1%	L2%	L5%	%87	L25%	150%	%061	195%	67 5	9%	L eq	Adj.	Adj. L _{eq}
	0	48.5	62.0	43.5	55.0	53.0	51.0	51.0	49.0	47.0	45.0	44.0	4	4.0	48.5	10.0	58.5
	1	47.5	58.1	43.2	50.0	50.0	49.0	49.0	48.0	47.0	45.0	45.0	4	4.0	47.5	10.0	57.5
	2	50.5	67.1	46.5	54.0	53.0	52.0	52.0	51.0	50.0	48.0	48.0	47	7.0	50.5	10.0	60.5
Night	ß	53.4	70.5	47.0	57.0	57.0	56.0	56.0	54.0	52.0	49.0	48.0	48	3.0	53.4	10.0	63.4
	4	53.3	61.0	48.2	56.0	56.0	55.0	55.0	54.0	52.0	51.0	50.0	46	9.0	53.3	10.0	63.3
	Ŋ	51.8	61.2	48.2	56.0	55.0	54.0	53.0	52.0	51.0	50.0	49.0	46	9.0	51.8	10.0	61.8
	6	49.2	69.2	41.5	57.0	55.0	52.0	51.0	49.0	46.0	42.0	42.0	41	1.0	49.2	10.0	59.2
	7	46.1	68.9	40.5	54.0	52.0	48.0	46.0	44.0	43.0	41.0	41.0) 4(0.0	46.1	0.0	46.1
	∞	46.4	63.1	40.5	55.0	54.0	51.0	50.0	45.0	43.0	41.0	41.0	40	0.0	46.4	0.0	46.4
	6	44.0	60.6	40.5	51.0	49.0	47.0	46.0	43.0	42.0	41.0	40.0	40	0.0	44.0	0.0	44.0
	10	65.2	83.9	38.9	80.0	76.0	69.0	65.0	52.0	47.0	41.0	40.0	30	9.0	65.2	0.0	65.2
	11	53.1	75.9	38.9	63.0	61.0	58.0	55.0	48.0	43.0	40.0	39.0	38	3.0	53.1	0.0	53.1
Dav	12	56.3	74.5	38.9	69.0	66.0	61.0	59.0	53.0	46.0	40.0	40.0	30	9.0	56.3	0.0	56.3
ζaγ	13	58.5	82.4	38.9	69.0	64.0	57.0	53.0	44.0	42.0	40.0	39.0	38	8.0	58.5	0.0	58.5
	14	52.3	73.2	38.8	61.0	60.0	59.0	58.0	47.0	42.0	40.0	39.0	38	8.0	52.3	0.0	52.3
	15	49.1	70.5	38.8	62.0	58.0	52.0	48.0	42.0	40.0	39.0	38.0	38	8.0	49.1	0.0	49.1
	16	49.3	69.4	38.9	56.0	54.0	51.0	50.0	49.0	48.0	44.0	42.0	30	9.0	49.3	0.0	49.3
	17	49.9	66.0	38.9	58.0	55.0	53.0	52.0	50.0	49.0	41.0	40.0	30	9.0	49.9	0.0	49.9
	18	52.4	/1.3	38.9	62.0	0.93 0.10	50.0	55.0	51.0	49.0	42.0	41.0	4	0.0	52.4	0.0	52.4
- contract	6I C	58.8 2	1.68 0.05	41.0	68.U	64.U	59.U	58.0	54.0	48.0	43.0	42.0	4	0.7	58.8 2	0.0	03.8 77 4
	2 20	1.2C	70.0 65 6	42.4 AAO	0.00	60.0 52 0	0.02	0.40	0.00	40.0	44.0	44.0 7 7 7	- + +		1.2C	0.0	1./C
	27	51.4	74.7	43.6	61.0	56.0	52.0	51.0	48.0	47.0	45.0	45.0	4	1.0	51.4	10.0	61.4
Night	23	45.9	58.9	40.5	52.0	49.0	48.0	48.0	46.0	45.0	42.0	42.0	4	1.0	45.9	10.0	55.9
Timeframe	Hour	L ea	L max	L _{min}	71%	L2%	72%	78%	L25%	150%	%067	767	67 76	9%		L _{ea} (dBA)	
ne L	Min	44.0	60.6	38.8	51.0	49.0	47.0	46.0	42.0	40.0	39.0	38.0	38	8.0			Nichttime
ζαγ	Max	65.2	83.9	40.5	80.0	76.0	69.0	65.0	53.0	49.0	44.0	42.0	4(0.0		ayune.	
Energy	Average	56.5	Avei	rage:	61.7	59.0	55.2	53.1	47.3	44.5	40.8	40.0	36	9.0	57 Q	26.2	RO R
Evening	Min	48.0	65.6	41.0	53.0	52.0	50.0	49.0	48.0	47.0	43.0	42.0	42	2.0	1.1	0.00	0.00
0	Max	58.8	85.1	44.0	68.0	64.0	59.0	58.0	54.0	48.0	45.0	45.0	4	4.0	24-F	Hour CNEL (di	3A)

Analyst: R. Saber JN: 10720

Meter: Piccolo I

L6 - Located on Decker Road, south of the Project site, near existing rural-residential homes.

Date: Wednesday, May 29, 2019 Project: Oleander Business Park

24-Hour Noise Level Measurement Summary

59.1

44.0 43.0 41.0 49.0 45.2

45.0 43.7 42.0 50.0 45.9

45.0 44.0 42.0 51.0 46.3

48.0 47.7 45.0 52.0 48.6

54.0 50.7 46.0 54.0 50.1

<mark>58.0</mark> 53.7 48.0 56.0 51.8

<mark>59.0</mark> 55.0 48.0 56.0 52.1

64.0 58.7 49.0 57.0 53.8

68.0 61.3 50.0 61.0 55.3

40.5 48.2

58.1 74.7

<mark>58.8</mark> 55.2 45.9 53.4 50.8

Min Max

Night

Energy Average

Average:

Energy Average

Average:

APPENDIX 7.1:

OFF-SITE TRAFFIC NOISE CONTOURS

This page intentionally left blank

Scenario: Existing Without Project Road Name: Harvill Av. Road Segment: n/o Harley Knox Bl. Project Name: Oleander Job Number: 10720

eite							NUISE	MODE		2	
Highway Data	JPEUIFIC IN	TUTUATA			Site Con	ditions	Gilleright (Hard :	= 10, S	oft = 15)	J	
Average Daily	Traffic (Adt)	549 vehicle	es					Autos:	15		
Peak Hour	Percentage:	10%			Me	dium T	rucks (2	Axles):	15		
Peak F	Hour Volume:	55 vehicle	s		He	avv Tru	icks (3+	Axles):	15		
Ve	hicle Speed:	40 mph	•	_			(-	/			
Near/Far La	ne Distance:	48 feet			Vehicle	Mix		_			
					Veh	icle I yp	e	Day	Evening	Night	Daily
Site Data						<i></i> -	Autos:	68.0%	b 8.9%	23.2%	85.75%
Ba	rrier Height:	0.0 feet			M	edium i	rucks:	74.9%	6 4.9%	20.2%	5.50%
Barrier Type (0-W	Vall, 1-Berm):	0.0			ŀ	leavy l	rucks:	69.2%	8.1%	22.7%	8.75%
Centerline Di	ist. to Barrier:	59.0 feet			Noise So	ource E	levatio	ns (in f	eet)		
Centerline Dist.	to Observer:	59.0 feet				Auto	os: 0	.000			
Barrier Distance	to Observer:	0.0 feet			Mediu	m Truci	ks: 2	.297			
Observer Height	(Above Pad):	5.0 feet			Heav	v Truci	ks: 8	.004	Grade Adj	ustment.	0.0
P	ad Elevation:	0.0 feet		_							
Ro	ad Elevation:	0.0 feet		_	Lane Eq	uivaler	nt Distai	nce (in	feet)		
	Road Grade:	0.0%				Auto	os: 54	.129			
	Left View:	-90.0 degree	es		Mediu	m Truci	ks: 53	.966			
	Right View:	90.0 degree	es		Heav	y Truci	ks: 53	.982			
FHWA Noise Mod	lel Calculations	;									
VehicleType	REMEL	Traffic Flow	Dis	stance	Finite	Road	Fres	nel	Barrier Atte	en Ber	m Atten
Autos:	66.51	-14.60		-0.6	2	-1.20	I	-4.69	0.0	000	0.000
Medium Trucks:	77.72	-26.53		-0.6	0	-1.20		-4.88	0.0	000	0.000
Heavy Trucks:	82.99	-24.51		-0.6	0	-1.20		-5.35	0.0	000	0.000
Unmitigated Nois	e Levels (witho	out Topo and	barri	er atter	nuation)						
VehicleType	Leq Peak Hour	r Leq Day	/	Leq E	vening	Leq	n Night		Ldn	CI	VEL
Autos:	50.	1	47.6		44.8		44	2	51.2		51.4
Medium Trucks:	49.4	4	47.3		41.5		42	9	50.1		50.2
Heavy Trucks:	56.	7	54.3		51.0		50	7	57.7	•	58.0
Vehicle Noise:	58.2	2	55.8		52.3		52	1	59.2	2	59.4
Centerline Distan	ce to Noise Co	ntour (in feet)								
				70	dBA	65	i dBA	(60 dBA	55	dBA
			Ldn:	1	1		24	·	52	1	12
		Ci	NEL:	1	2		25		54	1	16

Wednesday, June 12, 2019

Scenario: Existing Without Project Road Name: Harvill Av. Road Segment: s/o Harley Knox Bl. Project Name: Oleander Job Number: 10720

SITE SPECIFIC IN	ΙΡΙΙΤ ΠΑΤΑ				NOISE	MODE		s	
Highway Data			Site Co	nditions	G (Hard	= 10, Se	ft = 15		
Average Daily Traffic (Adt):	10.207 vehicles				•	Autos:	15		
Peak Hour Percentage:	10%		M	edium Ti	rucks (2	Axles):	15		
Peak Hour Volume:	1,021 vehicles		Н	eavy Tru	ıcks (3+	Axles):	15		
Vehicle Speed:	40 mph		Vehiele			,			
Near/Far Lane Distance:	48 feet		venicie	IVIIX	•	Day	Evoning	Night	Doily
Site Data			Ve	псіетур	e Autos:	68.0%		1VIGI11 23.2%	25 75%
	0.0.(^	1edium T	rucks [.]	74.9%	4 9%	20.2%	5 50%
Barrier Height:	0.0 feet			Heavy T	rucks:	69.2%	81%	20.2%	8 75%
Barrier Type (U-Wall, T-Berri):	0.0 EQ.0 fact			neary .	ruono.	00.27	0.170	22.170	0.1070
Centerline Dist. to Barrier.	59.0 feet		Noise S	ource E	levatio	ns (in f	eet)		
Centerline Dist. to Observer.	59.0 feet			Auto	os: C	.000			
Observer Height (Above Ded):	0.0 feet		Mediu	ım Trucl	ks: 2	.297			
Observer Height (Above Pau). Pod Elevation:	5.0 feet		Hea	vy Trucl	ks: E	.004	Grade Adj	ustment.	0.0
Pad Elevation:	0.0 feet		Lane Fo	nuivaler	nt Dista	nce (in	feet)		
Road Grade:			Lano	Διιτά	10000	120	1001)		
L oft View:	0.0 %		Medii	im Trucl	20. 0- ke: 5?	966			
Right View:			Hea	vv Trucl	ks: 52	982			
right view.	30.0 degrees		1100	vy maon	.0. 00				
FHWA Noise Model Calculation	s								
VehicleType REMEL	Traffic Flow	Distanc	e Finite	e Road	Fres	snel	Barrier Atte	en Ber	m Atten
Autos: 66.51	-1.90	-().62	-1.20		-4.69	0.0	000	0.000
Medium Trucks: 77.72	-13.84	-(0.60	-1.20		-4.88	0.0	000	0.000
Heavy Trucks: 82.99	-11.82	-(0.60	-1.20		-5.35	0.0	000	0.000
Unmitigated Noise Levels (with	out Topo and ba	arrier at	tenuation)						
VehicleType Leq Peak Hou	ır Leq Day	Leo	, Evening	Leq	Night		Ldn	CI	VEL
Autos: 62	.8 60).3	57.5	5	56	.9	63.9)	64.1
Medium Trucks: 62	.1 60	0.0	54.2	2	55	.6	62.8	5	62.9
Heavy Trucks:69	.4 67	7.0	63.7	7	63	.4	70.4	ŀ	70.7
Vehicle Noise: 70	.9 68	3.5	65.0)	64	.8	71.9)	72.1
Centerline Distance to Noise Co	ontour (in feet)								
		7	70 dBA	65	dBA	6	60 dBA	55	dBA
	Lo	dn:	78		169		364	7	84
	CNE	EL:	81		175		377	8	13

Wednesday, June 12, 2019

Scenario: Existing Without Project Road Name: Nandina Av. Road Segment: e/o Decker Rd.

										_	
SITE	SPECIFIC IN	PUT DATA				<u> </u>	NOISE	MODE		S	
Highway Data					Site Con	ditions	s (Hard	= 10, S	oft = 15)		
Average Daily	Traffic (Adt):	100 vehicl	es					Autos	15		
Peak Hour	Percentage:	10%			Me	dium Ti	rucks (2	? Axles)	: 15		
Peak H	lour Volume:	10 vehicle	S		Hea	avy Tru	ıcks (3+	- Axles)	: 15		
Ve	hicle Speed:	40 mph		=	Vehicle I	Mix					
Near/Far La	ane Distance:	12 feet		F	Vehi	cleTvn	е	Dav	Evenina	Niaht	Dailv
Site Data					• • • • •	,p	- Autos:	68.0%	<u> </u>	23.2%	85 75%
					Me	dium T	Trucks	74.9%	6 <u>4</u> 9%	20.2%	5 50%
Barrior Turna (0.14	Voll 1 Pormy	U.U Teet			,,,,c -	leavv T	Trucks:	69.2%	6 81%	22.7%	8.75%
Contorling D	int to Porrior:	0.0 20.0 fact						00.L/	0.170	/0	0.1070
Centerline Di		39.0 feet			Noise So	ource E	Elevatio	ons (in f	eet)		
Centerline Dist.	to Observer:	39.0 Teet				Auto	os: (0.000			
Barrier Distance					Mediur	n Trucl	ks: 2	2.297			
Observer Height	(Above Pad):	5.0 feet			Heav	y Trucl	ks: 8	3.004	Grade Ad	justment	t: 0.0
	au Elevation:	0.0 feet		F	l ano Err	uivalar	nt Dicto	nco (in	foot)		
Ro	ad Elevation:	0.0 feet		-	Lane Equ			0.050	ieelj		
	Road Grade:	0.0%			Madie	Auto	JS: 3	0.009			
	Left View:	-90.0 degre	es		ivieaiur		ks: 3	5.63U			
	Right View:	90.0 degre	es		Heav	y Truci	ks: 3	8.653			
FHWA Noise Mod	lel Calculations	5									
VehicleType	REMEL	Traffic Flow	Dis	stance	Finite	Road	Fre	snel	Barrier Att	en Bei	rm Atten
Autos:	66.51	-21.99		1.5	4	-1.20	I	-4.58	0.0	000	0.000
Medium Trucks:	77.72	-33.92		1.5	8	-1.20		-4.87	0.0	000	0.000
Heavy Trucks:	82.99	-31.91		1.5	7	-1.20		-5.57	0.0	000	0.000
I In mitigrata d Notes		aut Tana and	he!	or offe-	······································						
	e Leveis (with	but log Do	parri ,		iuation)	1.00	Night		ldn	~	
veriicie i ype	Ley Реак пои	Leq Day	12 1	Leq E	veriirig 20 e	Leq	i ivigrit or		LUII		INEL AG O
Autos: Modium Trucker	44.	.9 0	42.4		39.0		35	.U	45.8	2	40.2
iviedium Trucks:	44.	<u>ک</u>	42.1		36.3		3/	./ 	44.9	1 -	45.0
Heavy Trucks:	51.	c.	49.1		45.8		45	0.5	52.5	>	52.7
Vehicle Noise:	52.	9	50.6		47.1		46	5.9	53.9	J	54.2
Centerline Distan	ce to Noise Co	ontour (in feet	t)								
				70	dBA	65	i dBA		60 dBA	55	dBA
			Ldn:		3		7		15		33
		C	NEL:	:	3		7		16		34

Scenario: Existing Without Project Road Name: Harley Knox Bl. Road Segment: e/o Decker Rd.

