

Phase II Environmental Site Assessment

Northwest Corner of Harvill Avenue and Placentia Avenue Perris, Riverside County, California

October 16, 2019

Prepared for:

Orbis Real Estate Partners 280 Newport Center Drive, Suite 240 Newport Beach, California, 92660

Prepared by:

Stantec Consulting Services Inc. 735 E. Carnegie Drive, Suite 280 San Bernardino, CA 92408

Project No.: 185804524

This document entitled Phase II Environmental Site Assessment was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Orbis Real Estate Partners (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by (signature)

Deborah Hernandez

Geologic Staff

Reviewed by

(signature)

Alicia Jansen

Associate Scientist

Approved by

Kyle Emerson, C.E.G.

Managing Principal Geologist

Table of Contents

EXECI	JTIVE SUMMARY	l
1.0 1.1 1.2	INTRODUCTION	
2.0	BACKGROUND INFORMATION)
3.0 3.1 3.2	FIELD INVESTIGATION PROGRAM3.1PRE-ASSESSMENT ACTIVITIES3.1FIELD INVESTIGATION3.13.2.1Soil Boring and Sampling Procedures3.2	2
4.0	LABORATORY TESTING PROGRAM4.1	
5.0 5.1 5.2	INVESTIGATION RESULTS5.2FIELD OBSERVATIONS5.2ANALYTICAL RESULTS5.25.2.1Soil Analytical Results5.25.2	
6.0	CONCLUSIONS AND RECOMMENDATIONS6.1	
7.0	LIMITATIONS	
8.0	REFERENCES	
LIST C Table Table 2	OF TABLES 1 – Summary of Soil Analytical Results – Pesticides 2 – Summary of Soil Analytical Results – Metals	

LIST OF FIGURES

Figure 1 – Property Location Map Figure 2 – Property Details

LIST OF APPENDICES

Appendix A Laboratory Data Sheets

Executive Summary

This report documents the methodology and results of a Phase II Environmental Site Assessment (ESA) completed by Stantec Consulting Services Inc. (Stantec) for the property located on the northwest corner of Harvill Avenue and Placentia Avenue in the city of Perris/Mead Valley, Riverside County, California (the "Property"). This scope of work was completed in accordance with the *Proposal to Conduct Subsurface Assessment*, dated August 21, 2019.

Stantec completed a Phase I ESA for the Property dated August 21, 2019. That report identified the following recognized environmental condition (RECs) in connection with the Property:

• Agricultural Use: According to aerial photographs, the Property and adjoining land appears to have been utilized for light agricultural purposes (i.e. row crops) until the late 1960s. Historical agricultural activities are considered a REC. Accordingly, Stantec recommends performing a Phase II subsurface investigation to sample and analyze shallow soil at the Property to evaluate whether residual pesticides or heavy metals associated with herbicide applications are present above regulatory screening levels, human health risk criteria or California hazardous waste levels. The need for sampling for these compounds given the intended use is for protection of construction workers during development of the paths when exposed to dust. The second issue is the potential for off-Site removal of soil, which will require profiling by chemical analysis to determine the proper location for disposal.

Based on the results of the Phase I ESA report, Stantec created a scope of work which would address the identified RECs.

To assess the identified REC, Stantec advanced five (5) soil borings (HA-01 through HA-05) to approximately 3 feet below ground surface (bgs). All five borings were spread out through the vacant lot as depicted in Figure 2. Soil samples were collected at the 1-foot and 3-foot intervals. The 1-foot samples were analyzed for arsenic and lead by EPA Method 6010B, and organochloride pesticides (OCP) by EPA Method 8081A. The 3-foot samples were placed on hold pending the results of the 1-foot sample.

A total of ten (10) soil samples were collected during this assessment. The soil samples collected from each boring at the depth of one (1) foot below ground surface (bgs) for a total of five (5), were analyzed during this investigation to characterize possible impacts at the Property. Organochlorine pesticides (4,4'-DDE and 4,4'-DDT) were detected at minor concentrations that were <u>below</u> their respective DTSC HERO Note 3 screening level and EPA Regional Screening Level (RSL) for residential land use. Additionally, the cumulative concentrations were below the California Hazardous Waste Level for these compounds.

Sample HA-01 showed no detected concentrations of arsenic. However, arsenic was detected in the remaining four soil samples at 1.1 milligrams per kilogram (mg/kg). These detections are within typical naturally-occurring California background concentration ranges. All five soil samples had detected concentrations of lead between 2.5 and 2.8 mg/kg, which are within typical naturally-occurring California background do not exceed DTSC HERO Note 3 or EPA RSLs for residential use.

Based on the results of the collected soil samples, no impact by OCPs, lead, or arsenic were detected at levels of concern to commercial uses, construction worker safety, or off-site disposal. Accordingly, Stantec recommends no further investigation regarding this issue.

The preceding summary is intended for informational purposes only and reading the full body of this report is recommended.

Introduction

1.0 INTRODUCTION

This report documents the methodology and results of a Phase II Environmental Site Assessment (ESA) completed by Stantec Consulting Services Inc. (Stantec) for the property located on the Northwest corner of Harvill Avenue and Placentia Avenue in the City of Perris, County of Riverside, California (the "Property"). This scope of work was completed in accordance with the *Proposal to Conduct Subsurface Assessment*, dated August 21, 2019.

1.1 SITE DESCRIPTION AND OPERATIONS

The Property consists of approximately 11.8 acres of land located at the northwest corner of Harvill Avenue and Placentia Avenue in the city of Perris, County of Riverside, California. The western portion of the Property is occupied by four residential structures located at 20491, 20463, 20421, and 20395 Sharon Lane. The remainder of the Property is approximately 7.83-acre vacant parcel and is located at the northwest corner of Placentia Avenue and Harvill Avenue. The surrounding area consists of residential structures, vacant land, and commercial buildings. A Property location map is illustrated on Figure 1. A Property map illustrating the main features of the Property is provided as Figure 2.

1.2 SITE GEOLOGY AND HYDROGEOLOGY

The Property is located in the City of Perris, Riverside County, California. The area is located within the Peninsular Ranges Geomorphic Province, which includes northwest-southeast trending mountain ranges and valleys that have been developed by the San Andreas Fault system (California Geological Survey [CGS], 2002). The stratigraphy underlying the Site consists primarily of recent-age alluvium (CDMG, 1962).

The Property is located within the San Jacinto groundwater basin in the western portion of Riverside County and includes Moreno Valley, to the North and Menifee and Hemet to the south. The basin sits between Lake Elsinore to the west, San Jacinto to the east, the Sierra Made Fault to the north and the Cahuilla Mountain to the south. The water-bearing materials of this basin are dominated by the unconsolidated to semi-consolidated alluvium of Quaternary age.

Environmental Data Resources Aquiflow feature estimates a groundwater depth of approximately 75-80 feet below ground surface (bgs) and the inferred shallow groundwater flow direction is likely to be in the east. Site-specific groundwater flow direction and depth can only be determined by conducting site-specific testing, which Stantec has not conducted.

