3.17 - Utilities and Service Systems

This section describes the existing and proposed utility systems setting and potential effects from implementation of the proposed project. Descriptions and analysis in this section are based on information from the Yucaipa Valley Water District (YVWD) website, the Water Supply Assessment (WSA) prepared by the YVWD (2013), a memorandum regarding proposed off-site waterline and sewer main improvements prepared by Albert A. Webb Associates (2013), the San Bernardino Valley Regional Urban Water Management Plan (2015), the Preliminary Project Service Evaluation from YVWD (2015), and the County of Riverside General Plan (2015).

3.17.1 - Existing Conditions

Potable Water

The YVWD provides potable water service in the vicinity of the project. The proposed project’s water and sewer service will be provided by YVWD upon annexation into the YVWD service area.

A 24-inch-diameter water pipeline has been installed in Calimesa Boulevard from Singleton Road to approximately 2,700 feet south where the 24-inch-diameter water pipe turns west, crossing under the Interstate 10 (I-10) Freeway (Exhibit 3.17-1). A connection is proposed at the angle point where the 24-inch-diameter water pipeline turns. According to Figure 12-1 of the 2015 San Bernardino Valley Regional Urban Water Management Plan (RUWMP), the proposed project is within the YVWD Sphere of Influence.

Yucaipa Valley Water District

Service Area

YVWD’s current service area encompasses approximately 25,742 acres, or 40 square miles, which include the City of Calimesa and the City of Yucaipa. Neighboring cities include the cities of Redlands and Beaumont. YVWD’s sphere of influence expands the acreage to 43,525 acres, or 68 square miles.

The YVWD service area includes two mutual water companies: the Western Heights Water Company and the South Mesa Water Company. The service area of the Western Heights Mutual Water Company is 4.53 square miles (2,902 acres) and the service area of the South Mesa Mutual Water Company is 4.00 square miles (2,561 acres). In the future, the population of Western Heights Mutual Water Company and South Mesa Water Company are expected to have limited growth as compared to the larger service area boundary of YVWD (RUWMP 2015).

Distribution System

The YVWD draws groundwater from approximately ten separate subbasins in the service area. Each groundwater subbasin has different characteristics for water quality and water quantity. To augment the limited groundwater supply, the YVWD also secures drinking water from the State Water Project to meet approximately one-third of the service area’s annual water demand. The YVWD also imports water supplies to replenish its groundwater basins for future use (RUWMP 2015).
The Henry N. Wochholz Regional Water Recycling Facility (WRWRF) sewer treatment plant consists of primary, advanced biological secondary, and tertiary treatment with advanced total nitrogen removal. The current overall capacity of the sewer treatment plant is 8.0 million gallons per day (RUWMP 2015).

In 1992, the YVWD completed a master planning document that identified recycled water as a valuable resource for the community. Since then, the District has implemented a series of facilities and improvements that are now operational and capable of meeting the irrigational water demands of parks, schools, golf courses, and other landscaped areas (RUWMP 2015).

Water Supply
Descriptions and analysis in this section are based, in part, on information contained in the I-10 Gateway Center WSA, prepared in October 8, 2013 by the YVWD and included in this Recirculated Draft EIR (RDEIR) as Appendix G.

The YVWD relies on four primary water resources to meet annual water demands: groundwater resources; local surface water resources; imported water resources; and recycled water resources, each of which is described below.

1. Groundwater Resources
YVWD’s water supply consists primarily of groundwater from 25 wells located throughout the YVWD service area. These wells provide about 50 percent of the total drinking water supply. YVWD has traditionally met the bulk of service area customer needs from groundwater through the use of groundwater extraction wells. In 2010, over 75 percent of the groundwater used by the YVWD was extracted from the Wilson Creek Basin and the Calimesa Basin. The remaining groundwater production was from the Beaumont Basin, Chicken Hill Basin, Triple Falls Creek Basin, Oak Glen Basin and the Wildwood Basin.

YVWD has initiated an annual groundwater monitoring program that calculates the change in storage of the seven primary subbasins in the Yucaipa Groundwater Basin. The groundwater levels have increased in the Crafton Subbasin, Gateway Subbasin and Wilson Creek Subbasin by 32,280 acre-feet when comparing groundwater conditions of 2005 with groundwater conditions in 2015. During the same period, the change in storage of the Calimesa Subbasin, Oak Glen Subbasin, Triple Falls Creek Subbasin and the Western Heights Subbasin decreased by 9,349 acre-feet. Therefore, comparing the groundwater conditions of 2005 to 2015, the subbasins of the Yucaipa Groundwater Basin have improved, with a net increase in groundwater storage of 22,931 acre-feet (RUWMP 2015).

2. Local Surface Water Resources
The Oak Glen Surface Water Filtration Facility produces a steady flow of high-quality drinking water for the Yucaipa Valley, providing approximately 3.0 percent of total water demands (RUWMP 2015).
3. **Imported Water Resources**

YVWD purchases imported water from two State Water Project contractors, the San Bernardino Valley Municipal Water District for the San Bernardino County portion of the service area, and the San Gorgonio Pass Water Agency, for the Riverside County portion of the service area. The two State Water Contractors convey imported water from the Sacramento-San Joaquin Delta, which is utilized as a supplemental potable water source to the local supply and is treated at the Yucaipa Valley Regional Filtration Facility. The imported water is also used for groundwater recharge. In 2000, imported water resources were not utilized to meet the water demands of YVWD. By 2010, this resource supplied 28.2 percent of total water demands (RUWMP 2015).

4. **Recycled Water Resources**

In 2002, the YVWD began providing non-potable water service to the Yucaipa Valley. This system began with the use of untreated imported water from the State Water Project and changed to a recycled water source as backwash water was treated at the Yucaipa Valley Regional Water Filtration Facility. By 2014, the YVWD was using recycled water from the Wochholz Regional Water Recycling Facility to meet the recycled water irrigation demands. The recycled water system continues to grow with the addition of new infrastructure and new customers. In 2000, local recycled water resources were not used to meet the water demands of the YVWD. By 2010, this resource supplied 8.6 percent of the total water demands in the Yucaipa Valley (RUWMP 2015).

Recycled Water

The YVWD’s recycled water distribution system serves commercial and institutional customers. The current recycled system extends westward from the Wochholz Regional Wastewater Recycling Facility to Crafton Hills College and southward to L Avenue in Yucaipa. Recycled water demands account for approximately 8.6 percent of the YVWD’s overall water demand. The majority of the increase in the District’s projected future water demands are for irrigation or other recycled uses (RUWMP 2015).