. tead obgino											
SITE	SPECIFIC IN					N	IOISE	MODE		S	
Highway Data					Site Cond	itions	(Hard	= 10, S	oft = 15)		
Average Daily	Traffic (Adt):	100 vehicl	es					Autos:	15		
Peak Hour	Percentage:	10%			Medi	ium Tri	ucks (2	Axles):	15		
Peak H	Hour Volume:	10 vehicle	S		Hear	vy Truc	cks (3+	Axles):	15		
Ve	ehicle Speed:	45 mph		_	Vahiala M	iv.					
Near/Far La	ane Distance:	78 feet			Venicie IVII Vehic	I X IoType		Dav	Evening	Night	Daily
Sita Data					Venic	етуре	, Autos:	68 0%	2 8 0%	23.2%	85 75%
Sile Dala		- .			Mor	r Iium Ti	rucks:	7/ 0%	2.3%	20.2%	5 50%
Ba	rrier Height:	0.0 feet			Hec	avv Ti	rucks:	60.2%	2 8 1 %	20.270	8 75%
Barrier Type (0-V	Vall, 1-Berm):	0.0			110	avy n	ucho.	03.27	0.170	22.7 /0	0.7570
Centerline Di	ist. to Barrier:	76.0 feet			Noise Sou	ırce El	levatio	ns (in f	eet)		
Centerline Dist.	to Observer:	76.0 feet				Auto	s: (.000			
Barrier Distance	to Observer:	0.0 feet			Medium	Truck	s: 2	.297			
Observer Height	(ADOVE Pad):	5.0 feet			Heavy	Truck	s: 8	8.004	Grade Ad	justmen	t: 0.0
	ad Elevation:	0.0 feet		-	l ano Faui	ivalon	t Nista	nco (in	foot)		
RU	Bood Crodo:			_	Lanc Lyu	Auto	c [.] 65	: 122	1001)		
	L oft Viow:	0.0%	~~		Madium	Truck	s. 0.	5 286			
	Pight View:	-90.0 degre	es 00		Heavy	Truck	s. 00	5 200			
	ragin view.	Solo degre	63		neavy	nuon	0. 00	.200			
FHWA Noise Mod	lel Calculation	s									
VehicleType	REMEL	Traffic Flow	Dis	stance	Finite R	load	Fres	snel	Barrier Att	en Be	rm Atten
Autos:	68.46	-22.51		-1.8	35	-1.20		-4.73	0.0	000	0.000
Medium Trucks:	79.45	-34.44		-1.8	34	-1.20		-4.88	0.0	000	0.000
Heavy Trucks:	84.25	-32.42		-1.8	34	-1.20		-5.25	0.0	000	0.000
Unmitigated Nois	e Levels (with	out Topo and	barri	er attei	nuation)						
VehicleType	Leg Peak Hou	Ir Leg Day	/	Leg E	ivening	Leq	Night		Ldn	C	NEL
Autos:	42	.9	40.4		37.6		37	.0	44.()	44.3
Medium Trucks:	42	.0	39.9		34.1		35	.5	42.7	7	42.8
Heavy Trucks:	48	.8	46.4		43.1		42	.8	49.8	3	50.1
Vehicle Noise:	50	.5	48.1		44.6		44	.4	51.5	5	51.7
Centerline Distan	ce to Noise Co	ontour (in feet	t)								
L		•	-	70	dBA	65	dBA	(60 dBA	55	5 dBA
			Ldn:		4	!	9		20		44
		C	NEL:		5	1	0		21		46

Scenario: Existing Without Project Road Name: Harley Knox Bl. Road Segment: e/o Harvill Av.

Project Name: Oleander Job Number: 10720

riodd Oegine		AV.											
SITE	SPECIFIC IN	NPUT DATA			NOISE MODEL INPUTS								
Highway Data				S	Site Conditions (Hard = 10, Soft = 15)								
Average Daily	Traffic (Adt):	10,880 vehicle	es					Autos.	15				
Peak Hour	Percentage:	10%			Me	dium Ti	rucks (2	? Axles).	15				
Peak F	our Volume:	1,088 vehicles	3		He	avy Tru	ıcks (3-	- Axles).	15				
Ve	hicle Speed:	45 mph			(ahiala)	1.							
Near/Far La	ne Distance:	78 feet		V	Veh	VIIX ioloTyp	•	Dav	Evoning	Night	Doily		
Oite Dete					ven	сіетур	e Autoor						
Site Data					٨.4	- dium 7	AUTOS:	68.0%	0 8.9%	23.2%			
Ba	rrier Height:	0.0 feet			IVIE	aium i Joonn 7	TUCKS.	74.97	0 4.9%	20.2%			
Barrier Type (0-V	Vall, 1-Berm):	0.0			F	leavy I	TUCKS:	69.2%	o 8.1%	22.1%	o 8.75%		
Centerline Dist. to Barrier: 76.0 feet					Noise Source Elevations (in feet)								
Centerline Dist.	to Observer:	76.0 feet				Auto	os:	0.000					
Barrier Distance	to Observer:	0.0 feet			Mediui	n Trucl	ks:	2.297					
Observer Height	(Above Pad):	5.0 feet			Heav	y Trucl	ks:	3.004	Grade Ad	justmen	t: 0.0		
P	ad Elevation:	0.0 feet					4 D:-+-		fa a 4)				
Ro	ad Elevation:	0.0 feet		L	ane Eq	uivaien	it Dista		ieet)				
	Road Grade:	0.0%				AUto	DS: 6	5.422					
	Left View:	-90.0 degree	\$S		Mealui	n Truck	(S: 6	5.286					
	Right View:	90.0 degree	\$S		Heav	y Truci	(S: 6	5.299					
FHWA Noise Mod	lel Calculation	IS											
VehicleTvpe	REMEL	Traffic Flow	Distar	nce	Finite	Road	Fre	snel	Barrier Att	en Be	rm Atten		
Autos:	68.46	-2.14		-1.85		-1.20	-	-4.73	0.0	000	0.000		
Medium Trucks:	79.45	-14.07		-1.84		-1.20		-4.88	0.0	000	0.000		
Heavy Trucks:	84.25	-12.05		-1.84		-1.20		-5.25	0.0	000	0.000		
				- 44									
Unmitigated Nois	e Leveis (with			attenu	lation)	1.00	Night		l dn				
Venicie rype	Ley Feak Hol	Leq Day		ey Eve	eniing ۵۹ ۵	Leq	F NIGHT		LUII		INEL 64.6		
Aulos. Madium Truaka:	03	\sim	50.0 60.2		50.0		57	.4	62.0	+ ר	04.0 62.0		
	62		50.5 66 9		04.4 62 5		50	9.9 9.2	03.0 70.4	ן ר	03.Z		
Heavy Trucks.	08	0.2	00.0 00.5		03.0		03	0.2	70.2	2	70.4		
venicie ivoise:	70).8	58.5		64.9		64	4.8	71.0	5	72.1		
Centerline Distan	ce to Noise C	ontour (in feet)							T			
				70 dl	BA	65	dBA		60 dBA	55	5 dBA		
			Ldn:	100	C	2	216		466	1	,005		
		CI	VEL:	104	4	2	224		483	1	,041		

Wednesday, June 12, 2019

Scenario: Existing Without Project Road Name: Harley Knox Bl. Road Segment: e/o I-215 NB Ramps

Nodu Ocyme	<i>Inc.</i> 6/01-213 N	D Ramps												
SITE	SPECIFIC IN	IPUT DATA			NOISE MODEL INPUTS									
Highway Data				S	Site Conditions (Hard = 10, Soft = 15)									
Average Daily	Traffic (Adt):	24,923 vehicle	es					Autos:	15					
Peak Hour	Percentage:	10%			Medi	um Tru	icks (2	Axles).	15					
Peak H	our Volume:	2,492 vehicles	s		Heav	y Truc	:ks (3+)	Axles):	15					
Ve	hicle Speed:	45 mph			lahiala Mi	v								
Near/Far La	ne Distance:	78 feet		`	Vehicle IVI	X IoTuno		Dav	Evoning	Night	Daily			
Sita Data					Venici	етуре	utos:	69 00/		101911	05 75%			
Sile Dala		_			Moo	۲ lium Tr	uios.	7/ 00/	0.9%	20.27	6 00.70%			
Ba	rrier Height:	0.0 feet			He	awy Tr	ucks.	60.2%	8 1%	20.27	6 0.00%			
Barrier Type (0-M	Vall, 1-Berm):	0.0				avy n	<i>uun</i> 3.	03.27	0.170	22.17	0 0.7570			
Centerline Di	st. to Barrier:	76.0 feet		Λ	Voise Sou	rce El	evation	ns (in f	eet)					
Centerline Dist.	to Observer:	76.0 feet				Autos	s: 0.	000						
Barrier Distance	to Observer:	0.0 feet			Medium	Trucks	s: 2.	297						
	(ADOVE Pau).	5.0 feet			Heavy	Trucks	s: 8.	004	Grade Ad	justmen	<i>t:</i> 0.0			
r Bo	ad Elevation.	0.0 feet		1	ane Faui	valent	Distan	ce (in	feet)					
	au Elevalion. Poad Grada:			-	Lano Lqui	Δυτος	210tan	422	1000)					
	Left View:	-90.0 degree	00		Medium	Trucks	s. 65	286						
	Right View:				Heavy	Trucks	s: 65	299						
	night now.	Solo degree	00		nouty	110010		200						
FHWA Noise Mod	lel Calculation	S		L										
VehicleType	REMEL	Traffic Flow	Dis	stance	Finite R	oad	Fres	nel	Barrier Att	en Be	erm Atten			
Autos:	68.46	1.46		-1.85	5	-1.20		-4.73	0.0	000	0.000			
Medium Trucks:	79.45	-10.47		-1.84	ŀ	-1.20		-4.88	0.0	000	0.000			
Heavy Trucks:	84.25	-8.45		-1.84	ŀ	-1.20		-5.25	0.0	000	0.000			
Unmitigated Nois	e Levels (with	out Topo and	barrie	er atten	uation)									
VehicleType	Leg Peak Hou	Ir Leq Day	/	Leg Ev	vening	Leg	Night		Ldn	0	ONEL			
Autos:	66	.9	64.4	· · ·	61.6		61.	0	68.0)	68.2			
Medium Trucks:	65	.9	63.9		58.0		59.	5	66.0	6	66.8			
Heavy Trucks:	72	.8	70.4		67.1		66.	8	73.8	3	74.0			
Vehicle Noise:	74	.4	72.1		68.5		68.	4	75.4	4	75.7			
Centerline Distan	ce to Noise Co	ontour (in feet)											
				70 a	IBA	65 0	dBA	(60 dBA	55	5 dBA			
			Ldn:	17	5	37	76	- ·	810	1	,746			
		Cl	NEL:	18	1	39	90		840	1	,810			

Scenario: Existing Without Project Road Name: Oleander Av. Road Segment: e/o Decker Rd.

. tead cogino				1										
SITE	SPECIFIC IN	NPUT DATA			NOISE MODEL INPUTS									
Highway Data					Site Conditions (Hard = 10, Soft = 15)									
Average Daily	Traffic (Adt):	100 vehicl	es					Autos.	15					
Peak Hour	⁻ Percentage:	10%			Me	dium Tı	rucks (2	Axles).	15					
Peak H	lour Volume:	10 vehicle	S		Heavy Trucks (3+ Axles): 15									
Ve	ehicle Speed:	40 mph			Vohiclo									
Near/Far La	ane Distance:	12 feet		_	Venicie i Veh	icleTvn	a	Dav	Evenina	Niaht	Daily			
Sito Data					VCII	cic i yp	Autos	68 0%	2 8 9%	23.2%	85 75%			
	• • • • • •				٨٨	dium T	rucks:	74 9%	6 0.3%	20.2%	5 50%			
Ba	rrier Height:	0.0 feet			line H	Jeavy T	rucks:	69.2%	6 4.070 6 8.1%	20.27%	8 75%			
Barrier Type (0-V	Vall, 1-Berm):	0.0			,	icavy i	rucks.	03.27	0.170	22.170	0.7570			
Centerline Dist. to Barrier: 39.0 feet					Noise Source Elevations (in feet)									
Centerline Dist.	to Observer:	39.0 feet				Auto	os: C	.000						
Barrier Distance	to Observer:				Mediui	n Truck	(s: 2	.297						
Observer Height	(Above Pad):	5.0 feet			Heav	y Truck	ks: 6	8.004	Grade Ad	justment	t: 0.0			
Pad Elevation: 0.0 feet					l ano Ea	uivələn	t Dista	nco (in	foot)					
Road Elevation: 0.0 leet						Διιτο	28	2 850	1001)					
	L off Viow:	0.0%	~~		Madiu	n Truck	13. JU 16. JU	8 630						
	Left View.	-90.0 degre	es		Hoay	n Truck	(S. 30	2 653						
	Right view.	90.0 degre	62		neav	y mucr	<i></i>	0.000						
FHWA Noise Mod	lel Calculation	IS												
VehicleType	REMEL	Traffic Flow	Dis	stance	Finite	Road	Fres	snel	Barrier Att	en Bei	rm Atten			
Autos:	66.51	-21.99	1	1.5	4	-1.20		-4.58	0.0	000	0.000			
Medium Trucks:	77.72	-33.92		1.5	8	-1.20		-4.87	0.0	000	0.000			
Heavy Trucks:	82.99	-31.91		1.5	7	-1.20		-5.57	0.0	000	0.000			
Unmitidated Nois	a l avals (with	out Topo and	harri	or atton	uation)									
VehicleTvpe	Lea Peak Hou	ur Lea Da	/	Lea E	venina	Lea	Niaht		Ldn	C	NEL			
Autos:	44	.9	42.4		39.6	4	39	.0	45.9	9	46.2			
Medium Trucks:	44	1.2	42.1		36.3		37	.7	44.9	9	45.0			
Heavy Trucks:	51	.5	49.1		45.8		45	.5	52.5	5	52.7			
Vehicle Noise:	52	2.9	50.6		47.1		46	.9	53.9	9 54.2				
Centerline Distan	ce to Noise C	ontour (in fee	t)											
			,	70 (dBA	65	dBA		60 dBA	55	i dBA			
			Ldn:	3	3		7	1	15		33			
		С	NEL:	3	3		7		16		34			
		-	-						-					

Scenario: Existing With Project Road Name: Harvill Av. Road Segment: n/o Harley Knox Bl.

cuu cogino	illi o rianoy i													
SITE	SPECIFIC IN	PUT DATA			NOISE MODEL INPUTS									
Highway Data					Site Conditions (Hard = 10, Soft = 15)									
Average Daily	Traffic (Adt):	685 vehicl	es					Autos.	15					
Peak Hour	Percentage:	10%			Me	dium Tı	rucks (2	Axles).	15					
Peak H	lour Volume:	68 vehicle	S		Heavy Trucks (3+ Axles): 15									
Ve	ehicle Speed:	40 mph		-	Vohiclo									
Near/Far La	ane Distance:	48 feet		-	VehicleType Day Evening Night [
Sita Data					Ven	сютур	Autos	68 0%	2 8 Q%	23.20	2 83 18%			
Sile Dala					٨.٨	dium T	Aulos. Trucks:	7/ 00/	0.970 4 1.9%	20.27	5 28%			
Ba	rrier Height:	0.0 feet			IVR H	Hoovy T	rucks:	60.20	6 4.370 2 8.10/	20.27	0 J.2070			
Barrier Type (0-V	Vall, 1-Berm):	0.0			,	ieavy i	rucks.	09.27	0.170	22.1 /	0 11.3470			
Centerline Dist. to Barrier: 59.0 feet					Noise Source Elevations (in feet)									
Centerline Dist.	to Observer:	59.0 feet				Auto	os: (.000						
Barrier Distance to Observer: 0.0 feet					Medium Trucks: 2.297									
Observer Height (Above Pad): 5.0 feet					Heavy Trucks: 8.004 Grade Adjustment: 0.0									
Pad Elevation: 0.0 feet					lono Ea	vivolor	4 Diata	non (in	fact)					
Road Elevation: 0.0 feet					Lane Eq	uivaien			leet)					
Road Grade: 0.0%						AUto	DS: 54	129						
	Left View:	-90.0 degre	es		Meaiui	n Truck	(S: 53	5.966						
	Right View:	90.0 degre	es		Heav	y Truck	(s: 53	8.982						
FHWA Noise Mod	lel Calculation	S												
VehicleType	REMEL	Traffic Flow	Dis	stance	Finite	Road	Fres	snel	Barrier Att	en Be	erm Atten			
Autos:	66.51	-13.77		-0.6	62	-1.20		-4.69	0.0	000	0.000			
Medium Trucks:	77.72	-25.74		-0.6	60	-1.20		-4.88	0.0	000	0.000			
Heavy Trucks:	82.99	-22.35		-0.6	60	-1.20		-5.35	0.0	000	0.000			
Unmitigated Nois	e Levels (with	out Topo and	barri	er attei	nuation)									
VehicleType	Leq Peak Hou	ir Leq Day	/	Leq E	vening	Leq	Night		Ldn	C	ONEL			
Autos:	50.	.9	48.5		45.6		45	.0	52.0)	52.3			
Medium Trucks:	50.	.2	48.1		42.3		43	.7	50.9	9	51.0			
Heavy Trucks:	58.	.8	56.5		53.1		52	.9	59.9	Ð	60.1			
Vehicle Noise:	60	.0	57.6		54.1		54	.0	61.0)	61.2			
Centerline Distan	ce to Noise Co	ontour (in feet	t)											
				70	dBA	65	dBA		60 dBA	55	5 dBA			
			Ldn:	1	15		32	I	69		148			
		C	NEL:	1	15	:	33		71		153			