Background Information

2.0 BACKGROUND INFORMATION

Stantec completed a Phase I ESA for the Property dated August 21, 2019. That report identified the following recognized environmental condition (RECs) in connection with the Property:

• Agricultural Use: According to aerial photographs, the Property and adjoining land appears to have been utilized for light agricultural purposes (i.e. row crops) until the late 1960s. Historical agricultural activities are considered a REC. Accordingly, Stantec recommends performing a Phase II subsurface investigation to sample and analyze shallow soil at the Property to evaluate whether residual pesticides or heavy metals associated with herbicide applications are present above regulatory screening levels, human health risk criteria or California hazardous waste levels. The need for sampling for these compounds given the intended use is for protection of construction workers during development of the paths when exposed to dust. The second issue is the potential for off-Site removal of soil, which will require profiling by chemical analysis to determine the proper location for disposal.

Based on the results of the Phase I ESA report, Stantec created a scope of work which would address the identified RECs. The scope of work was subsequently modified to adequately assess these features as discussed in Section 3.2.

Field Investigation Program

3.0 FIELD INVESTIGATION PROGRAM

3.1 PRE-ASSESSMENT ACTIVITIES

The scope of work consisted of the following general elements:

Prior to the commencement of fieldwork activities, Stantec made the following preparations:

- As required by law, Stantec visited the Site to mark the proposed boring locations and acquire a current Underground Service Alert (USA) ticket number prior to commencement of Property drilling activities.
- In accordance with federal OSHA regulations (29 CFR, Section 1910.120), Stantec developed a site-specific Health and Safety Plan (HASP) for the subject property. All Stantec personnel and subcontractors associated with the project were required to be familiar with, and comply with, all provisions of the HASP.

3.2 FIELD INVESTIGATION

Stantec provided the services of a field geologist to supervise and direct all on-site activities. Soil sampling and surface restoration, where applicable, was performed on September 18, 2019. All field work was performed under the supervision of a State of California registered professional geologist, and included the following activities:

Historical Agricultural Use

Stantec advanced five (5) soil borings (HA-01 through HA-05) to approximately 3 feet below ground surface (bgs). All five borings were spread out through the vacant lot as depicted in Figure 2. Soil samples were collected at the 1-foot and 3-foot intervals. The 1-foot samples were analyzed for arsenic and lead by EPA Method 6010B, and organochloride pesticides (OCP) by EPA Method 8081A. The 3-foot samples were placed on hold pending the results of the 1-foot sample.

Field Investigation Program

3.2.1 Soil Boring and Sampling Procedures

Hand Auger Borings/Sampling

Borings HA-01 through HA-5 were advanced using a hand auger to collect shallow soil samples from approximately 0.5-1.0 feet, 2.5-3.0 feet bgs Upon extraction of the auger bucket at the prescribed sampling depths, the soils contained therein were packed into laboratory-provided clean 8-ounce glass jars and labeled with the appropriate identification information (boring number, sample depth, sample collection date, and sample collection time). The samples were logged on a chain-of-custody form and placed in an ice-filled cooler for transport to the laboratory.

Field Equipment Cleaning Procedures

To maintain quality control during drilling operations, all drill rods and reusable soil sampling equipment was decontaminated using a triple bucket rinse. Prior to drilling at a given location or sampling interval, all equipment coming in direct contact with soil samples was scrubbed with an Alconox scrub solution followed by a clean tap water rinse and then a final distilled water rinse.

Investigation-Derived Waste

All soil cuttings generated during the Phase II ESA investigation were replaced into the respective boring at the completion of the sample collection.

Laboratory Testing Program

4.0 LABORATORY TESTING PROGRAM

A total of ten (10) soil samples were collected during this investigation and delivered under chain-of-custody to Advanced Technology Laboratories (ATL) based in Signal Hill, California for possible chemical analyses. Five (5) 1-foot samples were submitted for analysis, while the five (5) 3-foot were placed on hold pending analytical results of the 1-foot samples. ATL and H&P are certified to perform hazardous waste testing by the State of California Department of Health Services, Environmental Laboratory Accreditation Program.

The 1-foot samples were analyzed for arsenic and lead by EPA Method 6010B, and organochloride pesticides (OCP) by EPA Method 8081A. The 3-foot samples were placed on hold pending the results of the 1-foot samples. All soil samples collected during this investigation were kept on-ice during transit to the laboratory.

Investigation Results

5.0 INVESTIGATION RESULTS

5.1 FIELD OBSERVATIONS

On September 18, 2019, Stantec personnel oversaw the advancement of five (5) soil borings at the Property. Soils encountered during this investigation consisted primarily of poorly graded sand and silty sand to a maximum explored depth of three feet bgs. No staining or odorous soils were observed in any borings during this investigation. No groundwater was not encountered during this investigation. Boring locations are provided in Figure 2.

5.2 ANALYTICAL RESULTS

Laboratory analytical test results from this assessment are summarized in Table 1 and presented on the laboratory data sheets attached as Appendix B. The laboratory test results from this investigation are discussed below. Soil analytical results were compared to the more conservative value between the DTSC Human and Ecological Risk Office (HERO) Note 3 screening level for residential use (DTSC, 2018) and the EPA Regional Screening Levels (RSL), Region 9 for residential sites (EPA, 2019).

5.2.1 Soil Analytical Results

A total of ten (10) soil samples (two from each boring) were collected during this assessment. The shallow soil sample collected from one (1) foot bgs was then analyzed during this investigation to characterize possible impacts at the Property.

Organochlorine pesticides (4,4'-DDE and 4,4'-DDT) were detected at minor concentrations that were <u>below</u> their respective DTSC HERO Note 3 screening level and EPA RSL for residential land use. Additionally, the cumulative concentrations were below the California Hazardous Waste Level for these compounds. Accordingly, Stantec recommends no further investigation regarding this issue.

Sample HA-01 showed no detected concentrations of arsenic. However, arsenic was detected in the remaining four soil samples at 1.1 milligrams per kilogram (mg/kg). These detections are within typical naturally-occurring California background concentration ranges. All five soil samples had detected concentrations of lead between 2.5 and 2.8 mg/kg, which are within typical naturally-occurring California background concentration TSC HERO Note 3 or EPA RSLs for residential use. Accordingly, Stantec recommends no further investigation regarding this issue.

The soil analytical detection results are summarized on Table 1 and Table 2.

Conclusions and Recommendations

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the collected soil samples, no impact by OCPs, lead, or arsenic were detected at levels of concern to commercial uses, construction worker safety, or off-site disposal. Accordingly, Stantec recommends no further investigation regarding this issue.

Limitations

7.0 LIMITATIONS

The conclusions presented in this report are professional opinions based on data described in this report. The opinions of this report have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location and are subject to the following inherent limitations. Stantec makes no other warranty, either expressed or implied, concerning the conclusions and professional advice that is contained within the body of this report.

Inherent in most projects performed in a heterogeneous subsurface environment, continuing excavation and assessments may reveal findings that are different than those presented herein. This facet of the environmental profession should be considered when formulating professional opinions on the limited data collected on these projects.

This report has been issued with the clear understanding that it is the responsibility of the owner, or their representative, to make appropriate notifications to regulatory agencies. It is specifically not the responsibility of Stantec to conduct appropriate notifications as specified by current County and State regulations.