Recycled Water Production and Distribution System

To serve the projected growing recycled water demand, the YVWD has implemented an extensive dual water distribution system. The dual water system includes a potable water conveyance system to convey potable water (treated to comply with drinking water standards) to potable water customers. A separate recycled water distribution system conveys recycled supplies (treated to comply with body-contact and irrigation water standards) to recycled customers. Recycled water sources available to the YVWD include:

- Untreated imported water or untreated local surface water supplies;
- Backwash water from Yucaipa Valley Regional Filtration Facility; and
Groundwater

The YVWD has met the majority of service area customer needs from groundwater using YVWD’s groundwater extraction wells. In 2010, over 75 percent of the groundwater used by the YVWD was extracted from the Wilson Creek Basin and the Calimesa Basin. The remaining groundwater production was from the Beaumont Basin, Chicken Hill Basin, Triple Falls Creek Basin, Oak Glen Basin, and the Wildwood Basin (RUWMP 2015).

Groundwater projection in the Yucaipa Valley generally is associated with three primary groundwater basins: the Yucaipa, San Timoteo, and Beaumont Basins. The Yucaipa Basin is divided into a series of eight subbasins (listed below), which are separated by faults and other physical barriers (RUWMP 2015):

- Calimesa Basin
- Chicken Hill Basin
- Gateway Basin
- Oak Glen Basin
- Triple Falls Basin
- Western Heights Basin
- Wilson Basin
- Wildwood Basin

The 2003 California Department of Water Resources Bulletin 118-2003 identified the Yucaipa Basin in overdraft. Although the basin is defined in an overdraft state, water levels are at or near historic highs (California’s Groundwater Bulletin 118, 2004). Moreover, the YVWD has decreased groundwater pumping dramatically since 2007, attributable to the supplemental supply of State Water Project water and the use of recycled water. Prior to importing State Water Project water, YVWD pumped 3,585 million gallons per year (YVWD 2005 Production Report). Incorporating supplemental water has reduced pumping by 50 percent (YVWD 2010 Production Report; RUWMP 2015).

Water Supply and Demand

Water Supply Multiple-Dry Years

The multiple dry year scenario for water supply and demand from the RUWMP is shown below as a “worst-case” scenario regarding water resources. The RUWMP indicates that the YVWD anticipates adequate supplies for years 2016 to 2040 under single-dry year conditions and under normal conditions.

The multiple-dry year is typically the lowest annual runoff for a consecutive period of three or more years. Table 3.17-1 summarizes the district’s water supplies available to meet demands over the 20-year planning period during a multiple-dry-year period and compares them with demands for the same time frame.

<table>
<thead>
<tr>
<th>Year</th>
<th>Totals</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td>Supply Totals</td>
<td>24,617</td>
<td>26,304</td>
<td>27,608</td>
<td>29,544</td>
<td>28,719</td>
</tr>
<tr>
<td></td>
<td>Demand Totals</td>
<td>12,441</td>
<td>13,288</td>
<td>14,252</td>
<td>15,322</td>
<td>16,500</td>
</tr>
<tr>
<td></td>
<td>Difference</td>
<td>12,176</td>
<td>13,016</td>
<td>13,356</td>
<td>14,222</td>
<td>12,219</td>
</tr>
</tbody>
</table>
Table 3.17-1 (cont.): Projected Multiple-Dry Year Supplies and Demands

<table>
<thead>
<tr>
<th>Year</th>
<th>Totals</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td>Supply Totals</td>
<td>24,617</td>
<td>26,304</td>
<td>27,608</td>
<td>29,544</td>
<td>28,719</td>
</tr>
<tr>
<td></td>
<td>Demand Totals</td>
<td>12,441</td>
<td>13,288</td>
<td>14,252</td>
<td>15,322</td>
<td>16,500</td>
</tr>
<tr>
<td></td>
<td>Difference</td>
<td>12,176</td>
<td>13,016</td>
<td>13,356</td>
<td>14,222</td>
<td>12,219</td>
</tr>
<tr>
<td>Third Year</td>
<td>Supply Totals</td>
<td>24,617</td>
<td>26,304</td>
<td>27,608</td>
<td>29,544</td>
<td>28,719</td>
</tr>
<tr>
<td></td>
<td>Demand Totals</td>
<td>12,441</td>
<td>13,288</td>
<td>14,252</td>
<td>15,322</td>
<td>16,500</td>
</tr>
<tr>
<td></td>
<td>Difference</td>
<td>12,176</td>
<td>13,016</td>
<td>13,356</td>
<td>14,222</td>
<td>12,219</td>
</tr>
</tbody>
</table>

As shown in Table 3.17-1, the YVWD anticipates adequate supplies for years 2015 to 2040 under multiple-dry-year conditions.

Wastewater

The WRWRF provides sewer treatment, and was recently upgraded and expanded. The current overall capacity of the sewer treatment plant is 8.0 million gallons per day, and the ultimate facility will be capable of treating 11.0 million gallons per day (RUWMP 2015). Refer to Exhibit 3.17-2 for the proposed location for sewer line connection.

Treatment Plant

This Reclamation Facility treats domestic wastewater generated from the Yucaipa-Calimesa service area. The tertiary process, microfiltration/ultraviolet disinfection, was selected to meet the coliform removal and turbidity requirements of Title 22 for reclaimed water. Once the reclaimed water reservoir and the reclaimed piping are put into operation, non-potable water from the facility will be used in the system (Recycling Facility 2013).

Storm Drainage

The regional flood management authority for the western portion of Riverside County is the Riverside County Flood Control and Water Conservation District. This is a Special District and, as such, its jurisdiction does not extend over the entire County but only the western 40 percent. The responsibility for drainage in the eastern part of the County is borne by a combination of the County Transportation Department, the Coachella Valley Water District, and various cities and local entities. The District’s mission is to protect people, property, and watersheds from damage or destruction from flood and stormwater, and to conserve, reclaim, and save such waters for beneficial use (Riverside County Flood Control District 2013).

Solid Waste

Solid waste collection and disposal in Cherry Valley is provided by CR&R Waste and Recycling Services (CR&R). These services include collection of solid waste from residences and businesses, and collection and demolition recycling. CR&R runs its own material recovery facility, which receives and processes recyclables.
Landfill Capacity

CR&R serves unincorporated Riverside County (CR&R 2013). The closest landfill to the project site, where solid waste would be transported is the Lamb Canyon Landfill, located approximately 6.37 miles southeast of the proposed project (Moreau, pers. comm.). The Badlands Sanitary Landfill is located approximately 6.85 miles southwest of proposed project site. Table 3.17-2 provides details regarding each of these landfills.

Table 3.17-2: Landfill Summary

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Maximum Daily Throughput (tons per day)</th>
<th>Approximate Remaining Capacity (million tons)</th>
<th>Closure Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamb Canyon Landfill</td>
<td>16411 Lamb Canyon Road Beaumont, CA 92223</td>
<td>5,000.00</td>
<td>7.6 (as of January 1, 2013)</td>
<td>4/30/2021</td>
</tr>
<tr>
<td>Badlands Sanitary Landfill</td>
<td>31125 Ironwood Avenue Moreno Valley, CA 92555</td>
<td>4,000.00</td>
<td>7.9 (as of January 1, 2013)</td>
<td>01/01/2024</td>
</tr>
</tbody>
</table>

Note:
1 Source of this information is the February 27, 2014 NOP comment letter from the Riverside County Waste Management Department.
Source: SWIS, 2015.