Scenario: Existing With Project Road Name: Harvill Av. Road Segment: s/o Harley Knox Bl.

i tead oogino													
SITE	SPECIFIC IN	IPUT DATA			NOISE MODEL INPUTS								
Highway Data				2	Site Conditions (Hard = 10, Soft = 15)								
Average Daily	Traffic (Adt):	10,226 vehicle	es					Autos	15				
Peak Hour	Percentage:	10%			Me	dium Ti	rucks (2	Axles)	: 15				
Peak H	our Volume:	1,023 vehicle	s		He	avy Tru	ıcks (3+	Axles)	: 15				
Ve	hicle Speed:	40 mph		-	Vohicle	Miv							
Near/Far La	ne Distance:	48 feet			Vah	icleTvn	ρ	Dav	Evening	Niaht	Daily		
Site Data					VGII	бістур	Autos [.]	68 0%	6 8 9%	23.2%	85 59%		
		0.0 (Me	edium 1	rucks [.]	74.9%	6 <u>4</u> 9%	20.2%	5 52%		
Barrier Height: 0.0 feet Barrier Type (0-Wall 1-Berm): 0.0					Wedium Trucks: 74.9% 4.9% Heavy Trucks: 60.2% 8.1%						8.89%		
Darrier Type (U-M	ist to Parriar:	U.U EQ.0 fact			•			00.27	0.170	, /0	0.0070		
Centerline Dist. to Barrier: 59.0 feet					Noise So	ource E	levatio	ns (in f	eet)				
Barrier Distance	to Observer					Auto	os: (0.000					
Observer Height (Above Pad): 5.0 feet Pad Elevation: 0.0 feet					Medium Trucks: 2.297								
					Heavy Trucks: 8.004 Grade Adjustment: 0.0								
Road Elevation: 0.0 feet					Lane Eq	uivalen	t Dista	nce (in	feet)				
	Road Grade:	0.0%				Auto	os: 54	4.129	,				
	Left View:	-90.0 degre	e s		Mediu	n Truck	ks: 53	3.966					
Right View: 90.0 degrees					Heav	v Truck	ks: 5:	3.982					
FHWA Noise Mod	lel Calculation	s					-	-					
VehicleType	REMEL	Traffic Flow	Dis	stance	Finite	Road	Fres	snel	Barrier Att	ten Be	rm Atten		
Autos:	66.51	-1.90		-0.62	2	-1.20		-4.69	0.0	000	0.000		
Medium Trucks:	77.72	-13.81		-0.60)	-1.20		-4.88	0.0	000	0.000		
Heavy Trucks:	82.99	-11.74		-0.60)	-1.20		-5.35	0.0	000	0.000		
Unmitigated Nois	e Levels (with	out Topo and	barrie	er atten	uation)								
VehicleType	Leq Peak Hou	Ir Leq Day	/	Leg Ev	/ening	Leg	Night		Ldn	С	NEL		
Autos:	62	.8	60.3	•	57.5		56	.9	63.9	9	64.1		
Medium Trucks:	62	.1	60.1		54.2		55	.6	62.8	3	63.0		
Heavy Trucks:	69	.5	67.1		63.7		63	.5	70.8	5	70.7		
Vehicle Noise:	70	.9	68.6		65.0		64	.9	71.9	9	72.1		
Centerline Distan	ce to Noise Co	ontour (in feet)										
				70 c	<i>BA</i>	65	dBA		60 dBA	55	dBA		
			Ldn:	79	9	1	71		367	7	791		
		Ci	NEL:	82	2	1	77		381	8	321		

Scenario: Existing With Project Road Name: Nandina Av. Road Segment: e/o Decker Rd.

euu oogino														
SITE	SPECIFIC IN	NPUT DATA			NOISE MODEL INPUTS									
Highway Data					Site Conditions (Hard = 10, Soft = 15)									
Average Daily	Traffic (Adt):	236 vehicl	es					Autos.	15					
Peak Hour	Percentage:	10%			Me	dium T	rucks (2	2 Axles).	15					
Peak H	lour Volume:	24 vehicle	S		He	avy Tru	ucks (3-	+ Axles).	15					
Ve	ehicle Speed:	40 mph		-	Vohiclo	Miv								
Near/Far La	ane Distance:	12 feet		·	Vehicle I	icleTvn	۵	Dav	Evenina	Niaht	Daily			
Site Data					VCIII	сістур	Δutos:	68.0%	2 8 9%	23.2%	78 20%			
Sile Dala	• • • • • • .				Me	dium T	Trucks	74 9%	6 0.9%	20.2%	4 87%			
Ba	rrier Height:	0.0 feet			H H	leavy T	Trucks:	69.2%	6 4.070 6 8.1%	20.27%	5 16 84%			
Barrier Type (U-V	vall, 1-Berm):	0.0		-		loavy	nuono.	00.27	0.170	22.17	0.0470			
Centerline Di	to Observery	39.0 feet			Noise Sc	ource E	Elevatio	ons (in f	eet)					
Centerline Dist.	to Observer:	39.0 feet				Auto	os:	0.000						
Damer Distance	(Above Ded)	0.0 feet			Mediur	n Trucl	ks:	2.297						
	(ADOVE Pau).	5.0 leet			Heav	y Trucl	ks:	8.004	Grade Ad	justmen	t: 0.0			
Pad Elevation: 0.0 feet					l ane Fo	uivaler	nt Dista	nce (in	feet)					
RU	Bood Grada:			-	Lune Ly	Διιτ	<u>10</u> 10' 3	8 850	1000					
		0.0%	~ ~		Madiu	n Truc	55. 5 ke [,] 3	8 630						
Ein view90.0 degrees					Heav	v Truci	ns. J ke [,] 3	0.000 8 653						
	Ngnt view.	90.0 degre	62		neav	y much	NG. U	0.000						
FHWA Noise Mod	lel Calculation	S												
VehicleType	REMEL	Traffic Flow	Dis	stance	Finite	Road	Fre	snel	Barrier Att	en Be	rm Atten			
Autos:	66.51	-18.66		1.5	54	-1.20		-4.58	0.0	000	0.000			
Medium Trucks:	77.72	-30.72		1.5	58	-1.20		-4.87	0.0	000	0.000			
Heavy Trucks:	82.99	-25.33		1.5	57	-1.20		-5.57	0.0	000	0.000			
Unmitigated Nois	e Levels (with	out Topo and	barri	er atte	nuation)									
VehicleType	Leq Peak Hou	ur Leq Day	/	Leq E	vening	Leq	Night		Ldn	C	NEL			
Autos:	48	3.2	45.7		42.9		42	2.3	49.3	3	49.5			
Medium Trucks:	47	. .4	45.3		39.5		40).9	48.2	1	48.2			
Heavy Trucks:	58	3.0	55.6		52.3		52	2.1	59.1	1	59.3			
Vehicle Noise:	58	3.8	56.4		53.0		52	2.8	59.8	3	60.0			
Centerline Distan	ce to Noise Co	ontour (in fee	t)											
L		•	-	70	dBA	65	5 dBA		60 dBA	55	5 dBA			
			Ldn:		8		18	I	38		82			
		С	NEL:		8		18		39		85			

Scenario: Existing With Project Road Name: Harley Knox Bl. Road Segment: e/o Decker Rd.

		ч.												
SITE	SPECIFIC INP	UT DATA			NOISE MODEL INPUTS									
Highway Data				5	Site Conditions (Hard = 10, Soft = 15)									
Average Daily	Traffic (Adt):	1,193 vehicle	S					Autos:	15					
Peak Hour	Percentage:	10%			Me	dium Tr	ucks (2	Axles):	15					
Peak H	lour Volume:	119 vehicles			Heavy Trucks (3+ Axles): 15									
Ve	hicle Speed:	45 mph		1	Vehicle Mix									
Near/Far La	ne Distance:	78 feet			Veh	icleType)	Day	Evening	Night	Daily			
Site Data						/	Autos:	68.0%	8.9%	23.2%	73.58%			
Ba	rrier Heiaht:	0.0 feet			M	edium T	rucks:	74.9%	4.9%	20.2%	4.74%			
Barrier Type (0-V	/all, 1-Berm):	0.0			ŀ	leavy T	rucks:	69.2%	8.1%	22.7%	21.69%			
Centerline Di	st. to Barrier:	76.0 feet			Noiso S		lovation	nc (in f						
Centerline Dist.	to Observer:	76.0 feet		1	10/36 30				eel)					
Barrier Distance	to Observer:	0.0 feet			Madiu		S. 0.	207						
Observer Height	(Above Pad):	5.0 feet			Mediui		S. Z.	291	Grada Ad	iustmon	H 0 0			
P	ad Elevation:	0.0 feet			пеал	y Truck	<i>S.</i> 0.	004	Graue Au	usunem	. 0.0			
Ro	L	.ane Eq	uivalen	t Distan	ce (in	feet)								
	Road Grade:	0.0%				Auto	s: 65	.422						
Left View: -90.0 degrees					Mediu	m Truck	s: 65	.286						
	Right View:	90.0 degree	S		Heav	y Truck	s: 65	.299						
FHWA Noise Mod	el Calculations													
VehicleType	REMEL 7	Traffic Flow	Dista	ance	Finite	Road	Fres	nel	Barrier Att	en Be	rm Atten			
Autos:	68.46	-12.40		-1.85	5	-1.20		-4.73	0.0	000	0.000			
Medium Trucks:	79.45	-24.32		-1.84	ł	-1.20		-4.88	0.0	000	0.000			
Heavy Trucks:	84.25	-17.71		-1.84	Ļ	-1.20		-5.25	0.0	000	0.000			
Unmitigated Nois	e Levels (withou	it Topo and I	barrier	r atten	uation)									
VehicleType	Leq Peak Hour	Leq Day		Leq Ev	vening	Leq	Night		Ldn	С	NEL			
Autos:	53.0	5	50.5		47.7		47.	1	54.2	l	54.4			
Medium Trucks:	52.1	5	50.0		44.2		45.	6	52.8	3	53.0			
Heavy Trucks:	63.5	6	61.1		57.8		57.	5	64.5	5	64.8			
Vehicle Noise:	64.2	6	61.8		58.4		58.	2	65.2	2	65.4			
Centerline Distan	ce to Noise Con	tour (in feet)												
				70 a	IBA	65	dBA	6	60 dBA	55	i dBA			
		L	.dn:	36	6	7	78	- ·	168	3	362			
		CN	IEL:	38	3	8	31		174	3	376			

Scenario: Existing With Project Road Name: Harley Knox Bl. Road Segment: e/o Harvill Av.

Project Name: Oleander Job Number: 10720

Rodd Obgino		v.												
SITE	SPECIFIC INI	PUT DATA				NOISE	E MODE	L INPUT	S					
Highway Data				Site	Site Conditions (Hard = 10, Soft = 15)									
Average Daily	Traffic (Adt): 1	12,128 vehicle	es				Autos:	15						
Peak Hour	Percentage:	10%			Medium T	rucks (2	2 Axles):	15						
Peak H	our Volume:	1,213 vehicles	5		Heavy Trucks (3+ Axles): 15									
Ve	hicle Speed:	45 mph		Vah	Vehicle Mix									
Near/Far La	ne Distance:	78 feet		ven		20	Dav	Evoning	Night	Daily				
Site Data					venicieryp	Autoo:			101911	Dally				
Site Data					Modium	Aulos. Trucko:	74.0%	0.9%	23.2%	04.20%				
Ba	rrier Height:	0.0 feet			Hoover	Trucks. Trucks:	60.20/	0 4.970	20.2 /0	10 200/				
Barrier Type (0-W	Vall, 1-Berm):	0.0			Tieavy	muchs.	09.2%	0.170	22.170	10.29%				
Centerline Dist. to Barrier: 76.0 feet					e Source l	Elevatio	ons (in f	eet)						
Centerline Dist.	to Observer:	76.0 feet			Aut	os:	0.000							
Barrier Distance	to Observer:	0.0 feet		M	edium Truc	ks:	2.297							
Observer Height	(Above Pad):	5.0 feet			leavy Truc	ks:	8.004	Grade Ad	iustment	: 0.0				
	Lon	Equivala	nt Dict	nnoo (in	faat									
Road Elevation: 0.0 feet								ieet)						
Road Grade: 0.0%					AUt Taria	0S: 6	5.422							
	Left View:	-90.0 degree	es	IVI	eaium Truc	KS: 0	5.286							
	Right View:	90.0 degree	es		Heavy Truc	KS: 6	5.299							
FHWA Noise Mod	lel Calculations													
VehicleType	REMEL	Traffic Flow	Dista	nce F	inite Road	Fre	esnel	Barrier Att	en Ber	m Atten				
Autos:	68.46	-1.74		-1.85	-1.20)	-4.73	0.0	000	0.000				
Medium Trucks:	79.45	-13.65		-1.84	-1.20)	-4.88	0.0	000	0.000				
Heavy Trucks:	84.25	-10.88		-1.84	-1.20)	-5.25	0.0	000	0.000				
Unmitigated Nois	e Levels (witho	ut Topo and	barrier	attenuati	on)									
VehicleType	Leg Peak Hour	Leg Day		.eq Evenii	ng Leo	g Night		Ldn	С	NEL				
Autos:	. 63.7	7 (61.2		58.4	5	7.8	64.8	3	65.0				
Medium Trucks:	62.8	3	60.7	4	54.9	56	6.3	63.5	5	63.6				
Heavy Trucks:	70.3	3	67.9	(64.6	64	4.4	71.4	Ļ	71.6				
Vehicle Noise:	71.8	3	69.4		65.9	6	5.7	72.8	3	73.0				
Centerline Distan	ce to Noise Col	ntour (in feet)											
		2		70 dBA	65	5 dBA	(60 dBA	55	dBA				
			Ldn:	116	I	250	I	540	1,	162				
		CI	VEL:	121		260		559	1,	205				

Wednesday, June 12, 2019
Scenario: Existing With Project Road Name: Harley Knox Bl. Road Segment: e/o I-215 NB Ramps

Project Name: Oleander Job Number: 10720

SITE SPECIFIC IN	PUT DATA			NOISE	MODE		5	
Highway Data			Site Condition	s (Hard	= 10, Se	oft = 15)		
Average Daily Traffic (Adt): 2	25,090 vehicles				Autos:	15		
Peak Hour Percentage:	10%		Medium T	Frucks (2	Axles):	15		
Peak Hour Volume: 2	2,509 vehicles		Heavy Tr	ucks (3+	Axles):	15		
Vehicle Speed:	45 mph	_	Vehicle Mix					
Near/Far Lane Distance:	78 feet	_	VehicleTy	be	Day	Evening	Night	Daily
Site Data				Autos:	68.0%	6 8.9%	23.2%	85.77%
Barrier Height:	0.0 feet		Medium	Trucks:	74.9%	4.9%	20.2%	5.47%
Barrier Type (0-Wall, 1-Berm):	0.0		Heavy	Trucks:	69.2%	8.1%	22.7%	8.75%
Centerline Dist. to Barrier:	76.0 feet	_	Noise Source	Elevatio	ns (in f	eet)		
Centerline Dist. to Observer:	76.0 feet		Au	tos: (.000	,		
Barrier Distance to Observer:	0.0 feet		Medium Truc	sks: 2	2.297			
Observer Height (Above Pad):	5.0 feet		Heavy Truc	:ks: 8	3.004	Grade Ad	iustment.	: 0.0
Pad Elevation:	0.0 feet	_				,		
Road Elevation:	_	Lane Equivale	nt Dista	nce (in	feet)			
Road Grade:	0.0%		Au	tos: 65	5.422			
Left View:	-90.0 degrees		Medium Truc	:ks: 65	5.286			
Right View:	90.0 degrees		Heavy Truc	:ks: 65	5.299			
FHWA Noise Model Calculations								
VehicleType REMEL	Traffic Flow	Distance	Finite Road	Fres	snel	Barrier Att	en Ber	m Atten
Autos: 68.46	1.49	-1.8	5 -1.20	<u>כ</u>	-4.73	0.0	000	0.000
Medium Trucks: 79.45	-10.46	-1.8	4 -1.20)	-4.88	0.0	000	0.000
Heavy Trucks: 84.25	-8.42	-1.8	4 -1.20)	-5.25	0.0	000	0.000
Unmitigated Noise Levels (witho	ut Topo and ba	arrier atter	nuation)					
VehicleType Leq Peak Hour	Leq Day	Leq E	vening Le	q Night		Ldn	Cl	NEL
Autos: 66.9	9 64	.4	61.6	61	.0	68.0)	68.3
Medium Trucks: 65.9	63	5.9	58.0	59	.5	66.6	5	66.8
Heavy Trucks: 72.8	3 70	.4	67.1	66	.8	73.8	3	74.1
Vehicle Noise: 74.4	4 72	2.1	68.6	68	.4	75.4	ļ	75.7
Centerline Distance to Noise Con	ntour (in feet)							
		70	dBA 6	5 dBA	(60 dBA	55	dBA
	La	<i>ln:</i> 1	75	378		814	1,	753
	CNE	<i>EL:</i> 1	82	392		844	1,	818

Wednesday, June 12, 2019

Scenario: Existing With Project Road Name: Oleander Av. Road Segment: e/o Decker Rd.