The information presented in this report is valid as of the date our exploration was performed. Site conditions may degrade with time; consequently, the findings presented herein are subject to change.

References

8.0 **REFERENCES**

Department of Toxic Substances Control, 2018, Human and Ecologic Risk Office Note 3, dated June.

Stantec Consulting Services Inc, 2018, Phase I Environmental Site Assessment, dated November 20.

State Water Resource Control Board's Geotracker, 2019, website https://geotracker.waterboards.ca.gov/

United Stated Environmental Protection Agency, 2019, Regional Screening Levels, Region 9, dated November.

TABLES

Table 1Summary of Soil Analytical Results - PesticidesNWC of Harvill Ave and Placentia AvePerris, California

Stantec Project No.: 185804524

					Pesticide	s (EPA Test Meth	nod 8081A)	
Location	Depth ⁽¹⁾	Date	4,4'-DDD	4,4'-DDE	4,4'-DDT	Total DDT Compounds	Dieldrin	Other OCPs
Screening Levels	for residential	soil (mg/Kg) ⁽²⁾	2.3	2.0	1.9	NE	0.034	varies
Hazardous Waste	Levels (mg/K	g)	1.0	1.0	1.0	1.0	8.0	varies
Typical Backgrou	nd Levels in C	alifornia	NE	NE	NE	NE	NE	NE
Samples								
HA-01	1	9/18/2019	< 0.002	0.014	0.0027	0.0167	<0.002	<varies< td=""></varies<>
HA-02	1	9/18/2019	< 0.002	<0.002	<0.002	<0.002	<0.002	<varies< td=""></varies<>
HA-03	1	9/18/2019	< 0.002	0.0024	< 0.002	0.0024	<0.002	<varies< td=""></varies<>
HA-04	1	9/18/2019	< 0.002	0.012	< 0.002	0.012	<0.002	<varies< td=""></varies<>
HA-05	1	9/18/2019	< 0.002	0.0029	< 0.002	0.0029	< 0.002	<varies< td=""></varies<>

NOTES:

(1) Sample depth is reported as feet below ground surface

(2) Screening level value is determined by the more conservative value from the California DTSC HERO Note 3 or USEPA RSLs.

All concentrations reported in milligrams of metal per kilogram of soil (mg/kg)

< - Indicates the concentration was not detected above the laboratory method reporting limit.

 $\ensuremath{\textbf{BOLD}}\xspace$ - Indicates the concentration is above the laboratory reporting level

Concentration exceeds USEPA Region 9 RSL

Concentration exceeds Southern California regional background levels

ABBREVIATIONS:

- DTSC Department of Toxic Substances Control
- HERO Human and Ecological Risk Office
- NA Not analyzed
- ND Not detected
- NE Not established
- USEPA RSL United States Environmental

Protection Agency Regional Screening Levels, residential use

Table 2

Summary of Soil Analytical Results - Lead & Arsenic

NWC of Harvill Ave and Placentia Ave

Perris, California

Stantec Project No.: 185804524

	Samaalina	Sampling	Metals	(mg/kg)			
Sample ID ⁽¹⁾	Date	Depth	EPA 6010B ⁽²⁾				
	Dale	(ft)	Arsenic	Lead			
USEP	A RSLs (mg/kg)		0.68	80			
California Bac	kground Levels (I	0.6-11.0	12.4 - 97.1				
Samples							
HA-01	9/18/2019	1.0	<1.0	2.5			
HA-02	9/18/2019	1.0	1.1	2.8			
HA-03	9/18/2019	1.0	1.1	2.7			
HA-04	9/18/2019	1.0	1.1	2.6			
HA-05	9/18/2019	1.0	1.1	2.5			

NOTES:

(1) Refer to Figure 2 for sampling locations

(2) Concentrations reported in milligrams per kilogram (mg/kg), EPA Test Method 6010B

< - Indicates the concentration was not detected above the laboratory method reporting limit.

-- indicates the sample was not anaylzed

ABBREVIATIONS:

USEPA RSLs - United States Environmental Protection Agency Regional Screening Levels for Residential Soils (May 2016)

BOLD - Indicates the concentration is above the laboratory reporting level

Concentration exceeds USEPA Region 9 RSL

Concentration exceeds Southern California regional background levels

FIGURES

<u>Legend</u>

APPENDIX A

Laboratory Data Sheets

September 27, 2019

Alicia Jansen Stantec 735 E. Carnegie Drive, Suite 280 San Bernardino, CA 92408 Tel: (909) 335-6116 Fax:(909) 335-6120 ELAP No.: 1838 CSDLAC No.: 10196 ORELAP No.: CA300003

RE: ATL Work Order Number: 1903479Client Reference: Orbis Real Estate Partners, 185804524.201

Enclosed are the results for sample(s) received on September, 19 2019 by Advanced Technology Laboratories. The sample(s) are tested for the parameters as indicated on the enclosed chain of custody in accordance with applicable laboratory certifications. The laboratory results contained in this report specifically pertains to the sample(s) submitted.

Thank you for the opportunity to serve the needs of your company. If you have any questions, please feel free to contact me or your Project Manager.

Sincerely,

Edgar Caballero President & Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and its absence renders the report invalid. Test results contained within this data package meet the requirements of applicable state-specific certification programs. The report cannot be reproduced without written permission from the client and Advanced Technology Laboratories.

3275 Walnut Avenue, Signal Hill, CA 90755 • Tel: 562-989-4045 • Fax: 562-989-4040 www.atlglobal.com

Stantec

735 E. Carnegie Drive, Suite 280

San Bernardino, CA 92408

Project Number: Orbis Real Estate Partners, 185804524.20

Report To: Alicia Jansen

Reported : 09/27/2019

SUMMARY OF SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
HA-01-1	1903479-01	Soil	9/18/19 11:20	9/19/19 12:35
HA-02-1	1903479-03	Soil	9/18/19 11:35	9/19/19 12:35
HA-03-1	1903479-05	Soil	9/18/19 11:55	9/19/19 12:35
HA-04-1	1903479-07	Soil	9/18/19 12:20	9/19/19 12:35
HA-05-1	1903479-09	Soil	9/18/19 12:45	9/19/19 12:35

Stantec 735 E. Carnegie Drive, Suite 280 San Bernardino, CA 92408

Project Number: Orbis Real Estate Partners, 185804524.20

Report To: Alicia Jansen

Reported : 09/27/2019

Client Sample ID HA-01-1 Lab ID: 1903479-01

Total Metals by ICP-AES EPA 6010B

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	ND	1.0	1	B9I0872	09/27/2019	09/27/19 13:18	
Lead	2.5	1.0	1	B9I0872	09/27/2019	09/27/19 13:18	