Energy

Southern California Edison (SCE) provides electricity, and Southern California Gas Company (SCGC) provides natural gas service to the Cherry Valley area. Below is a discussion of each energy source.

Electricity

SCE provides electricity service to the project area (SCE Service Area 2013). SCE has delivered electricity to Southern and Central California for more than 125 years and is one of the nation’s largest electric utilities. There is an existing 12,000-volt mainline that runs along the south side of Cherry Valley Boulevard. SCE confirmed that the proposed project is within its service territory (Mercado, pers. comm.). The proposed project is located in SCE service territory, and SCE will serve the proposed project’s electrical requirements consistent with the California Public Utilities Commission and Federal Energy Regulatory Commission tariffs.

Natural Gas

SCGC, which is a Sempra Energy utility, provides natural gas service to the project area. SCGC is the nation’s largest natural gas distribution utility and provides energy to 20.9 million consumers through 5.8 million meters in more than 500 communities. The company’s service territory encompasses approximately 20,000 square miles throughout Central and Southern California (SCGC 2013). SCGC is a subsidiary of Sempra Energy.
Exhibit 3.17-2
Offsite Sewer Main Connection

3.17.2 - Regulatory Setting

State Regulations

Senate Bill 610

Under Senate Bill (SB) 610, water supply assessments must be furnished to local governments for inclusion in any environmental documentation for certain projects (as defined in Water Code 10912 [a]) subject to the CEQA (CDWR 2003). As detailed in Water Code 10912 (a) a “project” means any of the following:

1. Proposed residential development of more than 500 dwelling units.
2. A proposed shopping center or business establishment employing more than 1,000 persons or having more than 500,000 square feet of floor space.
3. A proposed commercial office building employing more than 1,000 persons or having more than 250,000 square feet of floor space.
4. A proposed hotel or motel, or both, having more than 500 rooms.
5. A proposed industrial, manufacturing, or processing plant, or industrial park planned to house more than 1,000 persons, occupying more than 40 acres of land, or having more than 650,000 square feet of floor area.
6. A mixed-use project that includes one or more of the projects specified in this subdivision.
7. A project that would demand an amount of water equivalent to, or greater than, the amount of water required by a 500-dwelling-unit project.

A Water Supply Assessment was prepared for the proposed project by YVWD in 2013, and is included in this RDEIR as Appendix G.

Assembly Bill 341

Assembly Bill (AB) 341 requires all businesses and organizations in California that generate 4 cubic yards or more of waste per week and multi-family units of five or more, to recycle. A business shall take at least one of the following actions in order to reuse, recycle, compost, or otherwise divert commercial solid waste from disposal:

- Source separate recyclable and/or compostable material from solid waste and donate or self-haul the material to recycling facilities.
- Subscribe to a recycling service with their waste hauler.
- Provide recycling service to their tenants (if commercial or multi-family complex).
- Demonstrate compliance with the requirements of California Code of Regulations Title 14.

California Urban Water Management Planning Act

The Urban Water Management Planning Act (California Water Code Sections 10610–10656) requires that all urban water suppliers with at least 3,000 customers prepare urban water management plans
and update them every five years. The act requires that urban water management plans include a
description of water management tools and options used by that urban water supplier to maximize
resources and minimize the need to import water from other regions. Specifically, urban water
management plans must:

- Provide current and projected population, climate, and other demographic factors affecting
 the supplier’s water management planning;
- Identify and quantify, to the extent practicable, the existing and planned sources of water
 available to the supplier;
- Describe the reliability of the water supply and vulnerability to seasonal or climatic shortage;
- Describe plans to supplement or replace that source with alternative sources or water
 demand management measures;
- Describe the opportunities for exchanges or transfers of water on a short-term or long-term
 basis (associated with systems that use surface water);
- Quantify past and current water use;
- Provide a description of the supplier’s water demand management measures, including
 schedule of implementation, program to measure effectiveness of measures, and anticipated
 water demand reductions associated with the measures; and
- Assess water supply reliability.

The 2015 San Bernardino Valley RUWMP was adopted on June 21, 2016, and acts as the 2015
UWMP for the nine retail water purveyors participating in the plan (including YVWD, which will serve
the project).

Models Water Efficient Landscape Ordinance

California’s Model Water Efficient Landscape Ordinance was adopted by the Office of Administrative
Law in September 2009 and requires local agencies to implement water efficiency measures as part
of their review of landscaping plans. Local agencies can either adopt the Model Water Efficient
Landscape Ordinance, or incorporate provisions of the ordinance into their own local code
requirements for landscaping. For new landscaping projects of 2,500 square feet or more that
require a discretionary or ministerial approval, the applicant is required to submit a detailed
Landscape Documentation Package that discusses water efficiency, soil management, and landscape
design elements (Department of Water Resources 2009).

California Integrated Waste Management Act

To minimize the amount of solid waste that must be disposed of by transformation and land
disposal, the State Legislature passed AB 939, the California Integrated Waste Management Act of
1989, effective January 1990. The legislation required each local jurisdiction in the State to set
diversion requirements of 25 percent by 1995 and 50 percent by 2000; established a comprehensive
statewide system of permitting, inspections, enforcement, and maintenance for solid waste facilities;
and authorized local jurisdictions to impose fees based on the types or amounts of solid waste
generated. In 2007, SB 1016, Wiggins, Chapter 343, Statutes of 2008, introduced a new per capita disposal and goal measurement system that moves the emphasis from an estimated diversion measurement number to using an actual disposal measurement number as a per capita disposal rate factor. As such, the new disposal-based indicator (pounds per person per year) uses only two factors: a jurisdiction’s population (or in some cases employment) and its disposal as reported by disposal facilities.

California Public Utilities Commission

The California Public Utilities Commission (CPUC) regulates privately owned telecommunication, electric, natural gas, water, railroad, rail transit, and passenger transportation companies. It is the responsibility of the CPUC to (1) assure California utility customers safe, reliable utility service at reasonable rates; (2) protect utility customers from fraud; and (3) promote a healthy California economy. The Public Utilities Code, adopted by the legislature, defines the jurisdiction of the CPUC.

Title 24, Energy Efficiency Standards

Title 24, which was promulgated by the CEC in 1978 in response to a legislative mandate to create uniform building codes to reduce California’s energy consumption, provides energy efficiency standards for residential and nonresidential buildings.