Noau Segine	III. E/O DECKEI IN	u.								
SITE	SPECIFIC INP	UT DATA			N	DISE N	IODE	L INPUT	S	
Highway Data				Site Con	ditions (Hard =	10, Sc	oft = 15)		
Average Daily	Traffic (Adt):	236 vehicles					Autos:	15		
Peak Hour	Percentage:	10%		Me	dium True	cks (2 A	xles):	15		
Peak F	our Volume:	24 vehicles		He	avy Trucl	ks (3+ A	xles):	15		
Ve	hicle Speed:	40 mph	_	Vahiala		-	-			
Near/Far La	ne Distance:	12 feet	_	Venicie i	VIIX		Dav	Fuening	Niaht	Dailu
Oite Dete				ven	cie i ype			Evening		
Site Data				Λ.Λ.	Al Alium Tri	utos:	08.0% 74.00/	8.9%	23.2%	18.29%
Ba	rrier Height:	0.0 feet		IVIE		ICKS.	74.9% co. 00/	4.9%	20.2%	4.07%
Barrier Type (0-N	/all, 1-Berm):	0.0		Г	leavy III	icks.	09.2%	8.1%	22.1%	16.84%
Centerline Di	st. to Barrier:	39.0 feet		Noise So	ource Ele	vations	s (in fe	et)		
Centerline Dist.	to Observer:	39.0 feet			Autos:	0.0	000			
Barrier Distance	to Observer:	0.0 feet		Mediur	n Trucks.	2.2	297			
Observer Height	(Above Pad):	5.0 feet		Heav	y Trucks.	8.0	04	Grade Ad	justment	: 0.0
	ad Elevation:		l ono Ea	vivalant	Distant	o (in)	(a.a.t.)			
Ro	ad Elevation:		Lane Eq		Distant		leel)			
	Road Grade:	0.0%			Autos.	38.8	359			
	Left View:	-90.0 degrees		Mealui	n Trucks.	38.6	530			
	Right View:	90.0 degrees		Heav	y Trucks.	38.6	53			
FHWA Noise Mod	el Calculations									
VehicleType	REMEL	Traffic Flow D	Distance	Finite	Road	Fresn	el	Barrier Att	en Ber	m Atten
Autos:	66.51	-18.66	1.5	4	-1.20		-4.58	0.0	000	0.000
Medium Trucks:	77.72	-30.72	1.5	8	-1.20		-4.87	0.0	000	0.000
Heavy Trucks:	82.99	-25.33	1.5	7	-1.20		-5.57	0.0	000	0.000
Unmitigated Nois	e Levels (withou	ut Topo and bar	rier atten	uation)						
VehicleType	Leq Peak Hour	Leq Day	Leq E	vening	Leq N	light		Ldn	С	NEL
Autos:	48.2	45.7	,	42.9		42.3		49.3	3	49.5
Medium Trucks:	47.4	45.3	3	39.5		40.9		48.1	l	48.2
Heavy Trucks:	58.0	55.6	5	52.3		52.1		59.1	l	59.3
Vehicle Noise:	58.8	56.4	ŀ	53.0		52.8		59.8	3	60.0
Centerline Distan	ce to Noise Con	tour (in feet)								
<u>.</u>		-	70 0	dBA	65 d	BA	6	60 dBA	55	dBA
		Ldn	: 8	3	18	}		38		82
		CNEL	: 8	3	18	3		39	1	85

Scenario: OY Without Project Road Name: Harvill Av. Road Segment: n/o Harley Knox Bl.

. toda cogino	ive haney i			1							
SITE	SPECIFIC IN	PUT DATA					NOISE		EL INPUT	S	
Highway Data					Site Cor	ditions	6 (Hard	= 10, S	oft = 15)		
Average Daily	Traffic (Adt):	925 vehicle	s					Autos	15		
Peak Hour	· Percentage:	10%			Me	dium Ti	rucks (2	2 Axles)	: 15		
Peak H	lour Volume:	93 vehicles			He	avy Tru	ıcks (3-	+ Axles)	: 15		
Ve	hicle Speed:	40 mph		-	Vehicle	Mix					
Near/Far La	ne Distance:	48 feet			Veh	icleTyp	е	Day	Evening	Night	Daily
Site Data						,,	Autos:	68.0%	6 8.9%	23.2%	85.75%
Ba	rrier Height	0.0 feet			M	edium 1	Trucks:	74.9%	6 4.9%	20.2%	5.50%
Barrier Type (0-V	Vall. 1-Berm):	0.0			I	Heavy T	Trucks:	69.2%	6 8.1%	22.7%	8.75%
Centerline Di	ist. to Barrier:	59.0 feet		_	Noiso S		lovatio	nc (in f			
Centerline Dist.	to Observer:	59.0 feet		_	NUISE S				eel)		
Barrier Distance	to Observer:	0.0 feet			Madiu	AUIC m Truck	JS.	0.000			
Observer Height	(Above Pad):	5.0 feet			Mealu		(S.	2.297	Grada Ad	liustmon	+· 0 0
P	ad Elevation:	0.0 feet			nea	y muci	<i>(S.</i>	0.004	Graue Au	jusunen	. 0.0
Ro	ad Elevation:			Lane Eq	uivalen	nt Dista	nce (in	feet)			
			Auto	os: 5	4.129						
	Left View:	-90.0 degree	s		Mediu	m Trucł	ks: 5	3.966			
	Right View:	90.0 degree	s		Heav	/y Trucl	ks: 5	3.982			
EHWA Noise Mod	lol Calculations	<u> </u>									
VehicleType	REMEI	Traffic Flow	Dist	tance	Finito	Road	Fre	snel	Rarrier Δt	on Ro	rm ∆tten
Autos:	66 51	-12.33	DISC	-0.6	2	1 20					0 000
Medium Trucks:	77 72	-24.26		-0.6	0	-1 20		-4 88	0.0	000	0.000
Heavy Trucks:	82.99	-22.25		-0.6	0	-1 20		-5.35	0.0	000	0.000
	02.00			0.0		1.20		0.00	0.0		0.000
Unmitigated Nois	e Levels (witho	out Topo and k	barrie	r atter	nuation)		NP 1.4				
Vehicle I ype	Leq Peak Hour	r Leq Day		Leq E	vening	Leq	Night		Ldn	C	NEL 50.7
Autos:	52.4	4 4	9.9		47.1		40	5.5 - 0	53.		53.7
Meaium Trucks:	51.	7 4 0 5	9.6		43.7		4:	5.2	52.4	4	52.5
Heavy Trucks:	58.	9 5	6.6		53.2		5	3.0	60.0)	60.2
Vehicle Noise:	60.4	4 5	8.1		54.6		54	1.4	61.4	4	61.7
Centerline Distan	ce to Noise Co	ntour (in feet)									
				70	dBA	65	i dBA		60 dBA	55	5 dBA
		L	.dn:	1	6		34		73		158
		CN	EL:	1	6		35		76		164

Scenario: OY Without Project Road Name: Harvill Av. Road Segment: s/o Harley Knox Bl.

. toda cogino										
SITE	SPECIFIC IN	IPUT DATA				NO	ISE MOD	EL INPUT	S	
Highway Data				5	Site Cond	itions (H	<i>ard = 10,</i> S	oft = 15)		
Average Daily	Traffic (Adt):	13,074 vehicl	es				Autos	: 15		
Peak Hour	Percentage:	10%			Medi	um Truci	ks (2 Axles)	: 15		
Peak H	lour Volume:	1,307 vehicle	S		Heav	y Trucks	s (3+ Axles)	: 15		
Ve	hicle Speed:	40 mph		,	Vohiclo Mi	Y				
Near/Far La	ne Distance:	48 feet		_	Vehicl	A IaTvna	Dav	Evenina	Niaht	Daily
Site Data					Verner		tos: 68.0°	2 8 9%	23.2%	85 75%
	• • • • • • .				Med	nur Truc	-103. 00.07	6 0.3%	20.2%	5 50%
Ba	rrier Height:	0.0 feet			He	avv Truc	2ks: 69.2°	% 8.1%	20.27%	8 75%
Barrier Type (U-W	vall, 1-Berm):	0.0				avy mac		0.170	22.170	0.7070
	st. to Barrier:	59.0 feet		1	Noise Sou	rce Elev	ations (in	feet)		
Centenine Dist.	to Observer:	59.0 leet				Autos:	0.000			
Damer Distance	(Above Ded):	0.0 feet			Medium	Trucks:	2.297			
	(ADOVE Pau).	5.0 leet			Heavy	Trucks:	8.004	Grade Ad	iustment	: 0.0
Po	Road Elevation: 0.0 feet					valent D	istance (in	feet)		
Road Elevation: 0.0 feet Road Grade: 0.0%					Lano Lqui		54 129	1000		
	Left View:	0.0%	00		Medium	Trucks	53 966			
	Right View:		63 66		Heavy	Trucks:	53 982			
	Night View.	30.0 degre	63		noavy	rraono.	00.002			
FHWA Noise Mod	el Calculation	S								
VehicleType	REMEL	Traffic Flow	Dis	tance	Finite R	oad	Fresnel	Barrier Att	en Ber	m Atten
Autos:	66.51	-0.83		-0.62	2	-1.20	-4.69	0.0	000	0.000
Medium Trucks:	77.72	-12.76		-0.60)	-1.20	-4.88	0.0	000	0.000
Heavy Trucks:	82.99	-10.74		-0.60)	-1.20	-5.35	0.0	000	0.000
Unmitigated Nois	e Levels (with	out Topo and	barrie	er atten	uation)					
VehicleType	Leq Peak Hou	ır Leq Day	/	Leq Ev	/ening	Leq Ni	ght	Ldn	C	NEL
Autos:	63	.9	61.4		58.6		58.0	65.0)	65.2
Medium Trucks:	63	.2	61.1		55.3		56.7	63.9)	64.0
Heavy Trucks:	70	.4	68.1		64.7		64.5	71.5	5	71.7
Vehicle Noise:	71	.9	69.6		66.1		65.9	72.9)	73.2
Centerline Distan	ce to Noise Co	ontour (in feet	t)							
				70 a	/BA	65 dE	A	60 dBA	55	dBA
			Ldn:	93	3	199	I	429	9	25
		C	NEL:	96	6	207		445	9	59

Scenario: OY Without Project Road Name: Nandina Av. Road Segment: e/o Decker Rd.

Road Segmen		u.								
SITE	SPECIFIC INP	UT DATA			N	DISE M	ODEL	L INPUT	S	
Highway Data				Site Cor	nditions (Hard = 1	0, So	ft = 15)		
Average Daily	Traffic (Adt):	159 vehicles	3			A	utos:	15		
Peak Hour	Percentage:	10%		Me	dium True	cks (2 Ax	des):	15		
Peak H	lour Volume:	16 vehicles		He	avy Truck	ks (3+ Ax	des):	15		
Ve	hicle Speed:	40 mph		Vahiala		-	-			
Near/Far La	ne Distance:	12 feet		Venicie				Fuening	Nicht	Daily
Oite Data				ven						Daily
Site Data					Al Alium Tri	utos: 6	8.0%	8.9%	23.2%	85.75%
Bai	rrier Height:	0.0 feet		IVI		icks. T	4.9%	4.9%	20.2%	0.30%
Barrier Type (0-W	/all, 1-Berm):	0.0			neavy III	ICKS. D	9.2%	8.1%	22.1%	8.75%
Centerline Dis	st. to Barrier:	39.0 feet		Noise S	ource Ele	vations	(in fe	et)		
Centerline Dist.	to Observer:	39.0 feet			Autos:	0.00	00			
Barrier Distance	to Observer:	0.0 feet		Mediu	m Trucks.	2.29	97			
Observer Height ((Above Pad):	5.0 feet		Hear	/y Trucks:	8.00)4	Grade Adj	iustment	0.0
Pa	ad Elevation:		1 5	-	D'- (<i>(*</i> - *	()			
Roa	ad Elevation:	0.0 feet		Lane Eq	uivaient	Distance	e (IN fe	eet)		
	Road Grade:	0.0%			Autos.	38.85	59			
	Left View:	-90.0 degrees	3	Mediu	m Trucks.	38.63	30			
	Right View:	90.0 degrees	3	Hear	/y Trucks:	38.65	53			
EHWA Noise Mod	ol Calculations									
VehicleType		Traffic Flow	Distanc	o Finito	Road	Frasna	1	Rarriar Att	on Bor	m Atton
Autos:	66 51	-10.08	Distanc	54	-1 20		1 58			
Medium Trucks:	77 72	-19.90	1	58	-1.20		1.87	0.0	000	0.000
Heavy Trucks:	82.00	-20.80	4	57	-1.20		5.57	0.0	000	0.000
	02.99	-29.09		.57	-1.20	-	5.57	0.0	00	0.000
Unmitigated Noise	e Levels (withou	ut Topo and b	arrier at	tenuation)	I				1	
VehicleType	Leq Peak Hour	Leq Day	Leq	l Evening	Leq N	light		Ldn	CI	VEL
Autos:	46.9	4.	4.4	41.6		41.0		48.0)	48.2
Medium Trucks:	46.2	4.	4.1	38.3		39.7		46.9)	47.0
Heavy Trucks:	53.5	5	1.1	47.8		47.5		54.5	5	54.8
Vehicle Noise:	55.0	52	2.6	49.1		48.9		56.0)	56.2
Centerline Distant	ce to Noise Con	tour (in feet)								
			7	'0 dBA	65 d	BA	6	0 dBA	55	dBA
		L	dn:	5	10)		21	4	45
		CN	EL:	5	10)		22	4	47

Scenario: OY Without Project Road Name: Harley Knox Bl. Road Segment: e/o Decker Rd.

SITE	SPECIFIC IN	PUT DATA					NOISE		EL INPUT	S	
Highway Data			5	Site Con	ditions	(Hard	= 10, S	oft = 15)			
Average Daily	Traffic (Adt):	1,691 vehicle	əs					Autos	15		
Peak Hour	Percentage:	10%			Me	dium Ti	rucks (2	2 Axles)	: 15		
Peak F	our Volume:	169 vehicle	s		He	avy Tru	icks (3-	⊦ Axles)	: 15		
Ve	hicle Speed:	45 mph			(abiala)						
Near/Far La	ne Distance:	78 feet		`	Venicie i		•	Dav	Fuening	Night	Dailu
Cita Data					ven	cieryp	e Autoor				Daily
Site Data						- ali	Autos:	68.0%	6 8.9%	23.2%	85.75%
Ba	rrier Height:	0.0 feet			IVIE	aium i	TUCKS:	74.9%	o 4.9%	20.2%	5.50%
Barrier Type (0-V	Vall, 1-Berm):	0.0			F	leavy I	rucks:	69.2%	6 8.1%	22.7%	8.75%
Centerline Di	ist. to Barrier:	76.0 feet		1	Voise So	ource E	levatio	ons (in f	eet)		
Centerline Dist.	to Observer:	76.0 feet				Auto	os:	0.000			
Barrier Distance	to Observer:	0.0 feet			Mediui	n Truck	(S:	2.297			
Observer Height	(Above Pad):	5.0 feet			Heav	y Truck	(S:	8.004	Grade Ad	justment	: 0.0
P	_		, 								
Ro	L	_ane Eq	uivalen	t Dista	nce (in	feet)					
	Road Grade:	0.0%				Auto	os: 6	5.422			
	Left View:	-90.0 degree	es		Mediur	n Truck	(s: 6	5.286			
	Right View:	90.0 degree	es		Heav	y Truck	(s: 6	5.299			
EHWA Noise Mod	lol Calculations										
VehicleType		, Traffic Flow	Dis	tanco	Finite Road Fresnel Barrier Atte					on Ro	rm Atton
Autos:	68.46	-10.22	013	-1 8F	1 11 11 10	-1 20	110	-4 73			
Medium Trucks:	79.45	-22.15		-1.84	, 1	-1 20		-4.88	0.0	000	0.000
Heavy Trucks:	84.25	-20.14		-1.84	1	-1 20		-5.25	0.0	000	0.000
	04.20	20.14		1.0-	r	1.20		0.20	0.0		0.000
Unmitigated Nois	e Levels (witho	out Topo and	barrie	er atten	uation)						
VehicleType	Leq Peak Hour	r Leq Day	/	Leq Ev	<i>ening</i>	Leq	Night		Ldn	C	NEL
Autos:	55.2	2	52.7		49.9		49	9.3	56.3	3	56.5
Medium Trucks:	54.3	3	52.2		46.4		4	7.8	55.0)	55.1
Heavy Trucks:	61.1	1	58.7		55.4		5	5.1	62.1	1	62.4
Vehicle Noise:	62.	7	60.4		56.9		50	6.7	63.	7	64.0
Centerline Distan	ce to Noise Co	ntour (in feet)								
			-	70 a	IBA	65	dBA		60 dBA	55	dBA
			Ldn:	29	9		63	I	135	2	290
		CI	NEL:	30	C		65		140	3	301

Scenario: OY Without Project Road Name: Harley Knox Bl. Road Segment: e/o Harvill Av.