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
	ND	2.0	1	B010818	09/25/2010	09/26/10 11:06	
עע- ד,ד 4.4′-DDF וייי	11D	2.0	1	B010010	00/25/2019	09/26/10 11:00	
ידער דרד [20] 4.4' DDT [20]	14	2.0	1	D210010	00/25/2019	09/20/19 11:00	
4,4 - JUI [2U]	2.7	2.0	1	D010010	00/25/2019	09/20/19 11:06	
Aldrin	ND	1.0	1	RAI0818	09/25/2019	09/26/19 11:06	
alpha-BHC	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:06	
alpha-Chlordane	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:06	
beta-BHC	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:06	
Chlordane	ND	8.5	1	B9I0818	09/25/2019	09/26/19 11:06	
delta-BHC	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:06	
Dieldrin	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:06	
Endosulfan I	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:06	
Endosulfan II	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:06	
Endosulfan sulfate	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:06	
Endrin	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:06	
Endrin aldehyde	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:06	
Endrin ketone	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:06	
gamma-BHC	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:06	
gamma-Chlordane	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:06	
Heptachlor	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:06	
Heptachlor epoxide	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:06	
Methoxychlor	ND	5.0	1	B9I0818	09/25/2019	09/26/19 11:06	
Toxaphene	ND	50	1	B9I0818	09/25/2019	09/26/19 11:06	
Surrogate: Decachlorobiphenyl	55.9 %	32 - 91		B9I0818	09/25/2019	09/26/19 11:06	
Surrogate: Tetrachloro-m-xylene	60.5 %	38 - 93		B9I0818	09/25/2019	09/26/19 11:06	

Analyst: VV

Analyst: BL

Stantec 735 E. Carnegie Drive, Suite 280 San Bernardino , CA 92408 Project Number: Orbis Real Estate Partners, 185804524.20

Report To: Alicia Jansen

Reported : 09/27/2019

Client Sample ID HA-02-1 Lab ID: 1903479-03

Total Metals by ICP-AES EPA 6010B

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic Lead	1.1 2.8	1.0 1.0	1	B9I0872 B9I0872	09/27/2019 09/27/2019	09/27/19 13:20 09/27/19 13:20	

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
		2.0	1	B010010	-	00/26/10 11.16	
	ND	2.0	1	D010010	09/25/2019	00/26/19 11:10	
4,4 -DDE [2C]	ND	2.0	1	DO10010	09/25/2019	09/20/19 11:16	
4,4 -DDT[2C]	ND	2.0	1	В910818	09/25/2019	09/26/19 11:16	
Aldrin	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:16	
alpha-BHC	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:16	
alpha-Chlordane	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:16	
beta-BHC	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:16	
Chlordane	ND	8.5	1	B9I0818	09/25/2019	09/26/19 11:16	
delta-BHC	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:16	
Dieldrin	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:16	
Endosulfan I	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:16	
Endosulfan II	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:16	
Endosulfan sulfate	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:16	
Endrin	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:16	
Endrin aldehyde	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:16	
Endrin ketone	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:16	
gamma-BHC	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:16	
gamma-Chlordane	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:16	
Heptachlor	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:16	
Heptachlor epoxide	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:16	
Methoxychlor	ND	5.0	1	B9I0818	09/25/2019	09/26/19 11:16	
Toxaphene	ND	50	1	B9I0818	09/25/2019	09/26/19 11:16	
Surrogate: Decachlorobiphenyl	55.0 %	32 - 91		B9I0818	09/25/2019	09/26/19 11:16	
Surrogate: Tetrachloro-m-xylene	59.1 %	38 - 93		B9I0818	09/25/2019	09/26/19 11:16	

Stantec 735 E. Carnegie Drive, Suite 280 San Bernardino , CA 92408 Project Number: Orbis Real Estate Partners, 185804524.20

Report To: Alicia Jansen

Reported : 09/27/2019

Client Sample ID HA-03-1 Lab ID: 1903479-05

Total Metals by ICP-AES EPA 6010B

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	1.1	1.0	1	B9I0872	09/27/2019	09/27/19 13:21	
Lead	2.7	1.0	1	B9I0872	09/27/2019	09/27/19 13:21	

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
		2.0	1	D010919		00/26/10 11:27	
	ND	2.0	1	B910818	09/25/2019	09/26/19 11:27	
4,4 -DDE [2C]	2.4	2.0	1	B910818	09/25/2019	09/26/19 11:27	
4,4′-DDT	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:27	
Aldrin	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:27	
alpha-BHC	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:27	
alpha-Chlordane	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:27	
beta-BHC	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:27	
Chlordane	ND	8.5	1	B9I0818	09/25/2019	09/26/19 11:27	
delta-BHC	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:27	
Dieldrin	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:27	
Endosulfan I	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:27	
Endosulfan II	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:27	
Endosulfan sulfate	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:27	
Endrin	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:27	
Endrin aldehyde	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:27	
Endrin ketone	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:27	
gamma-BHC	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:27	
gamma-Chlordane	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:27	
Heptachlor	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:27	
Heptachlor epoxide	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:27	
Methoxychlor	ND	5.0	1	B9I0818	09/25/2019	09/26/19 11:27	
Toxaphene	ND	50	1	B9I0818	09/25/2019	09/26/19 11:27	
Surrogate: Decachlorobiphenyl	64.9 %	32 - 91		B9I0818	09/25/2019	09/26/19 11:27	
Surrogate: Tetrachloro-m-xylene	68.1 %	38 - 93		B9I0818	09/25/2019	09/26/19 11:27	

Analyst: BL

Stantec 735 E. Carnegie Drive, Suite 280 San Bernardino , CA 92408 Project Number: Orbis Real Estate Partners, 185804524.20

Report To: Alicia Jansen

Reported : 09/27/2019

Client Sample ID HA-04-1 Lab ID: 1903479-07

Total Metals by ICP-AES EPA 6010B

	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	1.1	1.0	1	B9I0872	09/27/2019	09/27/19 13:26	
Lead	2.6	1.0	1	B9I0872	09/27/2019	09/27/19 13:26	

Organochlorine Pesticides by EPA 8081

Analyte	Result	PQL	Dilution	Batah	Drenared	Date/Time	Notes
Anatyte	(ug/kg)	(ug/Kg)	Dirution	Dawll	riepaieu	-silaiy2eu	110105
4,4'-DDD	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:37	
4,4'-DDE [2C]	12	2.0	1	B9I0818	09/25/2019	09/26/19 11:37	
4,4'-DDT [2C]	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:37	
Aldrin	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:37	
alpha-BHC	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:37	
alpha-Chlordane	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:37	
beta-BHC	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:37	
Chlordane	ND	8.5	1	B9I0818	09/25/2019	09/26/19 11:37	
delta-BHC	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:37	
Dieldrin	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:37	
Endosulfan I	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:37	
Endosulfan II	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:37	
Endosulfan sulfate	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:37	
Endrin	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:37	
Endrin aldehyde	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:37	
Endrin ketone	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:37	
gamma-BHC	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:37	
gamma-Chlordane	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:37	
Heptachlor	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:37	
Heptachlor epoxide	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:37	
Methoxychlor	ND	5.0	1	B9I0818	09/25/2019	09/26/19 11:37	
Toxaphene	ND	50	1	B9I0818	09/25/2019	09/26/19 11:37	
Surrogate: Decachlorobiphenyl	58.3 %	32 - 91		B9I0818	09/25/2019	09/26/19 11:37	
Surrogate: Tetrachloro-m-xylene	62.8 %	38 - 93		B9I0818	09/25/2019	09/26/19 11:37	

Analyst: BL

Stantec 735 E. Carnegie Drive, Suite 280 San Bernardino , CA 92408 Project Number: Orbis Real Estate Partners, 185804524.20