The 2013 Building Energy Efficiency Standards (which are updated on an approximately three-year cycle) went into effect on July 1, 2014. The Energy Commission then developed 2016 Standards, which continue to improve upon the 2013 Standards for new construction of, and additions and alterations to, residential and nonresidential buildings. The 2016 Standards went into effect on January 1, 2017. Single-family homes built to the 2016 standards will use about 28 percent less energy for lighting, heating, cooling, ventilation, and water heating than those built to the previous 2013 standards. In 30 years, California will have saved enough energy to power 2.2 million homes, reducing the need to build 12 additional power plants.

Over time, the energy savings will accumulate as the Standards affect each subsequent year of construction. The savings result from changes to both the residential and nonresidential standards. The Standards affect both newly constructed buildings and alterations to existing buildings. These savings result from retrofit insulation requirements for existing roofs and the energy requirement for renovated lighting systems to meet the updated 2016 Standards.

Local Regulations

Below are policies from the Land Use Element (LU) and the Multipurpose Open Space (OS) Element of the County of Riverside General Plan that relate to utilities and service systems.

The economy of the developed portions of western Riverside County—the inland valley—is sustained primarily by water imported from northern California and the Colorado River, and secondarily by production of local groundwater. The eastern portion of the County—the majority of which is desert—also relies on water from the Colorado River, northern California, and local groundwater. This portion of the County is largely undeveloped, with uncertain increases in the
water resource available to meet increases in water demand being a major factor that might constrain future development.

Riverside County’s water supply is uncertain for two reasons: recent water apportionments from northern California have been reduced as part of the CALFED Bay-Delta Program, as well as decreased supplies to California from the Colorado River. Additionally, most of the County’s sources of water are currently at capacity. Water storage to meet peak demand, or a two-day to one-day supply, is provided by many local water agencies within Riverside County. However, long-term storage of large quantities of water is provided only in the Metropolitan Water District (MWD) and California Department of Water Resources (DWR) facilities. Total storage capacity in the existing reservoir system is 871,000 acre-feet. Three of these storage facilities are located in Riverside County: Lake Mathews, Lake Skinner, and Lake Perris. Together, these storage facilities have a total of 342,300 af of storage capacity. Diamond Valley Lake triples this capacity with an additional 800,000 af of storage, bringing the total storage capacity available within Riverside County to 1,142,300 af. Even though the creation of Diamond Valley Lake has allowed for three times the current storage of water, there is no increase in the total amount of water available to the County that can be identified. This increase in water storage will benefit the whole South Coast region, which includes other significant jurisdictional water users such as San Diego County, as well as Riverside County. Currently, approximately three-eighths of existing storage capacity may be used to meet seasonal demand. The remaining five-eighths are reserved for emergency need such as severe droughts and/or use when a natural disaster, such as an earthquake, makes it impossible to meet demand through usual supply facilities.

Projected 2020 water use and population levels indicate an expected water shortage for the two hydrologic regions that comprise Riverside County: the South Coast and Colorado River regions. Though these regions include most of southern California, and not just Riverside County, they are each representative of the types of supply and demand within the County. The two regions are defined as follows:

- South Coast: Basins draining into the Pacific Ocean from the southeastern boundary of Rincon Creek Basin in western Ventura County to the Mexican border.
- Colorado River: Basins south and east of the South Coast and South Lahontan regions; areas that drain into the Colorado River, the Salton Sea, and other closed basins north of the Mexican border.

The DWR produces a California Water Plan every 5 years that not only includes a statewide water budget but also regional watershed water budgets. These water budgets are based on California Department of Finance population projections, and indicate clearly that demand for water will exceed supply in 2020 whether or not a drought condition exists at that time. Most of the State’s regions, except for the North Coast and San Francisco Bay Regions, experience average-year and drought-year shortages now, and are forecasted to experience increased shortages in 2020. The largest average-year shortages are forecasted for the South Coast Region, which heavily relies on imported water. Future average year shortages in the South Coast Region reflect forecasted population growth plus lower Colorado River supplies as California reduces its use of Colorado River
water to the State’s basic apportionment. The descriptions of the two hydrologic regions as well as regional water budgets are contained within Tables OS-1 and OS-2 of the General Plan Multi-Purpose Open Space Element.

Of the two Hydrologic Units of the State, the Colorado River Region is of particular concern because it encompasses the Coachella Valley in the West Basin and the desert in the East Basin. (Refer to Figure OS-1, Water Resources of the General Plan Multi-Purpose Open Space Element.) Irrigation needs in the Coachella Valley are met almost exclusively by water imported from the Colorado River. Historical extraction of groundwater in the Coachella Valley has caused overdraft. Currently, an extensive groundwater recharge project is being undertaken by the Coachella Valley Water District that recharges Colorado River Water into spreading basins. Within the East Basin, irrigation and domestic water is provided by the Colorado River with only approximately 1 percent groundwater use and little direct reclamation. Agricultural runoff and some domestic wastewater do get returned to the Colorado River. Therefore, the water source at the southern end of the watershed is actually a mixture of Colorado River water, agricultural runoff, and reclaimed water. The following policies are intended to address the County’s water supply issues:

Policies

- **OS 1.1:** Balance consideration of water supply requirements between urban, agricultural, and environmental needs so that sufficient supply is available to meet each of these different demands.

Based on the determination by the YVWD in the WSA (Appendix G) prepared for the proposed project, the project’s water needs will be met by existing and future supplies.

- **LU 5.1:** Ensure that development does not exceed the ability to adequately provide supporting infrastructure and services, such as libraries, recreational facilities, educational and day care centers, transportation systems, and fire/police/medical services.

- **LU 5.2:** Monitor the capacities of infrastructure and services in coordination with service providers, utilities, and outside agencies and jurisdictions to ensure that growth does not exceed acceptable levels of service.

The proposed project’s water, wastewater, stormwater drainage, solid waste, and dry utility needs have been analyzed within this section of the RDEIR. Potential impacts related to the capacities of this infrastructure have been found to be less than significant.

- **LU 5.3:** Review all projects for consistency with individual urban water management plans.

A Water Supply Assessment (Appendix G) has been prepared for the proposed project to determine whether the project’s estimated water needs are consistent with the most recent Urban Water Management Plan (UWMP).

Below are policies from the Safety Element of the County of Riverside General Plan that relate to utilities and service systems.
While local agencies operate and maintain many flood control facilities, funding for the construction of such facilities often is shared with federal and state agencies. Nevertheless, local agencies independently fund many local projects without financial assistance from the federal or state governments.

Flooding susceptibility in Riverside County is primarily associated with several major stream drainages, including but not limited to the Santa Ana, San Jacinto, and Whitewater Rivers, as well as smaller scale and flash flood events on many of the alluvial fans that flank the County’s hillsides. Large-scale developments have utilized golf courses and greenbelts as part of a network of channels that collect flood flows on the upstream side of a project, carry it safely through the project, and disperse it on the downstream side. However, given the low permeability of the underlying bedrock, heavy runoff from the surrounding hills and mountains during strong storms cannot be prevented.