euu oogino											
SITE	SPECIFIC IN	PUT DATA				NO	ISE N	IODE		S	
Highway Data				S	ite Cond	itions (H	lard =	10, So	oft = 15)		
Average Daily	Traffic (Adt):	16,678 vehicl	es				A	Autos:	15		
Peak Hour	Percentage:	10%			Med	ium Truci	ks (2 A	xles):	15		
Peak H	our Volume:	1,668 vehicle	s		Hea	vy Trucks	s (3+ A	xles):	15		
Ve	hicle Speed:	45 mph		V	ehicle M	ix					
Near/Far La	ane Distance:	78 feet		-	Vehic	leTvpe		Dav	Evenina	Niaht	Dailv
Site Data						Au	tos: (68.0%	8.9%	23.2%	85.75%
Ba	rrior Hojaht:	0.0 foot			Med	dium Truc	cks:	74.9%	4.9%	20.2%	5.50%
Barrier Type (0-V	Vall 1-Berm) [.]				He	avy Truc	cks: (69.2%	8.1%	22.7%	8.75%
Centerline D	ist. to Barrier:	76.0 feet						<i>// 6</i>			
Centerline Dist	to Observer:	76.0 feet		N	loise Sol	irce Elev	ations	s (in fe	et)		
Barrier Distance	to Observer:	0.0 feet				Autos:	0.0	000			
Observer Height	(Above Pad):	5.0 feet			Medium	Trucks:	2.2	.97			
P	ad Elevation:	0.0 feet			Heavy	Trucks:	8.0	04	Grade Ad	justment	: 0.0
, Ro	ad Elevation: ad Elevation:		L	ane Equ	ivalent D	listanc	e (in i	feet)			
	Road Grade:	0.0%				Autos:	65.4				
	Left View:	-90.0 deare	es		Medium	Trucks:	65.2	286			
	Right View:	90.0 degre	es		Heavy	Trucks:	65.2	299			
		0			-						
FHWA Noise Mod	lel Calculations	;			T	1					
VehicleType	REMEL	Traffic Flow	Dist	tance	Finite F	Road	Fresn	el	Barrier Att	en Bei	rm Atten
Autos:	68.46	-0.28		-1.85		-1.20		-4.73	0.0	000	0.000
Medium Trucks:	79.45	-12.21		-1.84		-1.20		-4.88	0.0	000	0.000
Heavy Trucks:	84.25	-10.20		-1.84		-1.20		-5.25	0.0	000	0.000
Unmitigated Nois	e Levels (witho	out Topo and	barrie	r attenu	uation)						
VehicleType	Leq Peak Hou	r Leq Day	/	Leq Ev	ening	Leq Ni	ght		Ldn	С	NEL
Autos:	65.	1	62.7		59.8		59.2	I	66.2	2	66.5
Medium Trucks:	64.	2	62.1		56.3		57.7		64.9	9	65.1
Heavy Trucks:	71.	0	68.6		65.3		65.0		72.0)	72.3
Vehicle Noise:	72.	7	70.3		66.8		66.6		73.7	7	73.9
Centerline Distan	ce to Noise Co	ntour (in feet)								
				70 d	BA	65 dE	BA	E	60 dBA	55	dBA
			Ldn:	134	4	288			620	1,	336
		C	NEL:	138	8	298			643	1,	385

Scenario: OY Without Project Road Name: Harley Knox Bl. Road Segment: e/o I-215 NB Ramps

Noau Segine	<i>m.</i> e/01-213 N	D Namps									
SITE	SPECIFIC IN	IPUT DATA				Ν	OISE	MODE	L INPUT	S	
Highway Data					Site Cond	itions	(Hard	= 10, Se	oft = 15)		
Average Daily	Traffic (Adt):	37,441 vehicl	es					Autos:	15		
Peak Hour	Percentage:	10%			Medi	ium Tru	ıcks (2	Axles):	15		
Peak H	our Volume:	3,744 vehicle	S		Hea	vy Truc	:ks (3+	Axles):	15		
Ve	hicle Speed:	45 mph			Vahiala M	iv					
Near/Far La	ne Distance:	78 feet			Venicie IVI	ix IoTypo		Dav	Evening	Niah	t Daily
Sita Data					Verno	ie i ype /	lutos:	68 0%	2 8 0%	23.2	0% 85 75%
					Mor	- Nium Tr	ucks:	7/ 0%	0.9%	20.2	. /0 00.70 /0 0% 5 50%
Ba Ba	rrier Height:	0.0 feet			Mec Ha	avv Tr	ucks:	60.2%	8 1%	20.2	% 8.75%
Barrier Type (0-M	Vall, 1-Berm):	0.0			110		uons.	03.27	0.170	22.1	/0 0.7570
Centerline Di	st. to Barrier:	76.0 feet		1	Noise Sol	ırce El	evatio	ns (in f	eet)		
Centerline Dist.	to Observer:	76.0 feet				Autos	s: C	.000			
Barrier Distance	to Observer:	0.0 feet			Medium	Trucks	s: 2	.297			
Observer Height	(ADOVE Pad):	5.0 feet			Heavy	Trucks	s: 8	8.004	Grade Ad	ljustme	ent: 0.0
	Road Elevation: 0.0 feet						Dista	nco (in	foot)		
KU	au Elevation. Pood Grado:		-	Lane Lyu		- 6F	5 122	1001)			
	Loft View:	0.0%	00		Medium	Trucks	5. OC	5 286			
	Right View:	-90.0 degre	62		Heavy	Trucks	s. 00	5 200			
	Night view.	90.0 degre	62		neavy	Trucke	<i>.</i>	.233			
FHWA Noise Mod	el Calculation	S									
VehicleType	REMEL	Traffic Flow	Dis	tance	Finite R	load	oad Fresr		Barrier Att	ten E	Berm Atten
Autos:	68.46	3.23		-1.8	5	-1.20		-4.73	0.0	000	0.000
Medium Trucks:	79.45	-8.70		-1.84	4	-1.20		-4.88	0.0	000	0.000
Heavy Trucks:	84.25	-6.68		-1.84	4	-1.20		-5.25	0.0	000	0.000
Unmitigated Nois	e Levels (with	out Topo and	barrie	er atten	uation)						
VehicleType	Leq Peak Hou	ur Leq Day	/	Leg E	vening	Leq	Night		Ldn		CNEL
Autos:	68	9.6	66.2		63.3		62	.7	69.	7	70.0
Medium Trucks:	67	.7	65.7		59.8		61	.2	68.4	4	68.6
Heavy Trucks:	74	.5	72.1		68.8		68	.6	75.	6	75.8
Vehicle Noise:	76	5.2	73.8		70.3		70	.2	77.:	2	77.4
Centerline Distan	ce to Noise Co	ontour (in fee	t)								
				70 c	dBA	65 (dBA	(60 dBA		55 dBA
			Ldn:	22	29	49	93		1,063		2,290
		С	NEL:	23	37	51	11		1,102		2,374

Scenario: OY Without Project Road Name: Oleander Av. Road Segment: e/o Decker Rd.

Project Name: Oleander Job Number: 10720

SITE	SPECIFIC IN	IPUT DATA				I	NOISE	MODE	L INPUT	S	
Highway Data					Site Con	ditions	s (Hard =	= 10, So	oft = 15)		
Average Daily	Traffic (Adt):	1,651 vehicl	es	Γ		_		Autos:	15		
Peak Hour	Percentage:	10%			Med	dium Ti	rucks (2	Axles):	15		
Peak F	our Volume:	165 vehicle	S		Hea	avy Tru	ıcks (3+	Axles):	15		
Ve	hicle Speed:	40 mph		F	Vobiala *	<i>l</i> i√		-			
Near/Far La	ne Distance:	12 feet		F	Venicie N		۵	Dav	Evening	Niaht	Daily
Site Data					verill	ые і ур	Δυτοοι	62 00/		1 VIYIIL 22 20/	25 750/
Sile Dala					1.1~	dium 7	nulus: Trucko:	7/ 00/	0.9%	∠J.∠% 20.2%	5 500/
Ba	rrier Height:	0.0 feet				ันเนเบบ โครงงงา	Trucks.	60.20/	0 4.970	20.270 22 70/	0.00% Q 7=0/
Barrier Type (0-W	vall, 1-Berm):	0.0			П	cavy I	TUCKS.	ບອ.2%	0.1%	22.1%	0.13%
Centerline Di	st. to Barrier:	39.0 feet		F	Noise So	urce E	Elevation	ns (in fe	eet)		
Centerline Dist.	to Observer:	39.0 feet		F		Auto	os: 0.	.000			
Barrier Distance	to Observer:	0.0 feet			Mediun	n Trucl	ks: 2	.297			
Observer Height	(Above Pad):	5.0 feet			Heav	y Trucł	ks: 8.	.004	Grade Ad	justment	: 0.0
	ad Elevation:	0.0 feet		F	long Free	1.	+ Di-+	oc /:	f004)		
Ro	Road Elevation: 0.0 feet Road Grade: 0.0%					uvalen	n Distan	ce (In	ieet)		
	Road Grade:	0.0%				Auto	os: 38	.859			
	Left View:	-90.0 degre	es		Mediun	n Truck	ks: 38	.630			
	Right View:	90.0 degre	es		Heavy	y Irucł	ks: 38	.653			
FHWA Noise Mod	lel Calculation	S									
VehicleTvpe	REMEL	Traffic Flow	Dis	stance	Finite	Road	Fres	nel	Barrier Att	en Ber	m Atten
Autos:	66.51	-9.82		1.5	54	-1.20		-4.58	0.0	000	0.000
Medium Trucks:	77.72	-21.75		1.5	58	-1.20		-4.87	0.0	000	0.000
Heavy Trucks:	82.99	-19.73		1.5	57	-1.20		-5.57	0.0	000	0.000
Unmitigated Nois	e Levels (with	out Topo and	barri	er attei	nuation)						
VehicleType	Leq Peak Hou	ur Leq Day	/	Leq E	vening	Leq	Night		Ldn	С	NEL
Autos:	57	.0	54.6		51.7		51.	1	58.2	<u> </u>	58.4
Medium Trucks:	56	5.3	54.3		48.4		49.	9	57.0)	57.2
Heavy Trucks:	63	8.6	61.2		57.9		57.	7	64.7	7	64.9
Vehicle Noise:	65	5.1	62.8		59.2		59.	1	66.1	1	66.4
Centerline Distan	ce to Noise Co	ontour (in feet	t)								
				70	dBA	65	6 dBA	e	60 dBA	55	dBA
			Ldn:	2	21		46		100	2	15
		C	NEL:	2	22		48		103	2	23

Wednesday, June 12, 2019

Scenario: OY With Project Road Name: Harvill Av. Road Segment: n/o Harley Knox Bl.

riodd Goginio	ine nijo nanoj n										
SITE	SPECIFIC IN	PUT DATA					NOISE	MODE	L INPUT	5	
Highway Data					Site Con	ditions	; (Hard =	10, S	oft = 15)		
Average Daily	Traffic (Adt):	1,061 vehicle	es					Autos:	15		
Peak Hour	Percentage:	10%			Me	dium Ti	rucks (2 /	Axles):	15		
Peak F	lour Volume:	106 vehicle	S		He	avy Tru	ıcks (3+ /	Axles):	15		
Ve	hicle Speed:	40 mph		_	V-1-1-1-		•	,			
Near/Far La	ne Distance:	48 feet		_	venicie i		_	Davi	—	A li ada (Delle
					ven	icie i ypi	e A (a a	Day	Evening	Night	Daily
Site Data							Autos:	68.0%	b 8.9%	23.2%	84.09%
Ba	rrier Height:	0.0 feet			Me	edium I	rucks:	74.9%	b 4.9%	20.2%	5.36%
Barrier Type (0-V	Vall, 1-Berm):	0.0			ŀ	leavy I	rucks:	69.2%	8.1%	22.7%	10.55%
Centerline Di	ist. to Barrier:	59.0 feet			Noise So	ource E	levation	s (in f	eet)		
Centerline Dist.	to Observer:	59.0 feet				Auto	os: 0.	000	,		
Barrier Distance	to Observer:	0.0 feet			Mediu	n Truck	(s [.] 2	297			
Observer Height	(Above Pad):	5.0 feet			Heav	v Truck	(s [.] 8	004	Grade Adi	ustment	: 0.0
P	ad Elevation:	0.0 feet			nouv	y maon		001	j		
Ro		Lane Eq	uivalen	nt Distan	ce (in	feet)					
			Auto	os: 54.	129						
	Left View:	-90.0 degre	es		Mediu	n Truck	ks: 53.	966			
	Right View:	90.0 degre	es		Heav	y Truck	ks: 53.	982			
FHWA Noise Mod	lel Calculations	3									_
Vehicle I ype	REMEL	Traffic Flow	Dis	tance	Finite	Road	Fresr	nel	Barrier Atte	en Ber	m Atten
Autos:	66.51	-11.82		-0.6	2	-1.20		-4.69	0.0	000	0.000
Medium Trucks:	77.72	-23.78		-0.6	0	-1.20		-4.88	0.0	000	0.000
Heavy Trucks:	82.99	-20.84		-0.6	0	-1.20		-5.35	0.0	000	0.000
Unmitigated Nois	e Levels (with	out Topo and	barrie	er atter	nuation)						
VehicleType	Leq Peak Hou	r Leq Day	/	Leq E	vening	Leq	Night		Ldn	С	NEL
Autos:	52.	9	50.4		47.6		47.0)	54.0)	54.2
Medium Trucks:	52.	1	50.1		44.2		45.7	7	52.8	3	53.0
Heavy Trucks:	60.	4	58.0		54.7		54.4	1	61.4	ŀ	61.6
Vehicle Noise:	61.	6	59.2		55.7		55.6	6	62.6	5	62.8
Centerline Distan	ce to Noise Co	ntour (in feet	:)								
L			<u> </u>	70	dBA	65	dBA	(60 dBA	55	dBA
			Ldn:	1	9		41	1	88	1	89
		C	NEL:	2	20		42		91	1	96
		-									

Scenario: OY With Project Road Name: Harvill Av. Road Segment: s/o Harley Knox Bl.

euu oogino											
SITE	SITE SPECIFIC INPUT DATA ghway Data						NOISE	MODE	EL INPUT	S	
Highway Data					Site Con	ditions	s (Hard	= 10, S	oft = 15)		
Average Daily	Traffic (Adt):	13,092 vehicl	es					Autos	: 15		
Peak Hour	Percentage:	10%			Mee	dium Ti	rucks (2	? Axles)	: 15		
Peak H	our Volume:	1,309 vehicle	s		Hea	avy Tru	ıcks (3-	- Axles)	: 15		
Ve	ehicle Speed:	40 mph		_	Vahiala	<i>liv</i>					
Near/Far La	ane Distance:	48 feet		_	Venicie I		•	Dav	Evoning	Night	Daily
Cito Doto					veni	сіетур	Autoor				Dally
Site Data					1.40	dium 7	Aulos. Fruoko:	74.00	6 0.9%	23.2%	60.00% 5 510/
Ba	rrier Height:	0.0 feet			IVIE		TUCKS.	60.00	0 4.9%	20.2%	0.00%
Barrier Type (0-V	Vall, 1-Berm):	0.0				ieavy i	TUCKS.	69.2%	6 8.1%	22.1%	8.86%
Centerline Di	ist. to Barrier:	59.0 feet			Noise So	ource E	levatio	ons (in t	feet)		
Centerline Dist.	to Observer:	59.0 feet				Auto	os:	0.000			
Barrier Distance	to Observer:	0.0 feet			Mediur	n Truck	ks:	2.297			
Observer Height	(Above Pad):	5.0 feet			Heav	y Truck	ks:	3.004	Grade Ad	iustment	: 0.0
P	ad Elevation:	0.0 feet		_	1 ana F ar		4 D:- 4-		fa a ()		
Ro	ad Elevation:	0.0 feet		_	Lane Equ	livalen	it Dista	nce (In	teet)		
	Road Grade:	0.0%				Auto	os: 5	4.129			
	Left View:	-90.0 degre	es		Mediur	n Truck	(s: 5	3.966			
	Right View:	90.0 degre	es		Heav	y Truck	(s: 5	3.982			
FHWA Noise Mod	lel Calculation	S									
VehicleTvpe	REMEL	Traffic Flow	Dis	tance	Finite	Road	Fre	snel	Barrier Att	en Be	rm Atten
Autos:	66.51	-0.83	2.0	-0.6	2	-1.20		-4.69	0.0	000	0.000
Medium Trucks:	77.72	-12.74		-0.6	0	-1.20		-4.88	0.0	000	0.000
Heavy Trucks:	82.99	-10.68		-0.6	0	-1.20		-5.35	0.0	000	0.000
Unmitigated Nois	e Levels (with	out Topo and	barrie	er atter	nuation)		N# 1.				
Vehicle I ype	Leq Peak Hou	ur Leq Day	/	Leq E	vening	Leq	Night		Ldn		NEL
Autos:	63	5.9	61.4		58.6		58	5.0 . 	65.0)	65.2
Medium Trucks:	63	5.2	61.1		55.3		56	5.7	63.9) -	64.0
Heavy Trucks:	/0	0.5	68.1		64.8		64	.5	/1.5)	/1.8
Vehicle Noise:	72	2.0	69.6		66.1		65	5.9	73.0)	73.2
Centerline Distan	ce to Noise Co	ontour (in feet	:)								
				70	dBA	65	dBA		60 dBA	55	dBA
			Ldn:	9	3	2	201		432	ç	932
		C	NEL:	9	7	2	208		448	ę	966