Report To: Alicia Jansen

Reported : 09/27/2019

Client Sample ID HA-05-1 Lab ID: 1903479-09

Total Metals by ICP-AES EPA 6010B

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	1.1	1.0	1	B9I0872	09/27/2019	09/27/19 13:28	
Lead	2.5	1.0	1	B9I0872	09/27/2019	09/27/19 13:28	

Organochlorine Pesticides by EPA 8081

Analyte	Result	PQL	Dilution	Batch	Prenared	Date/Time	Notes
1 mary to	(ug/kg)	(ug/kg)	Dilution	Dawli	ricparcu	AnaryZeu	110105
4,4′-DDD	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:48	
4,4´-DDE [2C]	2.9	2.0	1	B9I0818	09/25/2019	09/26/19 11:48	
4,4′-DDT	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:48	
Aldrin	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:48	
alpha-BHC	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:48	
alpha-Chlordane	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:48	
beta-BHC	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:48	
Chlordane	ND	8.5	1	B9I0818	09/25/2019	09/26/19 11:48	
delta-BHC	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:48	
Dieldrin	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:48	
Endosulfan I	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:48	
Endosulfan II	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:48	
Endosulfan sulfate	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:48	
Endrin	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:48	
Endrin aldehyde	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:48	
Endrin ketone	ND	2.0	1	B9I0818	09/25/2019	09/26/19 11:48	
gamma-BHC	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:48	
gamma-Chlordane	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:48	
Heptachlor	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:48	
Heptachlor epoxide	ND	1.0	1	B9I0818	09/25/2019	09/26/19 11:48	
Methoxychlor	ND	5.0	1	B9I0818	09/25/2019	09/26/19 11:48	
Toxaphene	ND	50	1	B9I0818	09/25/2019	09/26/19 11:48	
Surrogate: Decachlorobiphenyl	59.2 %	32 - 91		B9I0818	09/25/2019	09/26/19 11:48	
Surrogate: Tetrachloro-m-xylene	62.1 %	38 - 93		B9I0818	09/25/2019	09/26/19 11:48	

Analyst: BL

Stantec 735 E. Carnegie Drive, Suite 280 San Bernardino , CA 92408 Project Number: Orbis Real Estate Partners, 185804524.20

Report To: Alicia Jansen

Reported : 09/27/2019

QUALITY CONTROL SECTION

Total Metals by ICP-AES EPA 6010B - Quality Control

Andrea	Result	PQL	MDL	Spike	Source	0/ D	% Rec	DDD	RPD Limit	Natar
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B910872 - EPA 3050B_S										
Blank (B910872-BLK1)					Prepared	: 9/27/2019	Analyzed: 9/27/	2019		
Arsenic	ND	1.0	0.12							
Lead	ND	1.0	0.18							
LCS (B9I0872-BS1)					Prepared	: 9/27/2019	Analyzed: 9/27/	2019		
Arsenic	47.4563	1.0	0.12	50.0000		94.9	80 - 120			
Lead	48.4420	1.0	0.18	50.0000		96.9	80 - 120			
Matrix Spike (B9I0872-MS1)		S	Source: 190347	79-09	Prepared	: 9/27/2019	Analyzed: 9/27/	2019		
Arsenic	104.097	1.0	0.12	125.000	1.11586	82.4	46 - 97			
Lead	103.019	1.0	0.18	125.000	2.53822	80.4	33 - 121			
Matrix Spike Dup (B9I0872-MSD1)	ıp (B9I0872-MSD1)		Source: 190347	79-09	Prepared	: 9/27/2019	Analyzed: 9/27/	2019		
Arsenic	105.066	1.0	0 0.12 1		1.11586 83.2		46 - 97	0.927	20	
Lead	102.435	1.0	0.18	125.000	2.53822	79.9	33 - 121	0.569	20	

Stantec 735 E. Carnegie Drive, Suite 280 San Bernardino , CA 92408 Project Number: Orbis Real Estate Partners, 185804524.20

Report To: Alicia Jansen

Reported : 09/27/2019

Organochlorine Pesticides by EPA 8081 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B910818 - GCSEMI_PCB/P	EST_S									
Blank (B9I0818-BLK1)					Prepared	: 9/25/2019 A	nalyzed: 9/26/2	2019		
4,4′-DDD	ND	2.0	0.14							
4,4′-DDD [2C]	ND	2.0	0.14							
4,4'-DDE	ND	2.0	0.20							
4,4'-DDE [2C]	ND	2.0	0.20							
4,4'-DDT	ND	2.0	0.04							
4,4'-DDT [2C]	ND	2.0	0.04							
Aldrin	ND	1.0	0.05							
Aldrin [2C]	ND	1.0	0.05							
alpha-BHC	ND	1.0	0.12							
alpha-BHC [2C]	ND	1.0	0.12							
alpha-Chlordane	ND	1.0	0.06							
alpha-Chlordane [2C]	ND	1.0	0.06							
beta-BHC	ND	1.0	0.08							
beta-BHC [2C]	ND	1.0	0.08							
Chlordane	ND	8.5	0.78							
Chlordane [2C]	ND	8.5	0.78							
delta-BHC	ND	1.0	0.07							
delta-BHC [2C]	ND	1.0	0.07							
Dieldrin	ND	2.0	0.04							
Dieldrin [2C]	ND	2.0	0.04							
Endosulfan I	ND	1.0	0.05							
Endosulfan I [2C]	ND	1.0	0.05							
Endosulfan II	ND	2.0	0.06							
Endosulfan II [2C]	ND	2.0	0.06							
Endosulfan sulfate	ND	2.0	0.15							
Endosulfan Sulfate [2C]	ND	2.0	0.15							
Endrin	ND	2.0	0.08							
Endrin [2C]	ND	2.0	0.08							
Endrin aldehyde	ND	2.0	0.09							
Endrin aldehyde [2C]	ND	2.0	0.09							
Endrin ketone	ND	2.0	0.09							
Endrin ketone [2C]	ND	2.0	0.09							
gamma-BHC	ND	1.0	0.12							
gamma-BHC [2C]	ND	1.0	0.12							
gamma-Chlordane	ND	1.0	0.28							
gamma-Chlordane [2C]	ND	1.0	0.28							
Heptachlor	ND	1.0	0.06							
Heptachlor [2C]	ND	1.0	0.06							
Heptachlor epoxide	ND	1.0	0.06							
Heptachlor epoxide [2C]	ND	1.0	0.06							
Methoxychlor	ND	5.0	0.16							

Stantec 735 E. Carnegie Drive, Suite 280 San Bernardino , CA 92408 Project Number: Orbis Real Estate Partners, 185804524.20