The nation has seen several catastrophic collapses of highway and railroad bridges that were due to scouring and a subsequent loss of support of foundations. Major bridge crossings that are vital to the County of Riverside should be designed and built to withstand scouring. Scour at highway bridges involves floodwater sediment-transport and erosion processes that cause streambed material to be removed from the bridge vicinity. The State of California participates in the bridge scour inventory and evaluation program. In addition, California’s seismic retrofit program of bridges includes underpinning of foundations. In western Riverside County, this is expected to help reduce the vulnerability of foundations to be undermined by scour. However, since the eastern portion of the County has only a moderate seismic risk, bridges in these areas are of lower priority for seismic underpinning.

A review of records maintained at the California Office of Emergency Services provided potential failure inundation maps for 23 dams affecting Riverside County. These maps were compiled into the geographic information system digital coverage of potential dam inundation zones for Riverside County. These maps are intended to be used by state and local officials for the development and approval of dam failure emergency procedures as described in Section 8589.5 of the California Government code. The maps are also used to provide information needed to make natural hazard disclosure statements required under recent legislation (AB 1195 Chapter 65, June 9, 1998; Natural Hazard Disclosure Statement).

Seismically induced inundation refers to flooding that occurs when water retention structures fail during an earthquake. Often, inundation is triggered by damage from a seiche. A seiche is a wave that reverberates on the surface of water in an enclosed or semi-enclosed basin, such as a reservoir, lake, bay, or harbor, in response to ground shaking during an earthquake. Seismically induced inundation can also occur if strong ground shaking causes structural damage to aboveground water tanks. In response to this hazard, a new tank design includes flexible joints that can accommodate movement in any direction.

- **S 4.10:** Require all proposed projects anywhere in the County to address and mitigate any adverse impacts that it may have on the carrying capacity of local and regional storm drain systems.
Recent environmental legislation and improved understanding and analysis of flood hazards in arid environments have resulted in new approaches to flood hazard mitigation implementation. Nationwide, there is a move to leave nature in charge of flood control. The advantages include lower cost, preservation of wildlife habitat, and improved recreation potential. However, this type of flood mitigation is difficult to implement in areas where development has already occurred, as well as in regions susceptible to sheet flow. Where water spreads across broad areas, mitigation without channels or culverts is more difficult. Flood control structures have often been built piecemeal over the years, and new development may funnel water into older systems with insufficient capacity. These issues have been mitigated in recent years by the preparation of Master Plans by local public works agencies.

- **S 4.18:** Require that the design and upgrade of street storm drains be based on the depth of inundation, relative risk to public health and safety, the potential for hindrance of emergency access and regress from excessive flood depth, and the threat of contamination of the storm drain system with sewage effluent. In general, the 10-year flood flows shall be contained within the top of curbs and the 100-year flood flows within the street right-of-way.

The proposed project’s water, wastewater, stormwater drainage, solid waste, and dry utility needs have been analyzed within this section of the RDEIR. Potential impacts related to the capacities of this infrastructure have been found to be less than significant.

3.17.3 - Thresholds of Significance

The County of Riverside utilizes Appendix G of the State CEQA Guidelines as its thresholds of significance for CEQA analysis. Further, the County provides a number of additional environmental considerations as part of the County’s Environmental Assessment Checklist.

a) Would the project impact electricity facilities requiring or resulting in the construction of new facilities or the expansion of existing facilities; the construction of which could cause significant environmental effects?

b) Would the project impact natural gas facilities requiring or resulting in the construction of new facilities or the expansion of existing facilities; the construction of which could cause significant environmental effects?

c) Would the project impact communications systems facilities requiring or resulting in the construction of new facilities or the expansion of existing facilities; the construction of which could cause significant environmental effects?

d) Would the project impact storm water drainage facilities requiring or resulting in the construction of new facilities or the expansion of existing facilities; the construction of which could cause significant environmental effects?

e) Would the project impact street lighting facilities requiring or resulting in the construction of new facilities or the expansion of existing facilities; the construction of which could cause significant environmental effects?
f) Would the project impact maintenance of public facilities, including roads, requiring or resulting in the construction of new facilities or the expansion of existing facilities; the construction of which could cause significant environmental effects?

g) Would the project impact other government service facilities requiring or resulting in the construction of new facilities or the expansion of existing facilities; the construction of which could cause significant environmental effects?

h) Would the project conflict with any adopted energy conservation plans?

According to the State CEQA Guidelines Appendix G thresholds, to determine whether impacts to utilities and service systems are significant environmental effects, the following questions are analyzed and evaluated. Would the project:

a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?

b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?

c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?

d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?

e) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments?

f) Be served by a landfill with sufficient permitted capacity to accommodate the project’s solid waste disposal needs?

g) Comply with federal, state, and local statutes and regulations related to solid waste?

3.17.4 - Project Impact Analysis and Mitigation Measures

This section discusses potential impacts associated with the proposed project and provides mitigation measures where necessary.

Wastewater Treatment Requirements of Regional Board

Impact USS-1: The project would not exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board.

Impact Analysis

Short-term Construction Impacts

The proposed project will include on-site stormwater drainage facilities designed to convey and capture on-site surface flows, as well as those off-site flows that would traverse the project site. As included in the Off-site Hydrology Analysis for Tentative Parcel Map 36564 (Appendix G), there are two drainage areas that exist on-site: Drainage area “A” and “B.” The proposed project includes a number of drainage facilities designed to limit the storm flow resulting from project activities, including:

- Open channels designed to intercept and convey bulked off-site flows through the project site without comingling them with flows generated from the proposed developed area;
- Infiltration Best Management Practices (BMPs) such as basins and trenches, sized to infiltrate the first flush flows generated in the proposed development area;
- Storm drain facilities that will collect and route on-site runoff through a detention basin that is sized to limit 10-year storm discharge from the site to be equal or less than flows under the existing condition; and
- A detention basin that will incorporate hydromodification requirements by limiting the increase in the 2-year storm flow caused by the proposed development to less than 10 percent beyond existing conditions.

Additionally, off-site drainage improvements are required to capture and direct flows. The east side drainage improvements would include a rock protection berm (Exhibit 3.9-3). This berm would capture the off-site runoff and drain into a concrete wingwall structure. This inlet structure will be connected to a concrete culvert and will discharge into the trap channel on site. This water will eventually drain from the outlet structure on the Calimesa side (western side) of the project. Improvements within the City of Calimesa are composed of drainage channels and appurtenances, including a concrete trap channel, a concrete box culvert, two concrete outlet structures, and rip rap rock energy dissipaters. The Applicant has also agreed to construct a rock-lined berm to protect the adjacent property owners (see Exhibit 3.9-3).