Scenario: OY With Project Road Name: Nandina Av. Road Segment: e/o Decker Rd.

caa cogino				1							
SITE	SPECIFIC IN	PUT DATA					NOISE	MODE	L INPUT	S	
Highway Data					Site Con	ditions	(Hard	= 10, S	oft = 15)		
Average Daily	Traffic (Adt):	295 vehicl	es					Autos:	15		
Peak Hour	⁻ Percentage:	10%			Me	dium Ti	rucks (2	Axles).	15		
Peak H	lour Volume:	29 vehicle	S		He	avy Tru	ıcks (3+	Axles).	15		
Ve	hicle Speed:	40 mph		-	Vehicle	Miv					
Near/Far La	ane Distance:	12 feet		_	Venicie i Veh	icleTvn	e	Dav	Evenina	Niaht	Daily
Site Data					Von	0101 90	Autos:	68.0%	8.9%	23.2%	79 78%
Data Data	wier Height	0.0 feet			Me	edium T	rucks:	74.9%	4.9%	20.2%	5.00%
Ba Porrior Tupo (0 M	Voll 1 Porm):				ŀ	leavv T	rucks:	69.2%	6 8.1%	22.7%	15.22%
Contorlino D	ist to Parriar:	0.0 20.0 foot		-							
Centerline Di	to Observer:	39.0 feet		-	Noise So	ource E	levatio	ns (in f	eet)		
Certierine Dist.	to Observer:					Auto	os: C	.000			
Obsorver Height	(Abovo Pad):	5.0 foot			Mediur	n Trucł	ks: 2	.297			
	(ADOVE Fau).	5.0 feet			Heav	y Trucł	ks: 8	.004	Grade Ad	justmen	t: 0.0
Po	ad Elevation.			-	Lane Eq	uivalen	t Dista	nce (in	feet)		
NU	au Elevalion. Poad Grada:		Lano Lq	Διιτά	<u>19</u> 19 19	850	1000)				
	L oft View:	0.0 %	00		Mediu	n Truck	/s. 00	1.000			
	Right View:	-90.0 degre	62 05		Heav	v Truck	(S. 36 (S [.] 38	1.000			
	Ngnt view.	solo degre	63		neav	y 11001		.000			
FHWA Noise Mod	lel Calculation	S									
VehicleType	REMEL	Traffic Flow	Dis	stance	Finite	Road	Fresnel		Barrier Att	en Be	rm Atten
Autos:	66.51	-17.61		1.5	54	-1.20		-4.58	0.0	000	0.000
Medium Trucks:	77.72	-29.64		1.5	58	-1.20		-4.87	0.0	000	0.000
Heavy Trucks:	82.99	-24.80		1.5	57	-1.20		-5.57	0.0	000	0.000
Unmitigated Nois	e Levels (with	out Topo and	barri	er attei	nuation)						
VehicleType	Leq Peak Hou	r Leq Day	/	Leq E	vening	Leq	Night		Ldn	C	NEL
Autos:	49.	.2	46.8		44.0		43	.3	50.3	3	50.6
Medium Trucks:	48.	.5	46.4		40.6		42	.0	49.2	2	49.3
Heavy Trucks:	58.	.6	56.2		52.9		52	.6	59.6	6	59.8
Vehicle Noise:	59.	.4	57.0		53.6		53	.4	60.4	1	60.7
Centerline Distan	ce to Noise Co	ontour (in feet	t)								
		-		70	dBA	65	dBA		60 dBA	55	5 dBA
			Ldn:		9		19		42		90
		C	NEL:		9		20		43		93

Scenario: OY With Project Road Name: Harley Knox Bl. Road Segment: e/o Decker Rd.

Project Name: Oleander Job Number: 10720

SITE SPECIFIC II	NPUT DATA	c	ite Conditions	NUISE 		L INPUTS		
	0 - 04 - 13 - 1	3	ne conditions	6 (<i>na</i> ru =	10, 30	<i>i</i> (= 15)		
Average Daily Traffic (Adt):	2,784 vehicles				Autos:	15		
Peak Hour Percentage:	10%		Medium T	rucks (27	Axles):	15		
Peak Hour Volume:	278 vehicles		Heavy Tru	icks (3+ /	Axles):	15		
Vehicle Speed:	45 mph	V	ehicle Mix					
Near/Far Lane Distance:	78 feet		VehicleTyp	е	Day	Evening	Night	Daily
Site Data				Autos:	68.0%	8.9%	23.2%	80.54%
Barrier Height:	0.0 feet		Medium T	rucks:	74.9%	4.9%	20.2%	5.17%
Barrier Type (0-Wall, 1-Berm):	0.0		Heavy T	Frucks:	69.2%	8.1%	22.7%	14.29%
Centerline Dist. to Barrier:	76.0 feet		laise Source F	lovation	s (in fa	(a, b)		
Centerline Dist. to Observer:	76.0 feet				000			
Barrier Distance to Observer:	0.0 feet		Auto	0.5. 0.1	207			
Observer Height (Above Pad):	5.0 feet			(S. Z.	297	Crada Adi	uotmont	0.0
Pad Elevation:	0.0 feet		Heavy Truck	(S: 8.	004	Graue Auj	usument.	0.0
Road Elevation:	0.0 feet	L	ane Equivaler	nt Distan	ce (in t	feet)		
Road Grade:	0.0%		Auto	os: 65.	422			
Left View:	-90.0 degrees		Medium Truck	ks: 65.	286			
Right View:	90.0 degrees		Heavy Truck	ks: 65.	299			
FHWA Noise Model Calculation						<u> </u>		
Vehicle Type REMEL	Traffic Flow L	Distance	Finite Road	Fresr	nel	Barrier Atte	en Berl	m Atten
Autos: 68.46	-8.33	-1.85	-1.20		-4.73	0.0	00	0.000
Medium Trucks: 79.45	-20.26	-1.84	-1.20		-4.88	0.0	00	0.000
Heavy Trucks: 84.25	-15.84	-1.84	-1.20		-5.25	0.0	00	0.000
Unmitigated Noise Levels (with	out Topo and bar	rier attenu	lation)					
VehicleType Leq Peak Ho	ur Leq Day	Leq Ev	ening Leq	ı Night		Ldn	Cl	VEL
Autos: 57	7.1 54.6	6	51.8	51.2	2	58.2		58.4
Medium Trucks: 56	6.2 54. ²	l	48.3	49.7	7	56.9		57.0
Heavy Trucks: 65	5.4 63.0)	59.7	59.4	1	66.4		66.6
Vehicle Noise: 66	64.0)	60.6	60.4	1	67.4		67.7
Centerline Distance to Noise C	ontour (in feet)							
		70 di	BA 65	dBA	6	0 dBA	55	dBA
	Ldn	: 51		10		237	5	11

Wednesday, June 12, 2019

Scenario: OY With Project Road Name: Harley Knox Bl. Road Segment: e/o Harvill Av.

Project Name: Oleander Job Number: 10720

							2107				
SITE Highway Data	SPECIFIC IN	IPUT DATA			Site Cond	NC itions ()	JISE Hard -		L INPUT(5	
				3	Sile Cona	uons (i	naru =	= 10, 30	JII = IJ		
Average Daily	Traffic (Adt):	17,925 vehicle	es			-		Autos:	15		
Peak Hour	⁻ Percentage:	10%			Medi	um Truc	cks (2	Axles):	15		
Peak H	lour Volume:	1,793 vehicle	S		Heav	y Truck	ks (3+	Axles):	15		
Ve	ehicle Speed:	45 mph		V	/ehicle Mi	x					
Near/Far La	ane Distance:	78 feet			Vehicl	еТуре		Day	Evening	Night	Daily
Site Data						Au	utos:	68.0%	8.9%	23.2%	84.75%
Ba	rrier Height:	0.0 feet			Med	lium Tru	ıcks:	74.9%	4.9%	20.2%	5.45%
Barrier Type (0-V	Vall, 1-Berm):	0.0			He	avy Tru	ıcks:	69.2%	8.1%	22.7%	9.79%
Centerline Di	ist. to Barrier:	76.0 feet		•	laise Sau	rco Flo	vatio	ns (in fa	aat)		
Centerline Dist.	to Observer:	76.0 feet		~	0136 300						
Barrier Distance	to Observer:	0.0 feet			Modium	Autos.	. 0	207			
Observer Height	(Above Pad):	5.0 feet			Hoom	Trucks.		.297	Grado Ad	iustmont	· 0 0
P	ad Elevation:	0.0 feet			пеаvy	TTUCKS.	. O	.004	Graue Auj	usuneni	. 0.0
Ro	ad Elevation:	0.0 feet		L	.ane Equi	valent l	Distar	ice (in i	feet)		
	Road Grade:	0.0%				Autos:	65	.422			
	Left View:	-90.0 degree	es		Medium	Trucks:	65	.286			
	Right View:	90.0 degree	es		Heavy	Trucks:	65	.299			
		_									
FHWA NOISE Mod		S Troffic Flow	Dia	10000	Finita D	and	F #0.0	nal	Dourion Att		
Venicie i ype	REMEL	Traffic Flow	Dis		Finite R		Fres	nei	Barrier Atte	en Ber	m Atten
Autos:	68.46 70.45	-0.02		-1.85		1.20		-4.73	0.0	00	0.000
Medium Trucks:	79.45	-11.94		-1.84		1.20		-4.88	0.0	00	0.000
	84.25	-9.39		-1.84		-1.20		-9.29	0.0	000	0.000
Unmitigated Nois	e Levels (with	out Topo and	barrie	er attenu	uation)					T	
VehicleType	Leq Peak Hou	ur Leq Day	/	Leq Ev	rening	Leq N	light		Ldn	C	NEL
Autos:	65	5.4	62.9		60.1		59.	5	66.5	5	66.7
Medium Trucks:	64	.5	62.4		56.6		58.	0	65.2	2	65.3
Heavy Trucks:	71	.8	69.4		66.1		65.	8	72.9)	73.1
Vehicle Noise:	73	3.3	71.0		67.5		67.	3	74.3	3	74.6
Centerline Distan	ce to Noise Co	ontour (in feet)								
				70 d	BA	65 d	BA	6	60 dBA	55	dBA
			Ldn:	14	7	318	8		684	1,	474
		Cl	NEL:	15	3	329	9		709	1,	528

Wednesday, June 12, 2019

Scenario: OY With Project Road Name: Harley Knox Bl. Road Segment: e/o I-215 NB Ramps

eite	EDECIFIC IN					•		MODE		6	
SITE Highway Data	SPECIFIC IN	NPUI DAIA		c	Site Conc	N litions	IUISE (Hard -		L INPUT	3	
	— (C) (A (4)	07.007		3		nuons	(11410 -	- 10, 3	511 – 13) AF		
Average Daily	Traffic (Adt):	37,607 vehicle	S					Autos:	15		
Peak Hour	Percentage:	10%			Mea	ium Tri	ucks (2	Axles):	15		
Peak F	lour Volume:	3,761 vehicles	5		Hea	vy Tru	cks (3+	Axles):	15		
Ve	hicle Speed:	45 mph		V	/ehicle M	lix					
Near/Far La	ne Distance:	78 feet			Vehic	leType)	Day	Evening	Night	Daily
Site Data							Autos:	68.0%	8.9%	23.2%	85.77%
Ba	rrier Heiaht [.]	0.0 feet			Me	dium T	rucks:	74.9%	4.9%	20.2%	5.48%
Barrier Type (0-W	/all, 1-Berm):	0.0			Н	eavy T	rucks:	69.2%	8.1%	22.7%	8.75%
Centerline Di	ist. to Barrier:	76.0 feet		٨	loise So	urce El	levatior	ns (in f	eet)		
Centerline Dist.	to Observer:	76.0 feet				Auto	s: 0	.000	,		
Barrier Distance	to Observer:	0.0 feet			Medium	Truck	s: 2	.297			
Observer Height	(Above Pad):	5.0 feet			Heavy	/ Truck	s: 8	.004	Grade Ad	justment	: 0.0
P	ad Elevation:	0.0 feet		_							
Ro	ad Elevation:	0.0 feet		L	.ane Equ	ivalen	t Distar	ice (in	feet)		
	Road Grade:	0.0%				Auto	s: 65	.422			
	Left View:	-90.0 degree	S		Medium	Truck	s: 65	.286			
	Right View:	90.0 degree	S		Heavy	r Truck	s: 65	.299			
FHWA Noise Mod	el Calculation	IS									
VehicleType	REMEL	Traffic Flow	Dist	tance	Finite F	Road	Fres	nel	Barrier Att	en Bei	rm Atten
Autos:	68.46	3.25		-1.85	5	-1.20		-4.73	0.0	000	0.000
Medium Trucks:	79.45	-8.70		-1.84	ļ	-1.20		-4.88	0.0	000	0.000
Heavy Trucks:	84.25	-6.66		-1.84	ļ	-1.20		-5.25	0.0	000	0.000
Unmitigated Nois	e Levels (with	out Topo and l	barrie	r attenu	uation)						
VehicleType	Leq Peak Ho	ur Leq Day		Leq Ev	rening	Leq	Night		Ldn	С	NEL
Autos:	68	3.7 6	6.2		63.4		62.	8	69.7	7	70.0
Medium Trucks:	67	7.7 6	65.7		59.8		61.	2	68.4	1	68.6
Heavy Trucks:	74	4.5 7	72.2		68.8		68.	6	75.6	6	75.8
Vehicle Noise:	76	6.2 7	73.8		70.3		70.	2	77.2	2	77.4
Centerline Distan	ce to Noise C	ontour (in feet)									
				70 d	'BA	65	dBA	(60 dBA	55	dBA
		L	dn:	23	0	4	95		1,066	2,	297
		CN	IEL:	23	8	5	13		1,105	2,	381

Scenario: OY With Project Road Name: Oleander Av. Road Segment: e/o Decker Rd.

Noau Segme		Nu.								
SITE	SPECIFIC INF	PUT DATA			N	OISE N	/ODE	L INPUT	S	
Highway Data				Site Con	ditions (Hard =	10, Sc	oft = 15)		
Average Daily	Traffic (Adt):	1,787 vehicles					Autos:	15		
Peak Hour	Percentage:	10%		Me	dium Tru	cks (2 A	Axles):	15		
Peak H	lour Volume:	179 vehicles		He	avy Truci	ks (3+ A	Axles):	15		
Ve	hicle Speed:	40 mph	_	Vahiala		-				
Near/Far La	ne Distance:	12 feet	_	Venicie i	VIIX		Dav	Fuening	Niaht	Dailu
Oite Dete				ven				Evening		Daily
Site Data				Λ.Λ.	A Alium Tri	utos:	08.0%	0 8.9%	23.2%	84.77% E 440/
Ba	rrier Height:	0.0 feet		IVIE	eaium m Ioosa Ta	ICKS:	74.9%	6 4.9%	20.2%	5.41%
Barrier Type (0-W	/all, 1-Berm):	0.0		F	Heavy In	ICKS:	69.2%	8.1%	22.7%	9.82%
Centerline Di	st. to Barrier:	39.0 feet		Noise Sc	ource Ele	vation	s (in fe	eet)		
Centerline Dist.	to Observer:	39.0 feet			Autos	: 0.0	000			
Barrier Distance	to Observer:	0.0 feet		Mediui	m Trucks	: 2.2	297			
Observer Height ((Above Pad):	5.0 feet		Heav	v Trucks	: 8.0	004	Grade Ad	justment	: 0.0
Pa	ad Elevation:	0.0 feet	_							
Roa	ad Elevation:	0.0 feet		Lane Eq	uivalent	Distand	ce (in i	feet)		
	Road Grade:	0.0%			Autos	: 38.8	859			
	Left View:	-90.0 degrees		Mediur	m Trucks	: 38.0	630			
	Right View:	90.0 degrees		Heav	y Trucks	: 38.0	653			
ELIMA Naisa Mad	al Calaulatiana									
VehicleType		Troffic Flow	Diatanaa	Finito	Pood	Eroon		Porrior Att	on Por	m Atton
Venicie rype	REMEL				4 20	Fresh	4 50			
Aulos. Madium Truaka:	77 72	-9.52	1.04	+ 0	-1.20		-4.00 1 07	0.0	000	0.000
	11.12	-21.47	C.1	2 7	-1.20		-4.07	0.0		0.000
	02.99	-10.00	1.5	/	-1.20		-0.07	0.0	000	0.000
Unmitigated Noise	e Levels (witho	ut Topo and ba	rrier atten	uation)						
VehicleType	Leq Peak Hour	Leq Day	Leq E	vening	Leq N	light		Ldn	C	NEL
Autos:	57.3	3 54.	9	52.0		51.4		58.4	1	58.7
Medium Trucks:	56.6	6 54.	6	48.7		50.1		57.3	3	57.5
Heavy Trucks:	64.5	5 62.	1	58.8		58.5	,	65.5	5	65.8
Vehicle Noise:	65.8	3 63.	4	60.0		59.8	;	66.8	3	67.0
Centerline Distan	ce to Noise Col	ntour (in feet)								
			70 0	JBA	65 d	BA	E	60 dBA	55	dBA
		Ldı	n: 2	4	51			111	2	39
		CNEL	2: 2	5	53	3		115	2	48