Report To: Alicia Jansen

Reported : 09/27/2019

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B9I0818 - GCSEMI_PCB/	PEST_S (co	ntinued)								
Blank (B9I0818-BLK1) - Continued					Prepare	d: 9/25/2019	Analyzed: 9/26	/2019		
Methoxychlor [2C]	ND	5.0	0.16							
Toxaphene	ND	50	4.7							
Toxaphene [2C]	ND	50	4.7							
Surrogate: Decachlorobiphenyl	11.60			16.6667		69.6	32 - 91			
Surrogate: Decachlorobiphenyl [2	11.28			16.6667		67.7	32 - 91			
Surrogate: Tetrachloro-m-xylene	12.96			16.6667		77.7	38 - 93			
Surrogate: Tetrachloro-m-xylene [12.39			16.6667		74.3	38 - 93			
LCS (B9I0818-BS1)					Prepare	d: 9/25/2019 A	Analyzed: 9/26	/2019		
4,4′-DDD	15.0770	2.0	0.14	16.6667		90.5	66 - 112			
4,4'-DDD [2C]	15.1762	2.0	0.14	16.6667		91.1	66 - 112			
4,4′-DDE	16.2200	2.0	0.20	16.6667		97.3	62 - 112			
4,4'-DDE [2C]	16.3472	2.0	0.20	16.6667		98.1	62 - 112			
4,4'-DDT	13.9205	2.0	0.04	16.6667		83.5	48 - 90			
4,4'-DDT [2C]	13.2027	2.0	0.04	16.6667		79.2	48 - 90			
Aldrin	16.0613	1.0	0.05	16.6667		96.4	58 - 104			
Aldrin [2C]	16.5455	1.0	0.05	16.6667		99.3	58 - 104			
alpha-BHC	15.5183	1.0	0.12	16.6667		93.1	57 - 105			
alpha-BHC [2C]	15.4357	1.0	0.12	16.6667		92.6	57 - 105			
alpha-Chlordane	15.7818	1.0	0.06	16.6667		94.7	62 - 108			
alpha-Chlordane [2C]	16.2330	1.0	0.06	16.6667		97.4	62 - 108			
beta-BHC	15.1892	1.0	0.08	16.6667		91.1	59 - 106			
beta-BHC [2C]	15.7117	1.0	0.08	16.6667		94.3	59 - 106			
delta-BHC	15.2235	1.0	0.07	16.6667		91.3	63 - 115			
delta-BHC [2C]	15.2135	1.0	0.07	16.6667		91.3	63 - 115			
Dieldrin	15.4427	2.0	0.04	16.6667		92.7	59 - 102			
Dieldrin [2C]	15.5722	2.0	0.04	16.6667		93.4	59 - 102			
Endosulfan I	14.4217	1.0	0.05	16.6667		86.5	61 - 99			
Endosulfan I [2C]	14.9043	1.0	0.05	16.6667		89.4	61 - 99			
Endosulfan II	15.5857	2.0	0.06	16.6667		93.5	65 - 105			
Endosulfan II [2C]	15.7905	2.0	0.06	16.6667		94.7	65 - 105			
Endosulfan sulfate	14.5180	2.0	0.15	16.6667		87.1	59 - 107			
Endosulfan Sulfate [2C]	14.6845	2.0	0.15	16.6667		88.1	59 - 107			
Endrin	16.9818	2.0	0.08	16.6667		102	65 - 113			
Endrin [2C]	17.2603	2.0	0.08	16.6667		104	65 - 113			
Endrin aldehyde	15.0270	2.0	0.09	16.6667		90.2	61 - 109			
Endrin aldehyde [2C]	16.0017	2.0	0.09	16.6667		96.0	61 - 109			
Endrin ketone	13.5278	2.0	0.09	16.6667		81.2	56 - 97			
Endrin ketone [2C]	13.7230	2.0	0.09	16.6667		82.3	56 - 97			
gamma-BHC	14.6687	1.0	0.12	16.6667		88.0	57 - 101			
gamma-BHC [2C]	15.8622	1.0	0.12	16.6667		95.2	57 - 101			

Stantec 735 E. Carnegie Drive, Suite 280 San Bernardino , CA 92408 Project Number: Orbis Real Estate Partners, 185804524.20

Report To: Alicia Jansen

Reported : 09/27/2019

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

	Result	MDL	Spike	Source		% Rec		RPD		
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B9I0818 - GCSEMI_PCB/P	PEST_S (con	tinued)								
LCS (B9I0818-BS1) - Continued					Prepared	: 9/25/2019	Analyzed: 9/26/2	2019		
gamma-Chlordane	15.6232	1.0	0.28	16.6667		93.7	56 - 125			
gamma-Chlordane [2C]	15.9030	1.0	0.28	16.6667		95.4	56 - 125			
Heptachlor	15.3187 1.0 0.06 16.6667					91.9	61 - 105			
Heptachlor [2C]	15.0870	1.0	0.06	16.6667		90.5	61 - 105			
Heptachlor epoxide	15.1422	1.0	0.06	16.6667		90.9	59 - 97			
Heptachlor epoxide [2C]	15.4097	1.0	0.06	16.6667		92.5	59 - 97			
Methoxychlor	13.9350	5.0	0.16	16.6667		83.6	68 - 118			
Methoxychlor [2C]	13.9413	5.0	0.16	16.6667		83.6	68 - 118			
Surrogate: Decachlorobiphenyl	13.62			16.6667		81.7	32 - 91			
Surrogate: Decachlorobiphenyl [2	14.25			16.6667		85.5	32 - 91			
Surrogate: Tetrachloro-m-xylene	14.23			16.6667		85.4	38 - 93			
Surrogate: Tetrachloro-m-xylene [15.50			16.6667		93.0	38 - 93			
Matrix Spike (B910818-MS1)		S	ource: 19034	79-01	Prepared	: 9/25/2019	Analyzed: 9/26/2	2019		
4,4′-DDD	9.03550	2.0	0.14	16.6667	ND	54.2	33 - 116			
4,4'-DDD [2C]	5.82117	2.0	0.14	16.6667	ND	34.9	33 - 116			
4,4′-DDE	19.4712	2.0	0.20	16.6667	12.8502	39.7	29 - 128			
4,4'-DDE [2C]	12.8252	2.0	0.20	16.6667	13.9827	-6.94	29 - 128			M1
4,4'-DDT	9.39750	2.0	0.04	16.6667	2.27333	42.7	27 - 109			
4,4'-DDT [2C]	6.81950	2.0	0.04	16.6667	2.65900	25.0	27 - 109			M1
Aldrin	9.05033	1.0	0.05	16.6667	ND	54.3	34 - 110			
Aldrin [2C]	6.40267	1.0	0.05	16.6667	ND	38.4	34 - 110			
alpha-BHC	9.08950	1.0	0.12	16.6667	ND	54.5	39 - 107			
alpha-BHC [2C]	5.98383	1.0	0.12	16.6667	ND	35.9	39 - 107			M1
alpha-Chlordane	9.09250	1.0	0.06	16.6667	ND	54.6	37 - 111			
alpha-Chlordane [2C]	6.29200	1.0	0.06	16.6667	ND	37.8	37 - 111			
beta-BHC	9.35083	1.0	0.08	16.6667	ND	56.1	33 - 111			
beta-BHC [2C]	6.32033	1.0	0.08	16.6667	ND	37.9	33 - 111			
delta-BHC	8.07283	1.0	0.07	16.6667	ND	48.4	25 - 122			
delta-BHC [2C]	5.52850	1.0	0.07	16.6667	ND	33.2	25 - 122			
Dieldrin	9.08733	2.0	0.04	16.6667	ND	54.5	28 - 114			
Dieldrin [2C]	6.22017	2.0	0.04	16.6667	ND	37.3	28 - 114			
Endosulfan I	8.53983 1		0.05	16.6667	ND	51.2	35 - 107			
Endosulfan I [2C]	5.78317	1.0	0.05	16.6667	ND	34.7	35 - 107			M1
Endosulfan II	9.48350	2.0	0.06	16.6667	ND	56.9	13 - 122			
Endosulfan II [2C]	6.35317	2.0	0.06	16.6667	ND	38.1	13 - 122			
Endosulfan sulfate	8.49433 2.0 0.15 16.6		16.6667	ND	51.0	13 - 120				
Endosulfan Sulfate [2C]	5.73450 2.0 0.15 16.0		16.6667	ND	34.4	13 - 120				
Endrin	10.2910	2.0	0.08	16.6667	ND	61.7	31 - 121			
Endrin [2C]	6.93050 2.0 0.08 16.66		16.6667	ND	41.6	31 - 121				
Endrin aldehyde	9.24450 2.0 0.09 16.666		16.6667	ND	55.5	18 - 129				