As provided in the Water Quality Management Plan (Appendix G), the proposed detention basins have been sized to incorporate hydromodification requirements by limiting the increase in runoff during a 2-year storm event to less than 10 percent beyond existing conditions (Albert A. Webb 2014b). The basin will include a low-flow concrete channel extending from the basin inlet to the basin outlet structure (Albert A. Webb Associates 2014a). The orifice plate in the outlet structure will restrict flows exiting the basin during low-flow conditions. Overflows will overtop the low-flow channel’s sidewall (weir condition) and flow into the basin for detention. The detained overflows will later drain out of the basin through a flap-gate in the channel sidewall. As designed, the
detention basin in conjunction with infiltration BMPs will limit the 2-year, 24-hour storm runoff, reducing the potential for off-site erosion.

Thus, although the proposed project will require development of new stormwater drainage facilities on the project site, these improvements will be located within the project’s development footprint, and, therefore, impacts associated with the construction and operation of these facilities are analyzed as part of the environmental impact analysis contained within this RDEIR.

As discussed under Impact HYD-1, the project will be required to prepare a SWPPP that conforms to the SWRCB NPDES permit. The SWPPP shall identify BMPs to prevent construction related pollutants from reaching stormwater and all products of erosion from moving off-site. Compliance with the SWPPP and implementation of Mitigation Measure HYD-1 will ensure that construction activities do not result in any violation of water quality standard.

Long-Term Operational Impacts

The project is designated a Priority Project. Therefore, treatment control BMPs are required to remove pollutants typically associated with urban runoff.

Water quality treatment for the project site includes implementation of a vegetated swale system in the southern portion of the project. There is adequate treatment length to treat the first flush\(^1\) generated from the site. To prevent pollution from on-site storm drain catch basins and grated inlets, the applicant shall install appropriate signage indicating no dumping is allowed. Furthermore, to prevent the spread of debris throughout the site, all trash areas shall be enclosed with a roof.

For the drainage area of Building 1, approximately 209,945 square feet of the site would be self-treating. The roof, landscaping, and concrete/asphalt areas would be treated by the basin (811,000 square feet, 317,290 square feet, and 757,798 square feet, respectively). For the drainage area of Building 2, approximately 1,142,153 square feet would be self-treated, and roofs, landscaping and concrete/asphalt would be treated by the basin (1,012,760 square feet, 760,661 square feet, and 870,554 square feet, respectively).

The final Water Quality Management Plan shall provide detailed descriptions and instructions for implementing the various BMPs for the project, as required by Mitigation Measure HYD-1. Long-term stormwater quality concerns will be managed pursuant to a County-approved WQMP or SWPPP. Conformance with the mandatory requirements of a SWPPP and/or a WQMP for the project would ensure that no substantial degradation of water quality associated with long-term construction activities would occur.

In addition, the project will need to apply for an Industrial Storm Water General Permit 2014-0057-DWQ (Industrial General Permit), which is an NPDES permit that regulates discharges associated with 10 broad categories of industrial activities. Industrial General Permit 2014-0057-DWQ became effective July 1, 2015 and shall expire June 30, 2020, and the project would be subject to this new

\(^1\) “First flush” refers to the initial surface runoff of a rainstorm. During this phase, water pollution entering storm drains in areas with high proportions of impervious surfaces is typically more concentrated compared with the remainder of the storm. Consequently, these high concentrations of urban runoff result in high levels of pollutants discharged from storm sewers to surface waters.
permit since construction will commence after the effective date. As indicated on the State Water Resources Control website, the General Industrial Permit requires implementation of management measures to achieve the performance standard of best available technology economically achievable (BAT) and best conventional pollutant control technology (BCT). Additionally, the General Industrial Permit requires the development of a SWPPP and a monitoring plan. The SWPPP facilitates the identification of pollutant sources and the means by which to manage pollutant sources to reduce stormwater pollution (California SWRCB 2013c).

With implementation of Mitigation Measure HYD-1, the project would not exceed wastewater treatment requirements of the Regional Water Quality Control Board.

Level of Significance Before Mitigation

Potentially significant impact.

Mitigation Measures

Implement Mitigation Measure HYD-1.

Level of Significance After Mitigation

Less than significant impact. Mitigation Measure HYD-1 will require the submittal of a WQMP and a SWPPP to identify sources that could affect the quality of stormwater discharges from the project site. A series of BMPs would also be included for effective treatment of target pollutants in stormwater discharges anticipated from project construction sites.

Water or Wastewater Treatment Facilities

| Impact USS-2: | The project would not require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which would cause significant environmental effects. The project would have sufficient water supplies available to serve the project from existing entitlements and resources, and no new or expanded entitlements will be needed. |

Impact Analysis

Water Treatment Facilities

As determined in the WSA (Appendix G.4) prepared for the proposed project, the project’s average daily drinking water demands are estimated at 42,840 gallons per day (gpd) (61 Equivalent Dwelling Units), although this calculation will be updated prior to issuing occupancy permits in order to determine the exact number of fixture units constructed. Recycled water for landscape irrigation was estimated to be 12.35 million gallons per year, based on similar landscaped areas of commercial projects. However, it is important to note that the WSA was prepared using different calculations that were based on a larger project with approximately 736,240 more square feet of buildings on-site. Thus, the WSA provided very conservative estimates relative to the currently proposed project.

The updated Air Quality and Greenhouse Gas Analysis Report contained in Appendix B (FCS 2017) estimates water consumption for outdoor use of approximately 8.99 million gallons per year (compared to the 12.35 million gallons per year estimated by the WSA), and indoor water consumption of 11.36 million gallons a year, for a total of 20.35 million gallons per year. This
represents a more realistic estimate of water usage than is contained in the WSA, because it is based on the currently proposed, smaller project size. The estimated quantity of recycled water used for irrigation purposes is expected to be even further reduced, based on the application of Riverside County Ordinance No. 859, which requires efficient use of water for landscaped areas.

The WSA determined that through buildout, YVWD can provide a reliable supply to serve the community, including the proposed project, despite growing demands. In the near term, YVWD will stabilize its demands on the groundwater basins, continue developing recycled water, and use surface waters for direct delivery and conjunctive use programs. Based on the WSA, the proposed project and its associated fixtures will be equivalent to 61 “Equivalent Dwelling Units.” Based on the current General Plan designations of Rural Mountain and Very Low Density Residential, up to 216 single-family residences could be constructed on the project site (based on gross acreage). Therefore, the water usage from buildout of the project site was already indirectly accounted for within the 2015 RUWMP, based on current General Plan assumptions for the site, which would likely result in greater water demand than the currently proposed project. Water demand (and consequently sewer demand) of warehouse uses are also usually much less than residential uses, since employees in such facilities are not typically using water for household applications such as cooking, bathing, laundry, dishes, etc.

A 24-inch-diameter water pipeline has been installed in Calimesa Boulevard from Singleton Road to approximately 2,700 feet south, where the 24-inch-diameter pipe turns west crossing under the I-10 Freeway (Webb 2013). A connection is proposed at the angle point where the 24-inch-diameter water pipeline turns (Exhibit 3.17-1). An 8-inch-diameter water pipeline will have sufficient capacity to serve the equivalent of 61 dwelling units. However, the fire flow needed for the building will exceed the water pipeline capacity. Thus, the needed pipe size is 16-inch-diameter with maximum velocity of 6.38 feet per second.