APPENDIX 9.1:

OPERATIONAL STATIONARY-SOURCE NOISE CALCULATIONS

This page intentionally left blank

Observer Location: R1

Source: Unloading/Docking Activity Condition: Operational

Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe

NOISE MODEL INPUTS Barrier Height: Noise Distance to Observer 2,611.0 feet 0.0 feet Noise Distance to Barrier: 2,611.0 feet Noise Source Height: 8.0 feet **Observer Height:** 5.0 feet Barrier Distance to Observer: 0.0 feet Barrier Type (0-Wall, 1-Berm): 0 Observer Elevation: 0.0 feet Drop Off Coefficient: 20.0 Noise Source Elevation: 0.0 feet 20 = 6 dBA per doubling of distance Barrier Elevation: 0.0 feet

15 = 4.5 dBA per doubling of distance

NOISE MODEL PROJECTIONS									
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax		
Reference (Sample)	30.0	67.2	0.0	0.0	0.0	0.0	0.0		
Distance Attenuation	2,611.0	-38.8	-38.8	-38.8	-38.8	-38.8	-38.8		
Shielding (Barrier Attenuation)	2,611.0	0.0	0.0	0.0	0.0	0.0	0.0		
Raw (Distance + Barrier)		28.4	-38.8	-38.8	-38.8	-38.8	-38.8		
60 Minute Hourly Adjustmer	nt	28.4	-38.8	-38.8	-38.8	-38.8	-38.8		

STATIONARY SOURCE NOISE PREDICTION MODEL 6/12/201									
Observer Location: R1 Source: Entry Ga Condition: Operation	te & Truck Movements nal	Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe							
	NOISE MO	DEL INPUTS							
Noise Distance to Observer	2,645.0 feet	Barrier Height:	0.0 feet						
Noise Distance to Barrier:	2,645.0 feet	Noise Source Height:	8.0 feet						
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet						
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm):	0						
Noise Source Elevation:	0.0 feet	Drop Off Coefficient:	20.0						
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling 15 = 4.5 dBA per doubling	of distance g of distance						

NOISE MODEL PROJECTIONS								
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax	
Reference (Sample)	20.0	64.0	0.0	0.0	0.0	0.0	0.0	
Distance Attenuation	2,645.0	-42.4	-42.4	-42.4	-42.4	-42.4	-42.4	
Shielding (Barrier Attenuation)	2,645.0	0.0	0.0	0.0	0.0	0.0	0.0	
Raw (Distance + Barrier)		21.6	-42.4	-42.4	-42.4	-42.4	-42.4	
60 Minute Hourly Adjustmer	nt	21.6	-42.4	-42.4	-42.4	-42.4	-42.4	

Observer Location: R1

Source: Roof-Top Air Conditioning Unit Condition: Operational Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe

NOISE MODEL INPUTS									
Noise Distance to Observer	3,087.0 feet	Barrier Height:	0.0 feet						
Noise Distance to Barrier:	3,087.0 feet	Noise Source Height:	5.0 feet						
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet						
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm):	0						
Noise Source Elevation:	30.0 feet	Drop Off Coefficient:	20.0						
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling o 15 = 4.5 dBA per doubling	of distance g of distance						

NOISE MODEL PROJECTIONS									
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax		
Reference (Sample)	5.0	77.2	0.0	0.0	0.0	0.0	0.0		
Distance Attenuation	3,087.0	-55.8	-55.8	-55.8	-55.8	-55.8	-55.8		
Shielding (Barrier Attenuation)	3,087.0	0.0	0.0	0.0	0.0	0.0	0.0		
Raw (Distance + Barrier)		21.4	-55.8	-55.8	-55.8	-55.8	-55.8		
60 Minute Hourly Adjustmer	nt	21.4	-55.8	-55.8	-55.8	-55.8	-55.8		

5	STATIONARY SOURCE N	IOISE PREDICTION MODEL	6/12/2019
Observer Location: R1 Source: Parking L Condition: Operation	ot Vehicle Movements nal	Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe	
	NOISE MO	DEL INPUTS	
Noise Distance to Observer	2,732.0 feet	Barrier Height:	0.0 feet
Noise Distance to Barrier:	2,732.0 feet	Noise Source Height:	5.0 feet
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm):	0
Noise Source Elevation:	0.0 feet	Drop Off Coefficient:	15.0
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling 15 = 4.5 dBA per doubling	of distance g of distance

NOISE MODEL PROJECTIONS									
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax		
Reference (Sample)	10.0	52.2	0.0	0.0	0.0	0.0	0.0		
Distance Attenuation	2,732.0	-36.5	-36.5	-36.5	-36.5	-36.5	-36.5		
Shielding (Barrier Attenuation)	2,732.0	0.0	0.0	0.0	0.0	0.0	0.0		
Raw (Distance + Barrier)		15.7	-36.5	-36.5	-36.5	-36.5	-36.5		
60 Minute Hourly Adjustmer	nt	15.7	-36.5	-36.5	-36.5	-36.5	-36.5		

Observer Location: R2

Source: Unloading/Docking Activity Condition: Operational

Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe

NOISE MODEL INPUTS									
Noise Distance to Observer	2,082.0 feet	Barrier Height:	0.0 feet						
Noise Distance to Barrier:	2,082.0 feet	Noise Source Height:	8.0 feet						
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet						
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm):	0						
Noise Source Elevation:	0.0 feet	Drop Off Coefficient:	20.0						
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling 15 = 4.5 dBA per doubling	20 = 6 dBA per doubling of distance 15 = 4.5 dBA per doubling of distance						

NOISE MODEL PROJECTIONS									
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax		
Reference (Sample)	30.0	67.2	0.0	0.0	0.0	0.0	0.0		
Distance Attenuation	2,082.0	-36.8	-36.8	-36.8	-36.8	-36.8	-36.8		
Shielding (Barrier Attenuation)	2,082.0	0.0	0.0	0.0	0.0	0.0	0.0		
Raw (Distance + Barrier)		30.4	-36.8	-36.8	-36.8	-36.8	-36.8		
60 Minute Hourly Adjustmer	nt	30.4	-36.8	-36.8	-36.8	-36.8	-36.8		

	STATIONARY SOURCE NOISE PREDICTION MODEL 6/12/						
Observer Location: R2 Source: Entry Gat	e & Truck Movements	Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe					
	NOISE MO	DDEL INPUTS					
Noise Distance to Observer	2,088.0 feet	Barrier Height:	0.0 feet				
Noise Distance to Barrier:	2,088.0 feet	Noise Source Height:	8.0 feet				
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet				
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm):	0				
Noise Source Elevation:	0.0 feet	Drop Off Coefficient:	20.0				
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling 15 = 4.5 dBA per doubling	of distance g of distance				

NOISE MODEL PROJECTIONS									
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax		
Reference (Sample)	20.0	64.0	0.0	0.0	0.0	0.0	0.0		
Distance Attenuation	2,088.0	-40.4	-40.4	-40.4	-40.4	-40.4	-40.4		
Shielding (Barrier Attenuation)	2,088.0	0.0	0.0	0.0	0.0	0.0	0.0		
Raw (Distance + Barrier)		23.6	-40.4	-40.4	-40.4	-40.4	-40.4		
60 Minute Hourly Adjustmer	nt	23.6	-40.4	-40.4	-40.4	-40.4	-40.4		

Observer Location: R2

Source: Roof-Top Air Conditioning Unit Condition: Operational Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe

	NC	DISE MODEL INPUTS	
Noise Distance to Observer	2,529.0 feet	Barrier Height:	0.0 feet
Noise Distance to Barrier:	2,529.0 feet	Noise Source Height:	5.0 feet
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm): Drop Off Coefficient:	0 20.0
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling 15 = 4.5 dBA per doubling	of distance g of distance

NOISE MODEL PROJECTIONS									
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax		
Reference (Sample)	5.0	77.2	0.0	0.0	0.0	0.0	0.0		
Distance Attenuation	2,529.0	-54.1	-54.1	-54.1	-54.1	-54.1	-54.1		
Shielding (Barrier Attenuation)	2,529.0	0.0	0.0	0.0	0.0	0.0	0.0		
Raw (Distance + Barrier)		23.1	-54.1	-54.1	-54.1	-54.1	-54.1		
60 Minute Hourly Adjustmen	nt	23.1	-54.1	-54.1	-54.1	-54.1	-54.1		

	STATIONARY SOURCE NOISE PREDICTION MODEL					
Observer Location: R2 Source: Parking L Condition: Operation	ot Vehicle Movements	Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe				
	NOISE MO	DEL INPUTS				
Noise Distance to Observer	2,161.0 feet	Barrier Height:	0.0 feet			
Noise Distance to Barrier:	2,161.0 feet	Noise Source Height:	5.0 feet			
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet			
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm):	0			
Noise Source Elevation:	0.0 feet	Drop Off Coefficient:	15.0			
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling o 15 = 4.5 dBA per doubling	of distance g of distance			

NOISE MODEL PROJECTIONS									
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax		
Reference (Sample)	10.0	52.2	0.0	0.0	0.0	0.0	0.0		
Distance Attenuation	2,161.0	-35.0	-35.0	-35.0	-35.0	-35.0	-35.0		
Shielding (Barrier Attenuation)	2,161.0	0.0	0.0	0.0	0.0	0.0	0.0		
Raw (Distance + Barrier)		17.2	-35.0	-35.0	-35.0	-35.0	-35.0		
60 Minute Hourly Adjustmer	nt	17.2	-35.0	-35.0	-35.0	-35.0	-35.0		

Observer Location: R3

Source: Unloading/Docking Activity Condition: Operational

Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe

NOISE MODEL INPUTS Barrier Height: Noise Distance to Observer 2,039.0 feet 0.0 feet Noise Source Height: 8.0 feet Noise Distance to Barrier: 2,039.0 feet **Observer Height:** 5.0 feet Barrier Distance to Observer: 0.0 feet Barrier Type (0-Wall, 1-Berm): 0 Observer Elevation: 0.0 feet Drop Off Coefficient: 20.0 Noise Source Elevation: 0.0 feet 20 = 6 dBA per doubling of distance Barrier Elevation: 0.0 feet

NOISE MODEL PROJECTIONS									
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax		
Reference (Sample)	30.0	67.2	0.0	0.0	0.0	0.0	0.0		
Distance Attenuation	2,039.0	-36.6	-36.6	-36.6	-36.6	-36.6	-36.6		
Shielding (Barrier Attenuation)	2,039.0	0.0	0.0	0.0	0.0	0.0	0.0		
Raw (Distance + Barrier)		30.6	-36.6	-36.6	-36.6	-36.6	-36.6		
60 Minute Hourly Adjustmer	nt	30.6	-36.6	-36.6	-36.6	-36.6	-36.6		

	STATIONARY SOURCE NOISE PREDICTION MODEL 6/12/2						
Observer Location: R3 Source: Entry Gat Condition: Operation	e & Truck Movements nal	Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe					
	NOISE MO	DEL INPUTS					
Noise Distance to Observer	2,053.0 feet	Barrier Height:	0.0 feet				
Noise Distance to Barrier:	2,053.0 feet	Noise Source Height:	8.0 feet				
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet				
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm):	0				
Noise Source Elevation:	0.0 feet	Drop Off Coefficient:	20.0				
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling 15 = 4.5 dBA per doubling	of distance g of distance				

NOISE MODEL PROJECTIONS									
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax		
Reference (Sample)	20.0	64.0	0.0	0.0	0.0	0.0	0.0		
Distance Attenuation	2,053.0	-40.2	-40.2	-40.2	-40.2	-40.2	-40.2		
Shielding (Barrier Attenuation)	2,053.0	0.0	0.0	0.0	0.0	0.0	0.0		
Raw (Distance + Barrier)		23.8	-40.2	-40.2	-40.2	-40.2	-40.2		
60 Minute Hourly Adjustmer	nt	23.8	-40.2	-40.2	-40.2	-40.2	-40.2		

6/12/2019

15 = 4.5 dBA per doubling of distance

Observer Location: R3

Source: Roof-Top Air Conditioning Unit Condition: Operational Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe

NOISE MODEL INPUTS								
Noise Distance to Observer	2,517.0 feet	Barrier Height:	0.0 feet					
Noise Distance to Barrier:	2,517.0 feet	Noise Source Height:	5.0 feet					
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet					
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm):	0					
Noise Source Elevation:	30.0 feet	Drop Off Coefficient:	20.0					
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling 15 = 4.5 dBA per doubling	of distance g of distance					

NOISE MODEL PROJECTIONS									
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax		
Reference (Sample)	5.0	77.2	0.0	0.0	0.0	0.0	0.0		
Distance Attenuation	2,517.0	-54.0	-54.0	-54.0	-54.0	-54.0	-54.0		
Shielding (Barrier Attenuation)	2,517.0	0.0	0.0	0.0	0.0	0.0	0.0		
Raw (Distance + Barrier)		23.2	-54.0	-54.0	-54.0	-54.0	-54.0		
60 Minute Hourly Adjustmer	nt	23.2	-54.0	-54.0	-54.0	-54.0	-54.0		

5	STATIONARY SOURCE NOISE PREDICTION MODEL 6/12/201							
Observer Location: R3 Source: Parking L Condition: Operation	ot Vehicle Movements al	Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe						
NOISE MODEL INPUTS								
Noise Distance to Observer	2,148.0 feet	Barrier Height:	0.0 feet					
Noise Distance to Barrier:	2,148.0 feet	Noise Source Height:	5.0 feet					
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet					
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm):	0					
Noise Source Elevation:	0.0 feet	Drop Off Coefficient:	15.0					
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling 15 = 4.5 dBA per doubling	of distance g of distance					

NOISE MODEL PROJECTIONS									
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax		
Reference (Sample)	10.0	52.2	0.0	0.0	0.0	0.0	0.0		
Distance Attenuation	2,148.0	-35.0	-35.0	-35.0	-35.0	-35.0	-35.0		
Shielding (Barrier Attenuation)	2,148.0	0.0	0.0	0.0	0.0	0.0	0.0		
Raw (Distance + Barrier)		17.2	-35.0	-35.0	-35.0	-35.0	-35.0		
60 Minute Hourly Adjustmer	nt	17.2	-35.0	-35.0	-35.0	-35.0	-35.0		

Observer Location: R4

Source: Unloading/Docking Activity Condition: Operational

Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe

NOISE MODEL INPUTS									
Noise Distance to Observer	1,786.0 feet	Barrier Height:	0.0 feet						
Noise Distance to Barrier:	1,786.0 feet	Noise Source Height:	8.0 feet						
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet						
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm):	0						
Noise Source Elevation:	0.0 feet	Drop Off Coefficient:	20.0						
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling 15 = 4.5 dBA per doubling	of distance g of distance						

NOISE MODEL PROJECTIONS									
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax		
Reference (Sample)	30.0	67.2	0.0	0.0	0.0	0.0	0.0		
Distance Attenuation	1,786.0	-35.5	-35.5	-35.5	-35.5	-35.5	-35.5		
Shielding (Barrier Attenuation)	1,786.0	0.0	0.0	0.0	0.0	0.0	0.0		
Raw (Distance + Barrier)		31.7	-35.5	-35.5	-35.5	-35.5	-35.5		
60 Minute Hourly Adjustmer	nt	31.7	-35.5	-35.5	-35.5	-35.5	-35.5		

STATIONARY SOURCE NOISE PREDICTION MODEL 6/12/201								
Observer Location: R4 Source: Entry Gate Condition: Operation	e & Truck Movements al	Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe						
NOISE MODEL INPUTS								
Noise Distance to Observer	1,765.0 feet	Barrier Height:	0.0 feet					
Noise Distance to Barrier:	1,765.0 feet	Noise Source Height:	8.0 feet					
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet					
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm):	0					
Noise Source Elevation:	0.0 feet	Drop Off Coefficient:	20.0					
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling of dista 15 = 4.5 dBA per doubling of dis						

NOISE MODEL PROJECTIONS									
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax		
Reference (Sample)	20.0	64.0	0.0	0.0	0.0	0.0	0.0		
Distance Attenuation	1,765.0	-38.9	-38.9	-38.9	-38.9	-38.9	-38.9		
Shielding (Barrier Attenuation)	1,765.0	0.0	0.0	0.0	0.0	0.0	0.0		
Raw (Distance + Barrier)		25.1	-38.9	-38.9	-38.9	-38.9	-38.9		
60 Minute Hourly Adjustmer	nt	25.1	-38.9	-38.9	-38.9	-38.9	-38.9		