Stantec 735 E. Carnegie Drive, Suite 280 San Bernardino , CA 92408 Project Number: Orbis Real Estate Partners, 185804524.20

Report To: Alicia Jansen

Reported : 09/27/2019

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B9I0818 - GCSEMI_PCB	PEST_S (co	ntinued)								
Matrix Spike (B9I0818-MS1) - Cont	tinued	S	ource: 19034	79-01	Prepared	l: 9/25/2019	Analyzed: 9/26/	/2019		
Endrin aldehyde [2C]	5.64083	2.0	0.09	16.6667	ND	33.8	18 - 129			
Endrin ketone	8.16383	2.0	0.09	16.6667	ND	49.0	14 - 113			
Endrin ketone [2C]	5.68000	2.0	0.09	16.6667	ND	34.1	14 - 113			
gamma-BHC	9.50883	1.0	0.12	16.6667	ND	57.1	34 - 104			
gamma-BHC [2C]	6.17367	1.0	0.12	16.6667	ND	37.0	34 - 104			
gamma-Chlordane	9.34800	1.0	0.28	16.6667	ND	56.1	35 - 121			
gamma-Chlordane [2C]	6.05483	1.0	0.28	16.6667	ND	36.3	35 - 121			
Heptachlor	9.32567	1.0	0.06	16.6667	ND	56.0	35 - 110			
Heptachlor [2C]	6.05783	1.0	0.06	16.6667	ND	36.3	35 - 110			
Heptachlor epoxide	8.74983	1.0	0.06	16.6667	ND	52.5	31 - 106			
Heptachlor epoxide [2C]	6.22267	1.0	0.06	16.6667	ND	37.3	31 - 106			
Methoxychlor	9.74983	5.0	0.16	16.6667	ND	58.5	21 - 128			
Methoxychlor [2C]	6.17583	5.0	0.16	16.6667	ND	37.1	21 - 128			
Surrogate: Decachlorobiphenvl	8.828			16.6667		53.0	32 - 91			
Surrogate: Decachlorobiphenvl [2	6.283			16.6667		37.7	32 - 91			
Surrogate: Tetrachloro-m-xylene	8.931			16.6667		53.6	38 - 93			
Surrogate: Tetrachloro-m-xylene [6.511			16.6667		39.1	38 - 93			
Matrix Spike Dup (B910818-MSD1))	S	ource: 19034	79-01	Prepared	l: 9/25/2019	Analyzed: 9/26/	/2019		
4.4' DDD	10 2509	2.0	0.14	16 6667		61.5	22 116	12.6	20	
4,4 -DDD 4.4' DDD [2C]	5 75850	2.0	0.14	16.6667	ND	24.6	33 - 110 22 116	12.0	20	
4,4 -DDD [2C]	3.73830	2.0	0.14	16.6667	12 9502	56.5	33 - 110 20 128	1.08	20	
4,4 -DDE 4.4' DDE [2C]	12 7000	2.0	0.20	16.6667	12.0302	7.64	29 - 128	15.4	20	M1
4,4 -DDE [2C]	12.7090	2.0	0.20	10.0007	13.9627	-/.04	29 - 128	0.910	20	IVI I
4,4 -DD1	10.8445	2.0	0.04	10.000/	2.2/333	51.4 25.1	27 - 109	14.3	20	M1
4,4 -DD1 [2C]	0.83517	2.0	0.04	10.000/	2.05900	25.1 (5.4	27 - 109	19.5	20	MI
	10.8947	1.0	0.05	10.000/	ND	05.4	34 - 110	18.5	20	
Aldrin [2C]	6.26400	1.0	0.05	16.6667	ND	37.0	34 - 110	2.19	20	
alpha-BHC	10.5065	1.0	0.12	16.6667	ND	63.0	39 - 107	14.5	20	M
alpha-BHC [2C]	6.00133	1.0	0.12	16.6667	ND	36.0	39 - 107	0.292	20	MI
alpha-Chlordane	10.3233	1.0	0.06	16.6667	ND	61.9	37 - 111	12./	20	
alpha-Chlordane [2C]	6.17/17	1.0	0.06	16.6667	ND	37.1	37 - 111	1.84	20	
beta-BHC	10.6758	1.0	0.08	16.6667	ND	64.1	33 - 111	13.2	20	
beta-BHC [2C]	6.24367	1.0	0.08	16.6667	ND	37.5	33 - 111	1.22	20	
delta-BHC	9.20200	1.0	0.07	16.6667	ND	55.2	25 - 122	13.1	20	
delta-BHC [2C]	5.50850	1.0	0.07	16.6667	ND	33.1	25 - 122	0.362	20	
Dieldrin	10.5882	2.0	0.04	16.6667	ND	63.5	28 - 114	15.3	20	
Dieldrin [2C]	6.12217	2.0	0.04	16.6667	ND	36.7	28 - 114	1.59	20	
Endosulfan I 9.7081 Endosulfan LI2CI 5.6050		1.0	0.05	16.6667	ND	58.2	35 - 107	12.8	20	
Endosulfan I [2C] 5.69500 Endosulfan II 10 7217		1.0	0.05	16.6667	ND	34.2	35 - 107	1.54	20	M1
Endosulfan II	10.7217	2.0	0.06	16.6667	ND	64.3	13 - 122	12.3	20	
Endosulfan II [2C]	6.27533	2.0	0.06	16.6667	ND	37.7	13 - 122	1.23	20	

Stantec 735 E. Carnegie Drive, Suite 280 San Bernardino , CA 92408 Project Number: Orbis Real Estate Partners, 185804524.20

Report To: Alicia Jansen

Reported : 09/27/2019

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B9I0818 - GCSEMI_PCB/PEST_S (continued)