In addition, two water storage tanks, each with a capacity of 1 million gallons are proposed on the northeastern portion of the project site. The project would provide the concrete pads and access to the future water tanks to the Water District. The on-site water tanks would not serve the proposed project, but would serve other properties within the YVWD service area, and would be considered a public benefit.

As new development is proposed, YVWD will require capital-funding contributions though impact fees, which offset development’s demands for groundwater and surface water supply infrastructure. Ultimately, YVWD will be able to serve its customers’ drinking water needs through groundwater or surface water, a strategy known as conjunctive use. This allows YVWD to insulate itself from periodic drought by using available surface waters in wetter years and relying more on groundwater in dryer years when surface water is scarce.

Surface supply availability from the State Water Project, San Bernardino Basin Bunker Hill Pressure Zone, Seven Oaks Dam, Mill Creek, and Santa Ana River can be used interchangeably, depending upon local and statewide hydrology, to supplement a stable local groundwater yield.
Additionally, the YVWD will incorporate recycled water delivery systems into new development to meet irrigation demands with recycled water. Recycled water will give YVWD a new local source of water of high reliability, thereby lessening the dependence on imported sources and increasing reliability of total supply. Overall, as noted in the 2015 RUWMP, there are sufficient water resources to meet YVWD’s current and projected growth in demands, including the proposed project and other projected development through 2040.

Based on the conservative determination by the YVWD in the WSA for the larger, previously considered project, the currently proposed project’s water needs will be adequately met by existing and future supplies. The project would be required to comply with all requirements of the YVWD, as outlined in the Preliminary Project Service Evaluation (Appendix G). The proposed project will be required to connect with existing water mains currently serving the project area; however, the project’s water needs will not result in the construction of new YVWD water treatment facilities or expansion of existing facilities.

Wastewater Treatment

The project includes two water quality basins that are included as part of the Site Specific Water Quality Management Plan. The primary function of these basins is to mitigate the stormwater impacts caused by developing the project site.

The WRWRF has a current overall capacity of 8.0 million gallons per day, based on the 2015 RUWMP. Currently, an average of approximately 4 million gallons per day of wastewater is treated by the WRWRF. The estimated wastewater generation of the proposed project is 8.91 million gallons per year. According to YVWD records, there is an existing 8-inch-diameter gravity sewer main and a 6-inch-diameter sewer force main that turn easterly approximately 2,250 feet south of Singleton Road intersection. The project would utilize this connection point if the slope were feasible for the off-site sewer main, which will be verified as development plans are finalized. There is also an existing sewer within Calimesa Boulevard near the Calimesa Country Club (Trailer Park). However, the size, slope, and condition of this existing sewer are unknown at this time. If the existing sewer within Calimesa Boulevard has capacity, the connection point may be moved southerly in front of the Trailer Park. An 8-inch-diameter gravity sewer main has sufficient capacity to serve the equivalent of 61 dwelling units (Webb Associates 2013). Upon completion of further feasibility studies, either the existing 8-inch-diameter connection or the existing connection near the Trailer Park within Calimesa Boulevard would be utilized, and either connection would sufficiently serve the site.

As discussed, one (or both) of the sewer main connections has sufficient capacity to serve the proposed project, and the proposed project is not anticipated to generate wastewater in quantities such that a new wastewater treatment facility would need to be constructed. Therefore, the proposed project would have a less than significant impact.

Level of Significance Before Mitigation

Less than significant impact.

Mitigation Measures

No mitigation measures are required.
Level of Significance After Mitigation
Less than significant impact.

New or Expanded Storm Water Drainage Facilities

| Impact USS-3: | The project would not require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects. |

Impact Analysis
The proposed project will include on-site stormwater drainage facilities designed to convey and capture on-site surface flows, as well as those off-site flows that would traverse the project site. As included in the Off-site Hydrology Analysis for Tentative Parcel Map 36564 (Appendix G), two drainage areas exist on-site: Drainage areas “A” and “B.” The proposed project includes a number of drainage facilities designed to limit the storm flow resulting from project activities, including:

- Open channels designed to intercept and convey bulked off-site flows through the project site without comingling them with flows generated from the proposed developed area;
- Infiltration Best Management Practices (BMPs) such as basins and trenches, sized to infiltrate the first flush flows generated in the proposed development area;
- Storm drain facilities that will collect and route on-site runoff through a detention basin that is sized to limit 10-year storm discharge from the site to be equal or less than flows under the existing condition; and
- A detention basin that will incorporate hydromodification requirements by limiting the increase in the 2-year storm flow caused by the proposed development to less than 10 percent beyond existing conditions.

Additionally, off-site drainage improvements are required to capture and direct flows. The east side drainage improvements would include a rock protection berm (Exhibit 3.9-3). This berm would capture the off-site runoff and drain into a concrete wingwall structure. This inlet structure will be connected to a concrete culvert and will discharge into the trap channel on site. This water will eventually drain from the outlet structure on the Calimesa side (western side) of the project. Improvements within the City of Calimesa consist of drainage channels and appurtenances, including a concrete trap channel, a concrete box culvert, two concrete outlet structures, and rip rap rock energy dissipaters. The Applicant has also agreed to construct a rock-lined berm to protect the adjacent property owners (see Exhibit 3.9-3).

As provided in the Water Quality Management Plan (Appendix G), the proposed detention basins have been sized to incorporate hydromodification requirements by limiting the increase in runoff during a 2-year storm event to less than 10 percent beyond existing conditions (Albert A. Webb 2014b). The basin will include a low-flow concrete channel extending from the basin inlet to the basin outlet structure (Albert A. Webb Associates 2014a). The orifice plate in the outlet structure will restrict flows exiting the basin during low-flow conditions. Overflows will overtop the low-flow channel's sidewall (weir condition) and flow into the basin for detention. The detained overflows
will later drain out of the basin through a flap-gate in the channel sidewall. As designed, the detention basin in conjunction with infiltration BMPs will limit the 2-year, 24-hour storm runoff, reducing the potential for off-site erosion.

Thus, although the proposed project will require development of new stormwater drainage facilities on the project site, these improvements will be located within the project’s development footprint, and, therefore, impacts associated with the construction and operation of these facilities are analyzed as part of the environmental impact analysis contained within this RDEIR. No additional off-site stormwater drainage facilities, the construction of which could cause significant environmental effects, will be required to convey and contain on-site and adjacent surface flows.

Level of Significance Before Mitigation

Less than significant impact.

Mitigation Measures

No mitigation measures are required.

Level of Significance After Mitigation

Less than significant impact.

Water Supply

Impact USS-4: The project would have sufficient water supplies available to serve the project from existing entitlements and resources, and new or expanded entitlements would not be required.