Observer Location: R4

Source: Roof-Top Air Conditioning Unit *Condition:* Operational

Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe

NOISE MODEL INPUTS									
Noise Distance to Observer	2,234.0 feet	Barrier Height:	0.0 feet						
Noise Distance to Barrier:	2,234.0 feet	Noise Source Height:	5.0 feet						
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet						
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm):	0						
Noise Source Elevation:	30.0 feet	Drop Off Coefficient:	20.0						
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling o 15 = 4.5 dBA per doubling	of distance g of distance						

NOISE MODEL PROJECTIONS									
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax		
Reference (Sample)	5.0	77.2	0.0	0.0	0.0	0.0	0.0		
Distance Attenuation	2,234.0	-53.0	-53.0	-53.0	-53.0	-53.0	-53.0		
Shielding (Barrier Attenuation)	2,234.0	0.0	0.0	0.0	0.0	0.0	0.0		
Raw (Distance + Barrier)		24.2	-53.0	-53.0	-53.0	-53.0	-53.0		
60 Minute Hourly Adjustmer	nt	24.2	-53.0	-53.0	-53.0	-53.0	-53.0		

STATIONARY SOURCE NOISE PREDICTION MODEL 6/12/2019								
Observer Location: R4 Source: Parking Lo Condition: Operation	ot Vehicle Movements al	Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe						
NOISE MODEL INPUTS								
Noise Distance to Observer	1,836.0 feet	Barrier Height:	0.0 feet					
Noise Distance to Barrier:	1,836.0 feet	Noise Source Height:	5.0 feet					
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet					
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm):	0					
Noise Source Elevation:	0.0 feet	Drop Off Coefficient:	15.0					
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling 15 = 4.5 dBA per doubling	of distance g of distance					

NOISE MODEL PROJECTIONS									
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax		
Reference (Sample)	10.0	52.2	0.0	0.0	0.0	0.0	0.0		
Distance Attenuation	1,836.0	-34.0	-34.0	-34.0	-34.0	-34.0	-34.0		
Shielding (Barrier Attenuation)	1,836.0	0.0	0.0	0.0	0.0	0.0	0.0		
Raw (Distance + Barrier)		18.2	-34.0	-34.0	-34.0	-34.0	-34.0		
60 Minute Hourly Adjustmer	t	18.2	-34.0	-34.0	-34.0	-34.0	-34.0		

Observer Location: R5

Source: Unloading/Docking Activity *Condition:* Operational

Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe

NOISE MODEL INPUTS									
Noise Distance to Observer	1,958.0 feet	Barrier Height:	0.0 feet						
Noise Distance to Barrier:	1,958.0 feet	Noise Source Height:	8.0 feet						
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet						
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm):	0						
Noise Source Elevation:	0.0 feet	Drop Off Coefficient:	20.0						
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling 15 = 4.5 dBA per doubling	of distance g of distance						

NOISE MODEL PROJECTIONS									
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax		
Reference (Sample)	30.0	67.2	0.0	0.0	0.0	0.0	0.0		
Distance Attenuation	1,958.0	-36.3	-36.3	-36.3	-36.3	-36.3	-36.3		
Shielding (Barrier Attenuation)	1,958.0	0.0	0.0	0.0	0.0	0.0	0.0		
Raw (Distance + Barrier)		30.9	-36.3	-36.3	-36.3	-36.3	-36.3		
60 Minute Hourly Adjustmer	nt	30.9	-36.3	-36.3	-36.3	-36.3	-36.3		

STATIONARY SOURCE NOISE PREDICTION MODEL 6/12/2								
Observer Location: R5 Source: Entry Gate Condition: Operation	e & Truck Movements al	Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe						
	NOISE MODEL INPUTS							
Noise Distance to Observer	1,830.0 feet	Barrier Height:	0.0 feet					
Noise Distance to Barrier:	1,830.0 feet	Noise Source Height:	8.0 feet					
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet					
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm):	0					
Noise Source Elevation:	0.0 feet	Drop Off Coefficient:	20.0					
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling 15 = 4.5 dBA per doubling	of distance g of distance					

NOISE MODEL PROJECTIONS							
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax
Reference (Sample)	20.0	64.0	0.0	0.0	0.0	0.0	0.0
Distance Attenuation	1,830.0	-39.2	-39.2	-39.2	-39.2	-39.2	-39.2
Shielding (Barrier Attenuation)	1,830.0	0.0	0.0	0.0	0.0	0.0	0.0
Raw (Distance + Barrier)		24.8	-39.2	-39.2	-39.2	-39.2	-39.2
60 Minute Hourly Adjustmer	nt	24.8	-39.2	-39.2	-39.2	-39.2	-39.2

Observer Location: R5

Source: Roof-Top Air Conditioning Unit *Condition:* Operational

Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe

NOISE MODEL INPUTS							
Noise Distance to Observer	2,252.0 feet	Barrier Height:	0.0 feet				
Noise Distance to Barrier:	2,252.0 feet	Noise Source Height:	5.0 feet				
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet				
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm):	0				
Noise Source Elevation:	30.0 feet	Drop On Coemcient.	20.0				
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling 15 = 4.5 dBA per doubling	of distance g of distance				

NOISE MODEL PROJECTIONS							
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax
Reference (Sample)	5.0	77.2	0.0	0.0	0.0	0.0	0.0
Distance Attenuation	2,252.0	-53.1	-53.1	-53.1	-53.1	-53.1	-53.1
Shielding (Barrier Attenuation)	2,252.0	0.0	0.0	0.0	0.0	0.0	0.0
Raw (Distance + Barrier)		24.1	-53.1	-53.1	-53.1	-53.1	-53.1
60 Minute Hourly Adjustmer	nt	24.1	-53.1	-53.1	-53.1	-53.1	-53.1

STATIONARY SOURCE NOISE PREDICTION MODEL 6/12/2019							
Observer Location: R5 Source: Parking L Condition: Operation	ot Vehicle Movements al	Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe					
	NOISE MODEL INPUTS						
Noise Distance to Observer	1,900.0 feet	Barrier Height:	0.0 feet				
Noise Distance to Barrier:	1,900.0 feet	Noise Source Height:	5.0 feet				
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet				
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm):	0				
Noise Source Elevation:	0.0 feet	Drop Off Coefficient:	15.0				
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling 15 = 4.5 dBA per doubling	of distance g of distance				

NOISE MODEL PROJECTIONS							
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax
Reference (Sample)	10.0	52.2	0.0	0.0	0.0	0.0	0.0
Distance Attenuation	1,900.0	-34.2	-34.2	-34.2	-34.2	-34.2	-34.2
Shielding (Barrier Attenuation)	1,900.0	0.0	0.0	0.0	0.0	0.0	0.0
Raw (Distance + Barrier)		18.0	-34.2	-34.2	-34.2	-34.2	-34.2
60 Minute Hourly Adjustmer	nt	18.0	-34.2	-34.2	-34.2	-34.2	-34.2

Observer Location: R6

Source: Unloading/Docking Activity *Condition:* Operational

Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe

NOISE MODEL INPUTS							
Noise Distance to Observer	1,669.0 feet	Barrier Height:	0.0 feet				
Noise Distance to Barrier:	1,669.0 feet	Noise Source Height:	8.0 feet				
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet				
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm): Drop Off Coefficient:	0 20.0				
Noise Source Elevation: Barrier Elevation:	0.0 feet 0.0 feet	20 = 6 dBA per doubling o 15 = 4.5 dBA per doubling	of distance g of distance				

NOISE MODEL PROJECTIONS							
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax
Reference (Sample)	30.0	67.2	0.0	0.0	0.0	0.0	0.0
Distance Attenuation	1,669.0	-34.9	-34.9	-34.9	-34.9	-34.9	-34.9
Shielding (Barrier Attenuation)	1,669.0	0.0	0.0	0.0	0.0	0.0	0.0
Raw (Distance + Barrier)		32.3	-34.9	-34.9	-34.9	-34.9	-34.9
60 Minute Hourly Adjustmer	nt	32.3	-34.9	-34.9	-34.9	-34.9	-34.9

STATIONARY SOURCE NOISE PREDICTION MODEL 6/12/2						
Observer Location: R6 Source: Entry Gat Condition: Operation	e & Truck Movements al	Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe				
NOISE MODEL INPUTS						
Noise Distance to Observer	1,515.0 feet	Barrier Height:	0.0 feet			
Noise Distance to Barrier:	1,515.0 feet	Noise Source Height:	8.0 feet			
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet			
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm):	0			
Noise Source Elevation:	0.0 feet	Drop Off Coefficient:	20.0			
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling 15 = 4.5 dBA per doubling	of distance g of distance			

NOISE MODEL PROJECTIONS							
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax
Reference (Sample)	20.0	64.0	0.0	0.0	0.0	0.0	0.0
Distance Attenuation	1,515.0	-37.6	-37.6	-37.6	-37.6	-37.6	-37.6
Shielding (Barrier Attenuation)	1,515.0	0.0	0.0	0.0	0.0	0.0	0.0
Raw (Distance + Barrier)		26.4	-37.6	-37.6	-37.6	-37.6	-37.6
60 Minute Hourly Adjustmer	nt	26.4	-37.6	-37.6	-37.6	-37.6	-37.6

Observer	Location:	R6

Source: Roof-Top Air Conditioning Unit *Condition:* Operational

Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe

NOISE MODEL INPUTS							
Noise Distance to Observer	1,478.0 feet	Barrier Height:	0.0 feet				
Noise Distance to Barrier:	1,478.0 feet	Noise Source Height:	5.0 feet				
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet				
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm):	0				
Noise Source Elevation:	30.0 feet	Drop Off Coefficient:	20.0				
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling 15 = 4.5 dBA per doubling	of distance g of distance				

NOISE MODEL PROJECTIONS							
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax
Reference (Sample)	5.0	77.2	0.0	0.0	0.0	0.0	0.0
Distance Attenuation	1,478.0	-49.4	-49.4	-49.4	-49.4	-49.4	-49.4
Shielding (Barrier Attenuation)	1,478.0	0.0	0.0	0.0	0.0	0.0	0.0
Raw (Distance + Barrier)		27.8	-49.4	-49.4	-49.4	-49.4	-49.4
60 Minute Hourly Adjustmer	nt	27.8	-49.4	-49.4	-49.4	-49.4	-49.4

STATIONARY SOURCE NOISE PREDICTION MODEL 6/12/201							
Observer Location: R6 Source: Parking Lot Vehicle Movements Condition: Operational		Project Name: Oleander Job Number: 10720 Analyst: A. Wolfe					
NOISE MODEL INPUTS							
Noise Distance to Observer	1,399.0 feet	Barrier Height:	0.0 feet				
Noise Distance to Barrier:	1,399.0 feet	Noise Source Height:	5.0 feet				
Barrier Distance to Observer:	0.0 feet	Observer Height:	5.0 feet				
Observer Elevation:	0.0 feet	Barrier Type (0-Wall, 1-Berm):	0				
Noise Source Elevation:	0.0 feet	Drop Off Coefficient:	15.0				
Barrier Elevation:	0.0 feet	20 = 6 dBA per doubling 15 = 4.5 dBA per doubling	of distance g of distance				

NOISE MODEL PROJECTIONS							
Noise Level	Distance (feet)	Leq	L50	L25	L8	L2	Lmax
Reference (Sample)	10.0	52.2	0.0	0.0	0.0	0.0	0.0
Distance Attenuation	1,399.0	-32.2	-32.2	-32.2	-32.2	-32.2	-32.2
Shielding (Barrier Attenuation)	1,399.0	0.0	0.0	0.0	0.0	0.0	0.0
Raw (Distance + Barrier)		20.0	-32.2	-32.2	-32.2	-32.2	-32.2
60 Minute Hourly Adjustmen	nt	20.0	-32.2	-32.2	-32.2	-32.2	-32.2

APPENDIX 10.1:

BLASTING CALCULATIONS & CONTRACTOR INFORMATION

This page intentionally left blank

BLAST AT CLOSEST RECEIVER LOCATION

Scaled Distance

Source: ISEE's Blaster's Handbook, 2018 Edition.

Square Root Scaled Distance

$SD_2 = R / W^{1/2}$

Distance to closest receiver location Maximum charge weight provided by the Project Applicant.

Peak Particle Velocity

$PPV = A * (SD_2)^{-B}$

PPV = 0.19 in/sec

Vibration Amplitude Equations For Various Blasting Industries					
Industry	Metric Equations mm/sec.	U.S. Equations in./sec.	Confidence level	Source	
General	PPV = 1,140(SD ₂)-1.6	PPV = 160(SD ₂) ^{-1.6}	Best Fit	DuPont	
Construction	$PPV = 173(SD_2)^{-1.6}$	$PPV = 24.2(SD_2)^{-1.6}$	Lower Bound	Oriard	
Construction	PPV = 1,730(SD ₂)-1.6	PPV = 242(SD ₂) ^{-1.6}	Upper Bound	Oriard (2005)	
Construction	PPV = 4,320(SD ₂) ^{-1.6}	$PPV = 605(SD_2)^{-1.6}$	Upper Bound - High Confinement	Oriard (2005)	
Construction	$PPV = 53(SD_2)^{-1.09}$	PPV = 5(SD ₂)-1.09	Best Fit	USBM RI 8507	
Quarries	PPV = 1,090(SD ₂)-1.82	PPV = 182(SD ₂) ^{-1.82}	Best Fit	USBM Bulletin 656	
Coal Mines	$PPV = 905(SD_2)^{-1.52}$	PPV = 119(SD ₂)-1.52	Best Fit	USBM RI 8507	
Coal Mines	PPV = 3,330(SD ₂)-1.52	PPV = 438(SD ₂) ^{-1.52}	Upper bound	USBM RI 8507	
Coal - Low Frequency sites	PPV = 1,252(SD ₂) ^{-1.31}	PPV = 138(SD ₂) ^{-1.31}	Best Fit	USBM RI 9226	

Air Overpressure/Airblast

Cubed Root Scaled Distance

 $SD_3 = R / W^{1/3}$ R = 1282 feet W = 210 lbs

> 215.68 ft/lbs^{1/3} $SD_3 =$

Air Overpressure Prediction

 $P = A * SD_{3}^{-B}$

JN 10720

Air Overpressure Prediction Equations					
Blasting	Metric Equations mb	U.S. Equations psi	Statistical Type	Source	
Open air (no confinement)	$P = 3589 \times SD_3^{-1.38}$	$P = 187 \times SD_{3}^{-1.38}$	Best Fit	Perkins	
Coal mines (parting)	$P = 2596 \times SD_3^{-1.62}$	$P = 169 \times SD_3^{-1.62}$	Best Fit	USBM RI 8485	
Coal mines (highwall)	$P = 5.37 \times SD_{3}^{-0.79}$	$P = 0.162 \times SD_{3}^{-0.79}$	Best Fit	USBM RI 8485	
Quarry face	$P = 37.1 \times SD_{3}^{-0.97}$	$P = 1.32 \times SD_{3}^{-0.97}$	Best Fit	USBM RI 8485	
Metal Mine	$P = 14.3 \times SD_{3}^{-0.71}$	$P = 0.401 \times SD_{3}^{-0.71}$	Best Fit	USBM RI 8485	
Construction (average)	$P = 24.8 \times SD_3^{-1.1}$	$P = 1 \times SD_3^{-1.1}$	Best Fit	Oriard (2005)	
Construction (highly confined)	$P = 2.48 \times SD_{3}^{-1.1}$	$P=0.1\timesSD_{_3}^{_{-1.1}}$	Best Fit	Oriard (2005)	
Buried (total confinement)	$P = 1.73 \times SD_{3}^{-0.96}$	$P = 0.061 \times SD_{3}^{-0.96}$	Best Fit	USBM RI 8485	

Decibels (Linear)

$P_{s} = 20 * log(P / P_{0})$

P = 0.0027 psi

 $P_0 = 2.9E-09$ pascals

Reference value: 2.9 * 10⁻⁹ lbs/inch²

From: Jonathan Drake <<u>jdrake@ampcocontracting.com</u>> Subject: RE: Oleander Grading/Blasting Date: July 3, 2019 at 1:28:44 PM PDT To: "Bernard, Jared" <<u>Jared.Bernard@mbakerintl.com</u>>, Joe Ha <<u>joeha@ampcocontracting.com</u>> Cc: Charly Ray <<u>cray@appliedplanning.com</u>>, "Mota, Cesar" <<u>Cesar.Mota@mbakerintl.com</u>>, Michael Parizo <<u>MParizo@ampconorth.com</u>>

Jared,

Here is the information we received regarding the blasting.

Blasting frequency: 2-3 days a week. Blasts per day: 1 blast per day Estimated Horizontal Blast Area (ft2): 150ft x 150ft to 200ft x 200ft. Max charge weight: max charge of blast depend on appox to <u>building.@200ft</u> 25lbs max per delay. @400ft 100lbs per <u>delay.@600ft</u> 210lbs per delay based on scale dist of 40. Anticipated locations: Depends on area est. by AMPCO they will know where there is rock. And then give us area they want drilled.

Regards,

Jonathan Drake

Project Engineer | AMPCO Contracting, Inc.

1420 South Allec Street | Anaheim, CA 92805 Tel: (949) 955-2255 | Fax: (949) 955-2268 jdrake@ampcocontracting.com | www.ampcocontracting.com This page intentionally left blank