Matrix Spike Dup (B910818-MSD1)) - Continued		Source: 19034	479-01	Prepared: 9/25/2019 Analyzed: 9/26/2019									
Endosulfan sulfate	9.65700	2.0	0.15	16.6667	ND	57.9	13 - 120	12.8	20					
Endosulfan Sulfate [2C]	5.62183	2.0	0.15	16.6667	ND	33.7	13 - 120	1.98	20					
Endrin	11.8383	2.0	0.08	16.6667	ND	71.0	31 - 121	14.0	20					
Endrin [2C]	6.91833	2.0	0.08	16.6667	ND	41.5	31 - 121	0.176	20					
Endrin aldehyde	10.4563	2.0	0.09	16.6667	ND	62.7	18 - 129	12.3	20					
Endrin aldehyde [2C]	5.52317	2.0	0.09	16.6667	ND	33.1	18 - 129	2.11	20					
Endrin ketone	9.35817	2.0	0.09	16.6667	ND	56.1	14 - 113	13.6	20					
Endrin ketone [2C]	5.60933	2.0	0.09	16.6667	ND	33.7	14 - 113	1.25	20					
gamma-BHC	10.9388	1.0	0.12	16.6667	ND	65.6	34 - 104	14.0	20					
gamma-BHC [2C]	6.14183	1.0	0.12	16.6667	ND	36.9	34 - 104	0.517	20					
gamma-Chlordane	10.5790	1.0	0.28	16.6667	ND	63.5	35 - 121	12.4	20					
gamma-Chlordane [2C]	5.97467	1.0	0.28	16.6667	ND	35.8	35 - 121	1.33	20					
Heptachlor	10.6978	1.0	0.06	16.6667	ND	64.2	35 - 110	13.7	20					
Heptachlor [2C]	6.01583	1.0	0.06	16.6667	ND	36.1	35 - 110	0.696	20					
Heptachlor epoxide	9.88133	1.0	0.06	16.6667	ND	59.3	31 - 106	12.1	20					
Heptachlor epoxide [2C]	6.14167	1.0	0.06	16.6667	ND	36.8	31 - 106	1.31	20					
Methoxychlor	11.1852	5.0	0.16	16.6667	ND	67.1	21 - 128	13.7	20					
Methoxychlor [2C]	6.13700	5.0	0.16	16.6667	ND	36.8	21 - 128	0.631	20					
Surrogate: Decachlorobiphenyl	10.15			16.6667		60.9	32 - 91							
Surrogate: Decachlorobiphenyl [2	6.220			16.6667		37.3	32 - 91							
Surrogate: Tetrachloro-m-xylene	10.92			16.6667		65.5	38 - 93							
Surrogate: Tetrachloro-m-xylene [6.461			16.6667		38.8	38 - 93							

Stantec

Certificate of Analysis

735 E. Carnegie Drive, Suite 280

San Bernardino, CA 92408

Project Number: Orbis Real Estate Partners, 185804524.20

Report To: Alicia Jansen

Reported : 09/27/2019

Notes and Definitions

M1	Matrix spike recovery outside of acceptance limit. The analytical batch was validated by the laboratory control sample.
ND	Analyte is not detected at or above the Practical Quantitation Limit (PQL). When client requests quantitation against MDL, analyte is not detected at or above the Method Detection Limit (MDL)
PQL	Practical Quantitation Limit
MDL	Method Detection Limit
NR	Not Reported
RPD	Relative Percent Difference
CA2	CA-ELAP (CDPH)
OR1	OR-NELAP (OSPHL)

Notes:

(1) The reported MDL and PQL are based on prep ratio variation and analytical dilution.

(2) The suffix [2C] of specific analytes signifies that the reported result is taken from the instrument's second column.

(3) Results are wet unless otherwise specified.

σ	Tion of the local division of the local divi
7	
7	
\sim	
0	
õ	
~	
~	1

	quest	TAT			ТАТ ОЯАОИАТ? ОЛОН					×	×	×	×	×	×	×	×	×	×							
_	Re(ers	ulei	01 00	Jagmuri	+	-			1	1	1	-	-	-							Concession of the local diversion of the loca
of	lysis																									No. of sol of the sol
	Ana																				 					and hubble boy
Page	and	st																								Construction of the
	sord	anba																		 	 					citerio (cristica) (da 100
	Rec	is Re																		 					spu	and that a short to
	tody	alysi					·														 				Redlar	de trais en antes de la
	Cus	Ana		· · · ·																 	 				ntec F	
	n-of-								-														rks:		i: Sta	Contraction and
ġ	Chai		<u> </u>		¥	30103 1808 b	etpoq etpoq	M A93 M A93	OC5s by Lead by E	××		× ×		× ×		×××		× ×					Remai		3ill To	directoresteers
Lab N	ĽL				80	109 po	dt9N	V EPA	Arsenic b	×		×		×		×		×								
	No				2616	\uparrow	atrix		SOIF	×	×	×	×	×	×	×	×	×	×							and the second second second
	D				- Mor		e M		AJTAW														Ļ			
] Yes				Beal	ris, C/	vativ		NONE	×	×	×	×	×	×	×	×	×	×				ϵ t		:/	
20		dress			رج-	a, Per	eser		ICE HNO ³														à	A	ratory	
:. 1 35-61	4	ail Ad				acenti	٩		HCI	~	~	~			~			~		 	 	_			Labo	
es Inc te 280 1 909-33	tepor	o (Em	EI	NA	22	Id pue	er	RAL	RABBES . SSAJÐ				$\widehat{}$			$\hat{}$	$\hat{}$			 	 	-	(ed by	red by	/ed by	
Servio e, Sui 92408 Fax: 9	DFF	oles T	ec.co		Str	larvill ;	ntain		РОЦУ													\triangleleft	Receiv	Receiv	Receiv	
lting (e Driv o, CA 213	nia E	iverat	stant			ss: C of H	Cor		SLEEVE								_						a X	ine 13	en la	-
Consu Irnegi ardin 255-8	alifor	ic Del	sena	:oN O	Nam Die	Addre: NW		ex Ac	0 m 04																1 Ir	
Stantec C 735 E. Ca San Bern I el:909-2	Ö	Electron	alicia.jan	Global II	Samplers	Project /	ling		Time	1120	195	11-55	1145	1155	1205	1210	1230	245	1300				Date	Date 7/19/16	Date	
							Samp		ate	2110									-							
			755						ă	en III																
	DF To)		II, CA 90	: No.:	P.O. No	artners	distriction of the second s		nple oth		~		~				-		-				d	1 ð		
· E	opy or F		Signal H	Fay		Estate P			Sar De	×	.,							Ţ						長)	And
() Manter	(Hardc	dress:	Avenue,	045	: 24.201	is Real I	r:		me															- A		- A A A A A A A A A A A A A A A A A A A
-559	ontact	ry / Ad	Walnut	o.: 2-989-4	10000000000000000000000000000000000000	ame: Orb	lanage	nə	ole Na	-	ကု	-	က္	,	<u>ہ</u>	-	<u>ہ</u>	-	ကု				hed by	shed by	cd by	and the second second
	oject C via iang	borato	3275	N anot 562	oject N	oject h	oject N	cia Jans	Samp	A-01	A-01	A-02	A-02	A-03	A-03	A-04	A-04	A-05	A-05				linquis	linqui	alinqui	
	<u>م</u> :	La	μ	ġ	à	à	٦	Alik		I	I	I	I	I	I	I	I	T	I]			Re	l <u>x</u>		_

Page 15 of 15