Impact Analysis

The WSA prepared for the proposed project concluded that YVWD can provide a reliable water supply to serve the community, including the proposed project, despite growing demands. In the near term, YVWD will stabilize its demands on the groundwater basins, continue developing recycled water, and use surface waters for direct delivery and conjunctive use programs. Based on the WSA, the proposed project and its associated fixtures will be equivalent to 61 “Equivalent Dwelling Units,” far fewer than the number of dwelling units that could be constructed on the project site based on current General Plan designations. Therefore, water usage for buildout of the project site was already indirectly accounted for in the RUWMP, which concluded that YVWD will have adequate supplies for years 2016 to 2040 under multiple-dry-year conditions. As discussed above, warehouse land uses typically use less water than residential land uses.

The proposed project’s average daily indoor water demands are estimated at 11.36 million gallons a year, although this calculation will be updated prior to issuing occupancy permits in order to determine the exact number of fixture units constructed. Recycled (outdoor) water for landscape irrigation is estimated to be 8.99 million gallons per year for a total of 20.35 million gallons a year of water required to serve the project.

The estimated quantity of recycled water used for irrigation purposes is expected to be further reduced based on the application of Riverside County Ordinance No. 859, which requires efficient
use of water for landscaped areas. In light of the recent statewide drought conditions, the proposed project would also be required to comply with any future mandates by the YVWD pursuant to its Water Shortage Contingency Plan, which serves to maintain essential public health and safety and minimize adverse impacts from water shortages on economic activity, environmental resources and the region’s lifestyle. The YVWD’s Water Shortage Contingency Plan consists of advisory, voluntary, mandatory, and emergency curtailment stages with a variety of potential water conservation restrictions, with which the project would be required to comply in order to avoid fines, surcharges, or rate increases (RUWMP 2015).

Based on the determination by the YVWD in the WSA, the proposed project’s water needs will be met by existing and future supplies. YVWD would have sufficient water supplies available to serve the project from existing entitlements and resources, and no new or expanded entitlements will be needed.

Level of Significance Before Mitigation

Less than significant impact.

Mitigation Measures

No mitigation measures are required.

Level of Significance After Mitigation

Less than significant impact.

Wastewater Treatment Provider

Impact USS-5: The project would result in a determination by the wastewater treatment provider that serves or may service the project that it has adequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments.

Impact Analysis

Development of the proposed project would not generate wastewater that would exceed the capacity of the YVWD in combination with the provider’s existing service commitments. Implementation of the proposed warehouse project would introduce building space and an employee population that does not currently exist on-site. This would result in the generation and discharge of additional wastewater requiring treatment by the YVWD.

Currently, an average of approximately 4 million gallons per day of wastewater is treated by the WRWRF, which has a current capacity of 8.0 million gallons per day (RUWMP 2015). The anticipated additional estimated 24,410 gallons per day generated by the proposed project can be adequately treated by the YVWD. The proposed project’s contribution to the wastewater flow would constitute less than 1 percent of the remaining current 8.0-million-gallon-per-day capacity at the WRWRF. Thus, related impacts would be less than significant.

Level of Significance Before Mitigation

Less than significant impact.
Mitigation Measures

No mitigation measures are required.

Level of Significance After Mitigation

Less than significant impact.

Landfills

Impact USS-6: The project would be served by a landfill with sufficient permitted capacity to accommodate the project’s solid waste disposal needs.

Impact Analysis

CR&R will provide waste disposal service for the proposed project (Moreau, pers. comm.). Solid waste would be generated by short-term construction activities and long-term operational activities.

Construction Waste Generation

Implementation of development would include the construction of approximately 1,823,760 square feet of warehouse land use. No demolition would occur on-site because there are no existing structures on-site. Using construction debris waste generation rates published by the United States Environmental Protection Agency, an estimate of the total construction debris generated by the proposed project is provided in Table 3.17-3.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Type</th>
<th>Waste Generation Rate¹</th>
<th>Square Footage</th>
<th>Total (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Nonresidential</td>
<td>3.89 pounds/square foot</td>
<td>1,823,760</td>
<td>3547.2</td>
</tr>
</tbody>
</table>

Notes:

No demolition information is provided because no existing structures on the project site would need to be demolished.

Implementation of the proposed warehouse project is estimated to generate approximately 3,547 tons of construction debris. This tonnage would be spread out over the length of construction activities, and the actual volumes of construction waste disposed of at any one time are not expected to be more than several tons of debris. Regional landfill capacity would be available to accommodate this amount of solid waste (each landfill has a remaining capacity of over 14,000,000 cubic yards). Additionally, correspondence from CR&R indicates that the proposed project should have no substantial impact on the anticipated closure of the Lamb Canyon Landfill (Moreau, pers. comm.).
Operational Waste Generation

The daily and operational solid waste generation estimate is provided in Table 3.17-4. The table below is from the Air Quality and Greenhouse Gas Analysis Report for the San Gorgonio Crossing Project.

Table 3.17-4: Projected Solid Waste Generation

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Size at buildout (sq ft)</th>
<th>Waste at buildout (tons/year)</th>
<th>Disposal Rate (tons/Ksq ft/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warehouse</td>
<td>1,823,760</td>
<td>1,714</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Notes:
sq ft = square feet; Ksq ft = thousand square feet
Source of disposal rate: CalEEMod default disposal rate, FCS, 2015 (Table 22); see Appendix B.

The proposed project is estimated to generate a total of approximately 4.7 tons of solid waste on a daily basis, and approximately 1,714 tons on an annual basis. Regional landfill capacity would be available to accommodate this amount of solid waste (each landfill has a remaining capacity of over 14,000,000 cubic yards). Thus, the proposed project is anticipated to have a less than significant impact regarding operational waste disposal because there is adequate regional landfill capacity to meet the disposal needs of the proposed project.

Level of Significance Before Mitigation

Less than significant impact.

Mitigation Measures

No mitigation measures are required.

Level of Significance After Mitigation

Less than significant impact.

Solid Waste Regulations

Impact USS-7: The project will comply with federal, state, and local statutes and regulations related to solid waste.

Impact Analysis

AB 939 requires that local jurisdictions divert at least 50 percent of all solid waste generated by January 1, 2000. The CIWMP was prepared in accordance with the California Integrated Waste Management Act of 1989, Chapter 1095 (AB 939). The proposed project is not anticipated to conflict with the Riverside County policies, other mandatory policies such as AB 341, or the Countywide Integrated Waste Management Plan because it will comply with requirements regarding solid waste disposal, and the project site will be served by a solid waste disposal provider. Thus, the proposed project will have a less than significant impact.
Level of Significance Before Mitigation
Less than significant impact.

Mitigation Measures
No mitigation measures are required.

Level of Significance After Mitigation
Less than significant impact.
THIS PAGE INTENTIONALLY LEFT BLANK