

# DRAINAGE ANALYSIS - ENTRY CULVERT

# DE PORTOLA WINERY APN: 941-180-032

NEC DE PORTOLA ROAD AND MONTE DE ORO TEMECULA, CALIFORNIA 92592 PAR01536

#### PREPARED FOR:

LONG JIANG FERTILE SOILS, LLC 79 DUMORE IRVINE, CALIFORNIA 92620

#### PREPARED BY:

VENTURA ENGINEERING INLAND 27393 YNEZ ROAD, SUITE 159 TEMECULA, CALIFORNIA 92591 (951) 252-7632

Original Date: January 23, 2018

I hereby declare that I am the engineer of work for this project, that I have exercised responsible charge over the design of the project as defined in Section 6703 of the Business and Professions code, and that the design is consistent with current standards.



1/23/18

WILFREDO VENTURA R.C.E. NO. 66532 EXPIRES 6/30/18 DATE



## TABLE OF CONTENTS

## **DESCRIPTIONS**

## <u>PAGE</u>

| COVE  | R SHEET                                |   |
|-------|----------------------------------------|---|
| TABLE | E OF CONTENTS                          |   |
| 1.0   | INTRODUCTION                           |   |
| 2.0   | LOCATION                               |   |
| 3.0   | METHODOLOGY 1                          |   |
| 4.0   | OPTION ANALYSIS                        |   |
| 5.0   | FEMA ANALYSIS                          |   |
| 6.0   | REFERENCES                             |   |
| 7.0   | DECLARATION OF RESPONSIBLE CHARGE 2    | • |
| 8.0   | ATTACHMENTS                            | , |
|       | 8.1 ATTACHMENT 1: STANDARDS EXCERPTS 2 | , |
|       | 8.2 ATTACHMENT 2: CALCULATIONS 2       | , |
|       | 8.3 ATTACHMENT 3: EXHIBITS             | , |
|       |                                        |   |

ATTACHMENT 1: STANDARDS EXCERPTS

ATTACHMENT 2: CALCULATIONS

ATTACHMENT 3: EXHIBITS



#### 1.0 INTRODUCTION

The purpose of this report is to calculate the limited hydrology and hydraulic conditions associated with the existing entry area culverts and their repair due to the undermining and destruction of the vineyards in the exit area of the culverts entering the property from the northside runoff from De Portola Road. Although not being submitted to an agency for review at this time, these calculations have been created using the Riverside County Flood Control and Water Conservation District Hydrology Manual (April 1978) as discussed further in Section 3.0.

#### 2.0 LOCATION

The project site is located at northeast corner of De Portola Road and Monte de Oro in Temecula, California 92592. A vicinity map is provided for reference in Attachment 4.

#### 3.0 METHODOLOGY

This report has calculated 100-Year Maximum Peak Runoff based on the Riverside County Flood Control and Water Conservation District Hydrology Manual (April 1978) rational methodology and routes is through the ditches, culverts, and pipes as requested by the owner. In addition, this manual will be referred to as the 'Standards' throughout this report. Clean copies of the excerpts from the standards have been included in Attachment 1: Standards Excerpts for reference. The calculations are provided in Attachment 2: Calculations. Exhibits are provided for reference in Attachment 3: Hydrology Exhibits.

#### 4.0 OPTION ANALYSIS

Two options with two different pipe options have been analyzed. The options overall considerations can be summarized as:

Option 1A - Run North then West - 1 Pipe: This will require (1) 24" pipe Option 1B - Nun North then West - 2 Pipes: This will require (2) 18" pipes

Option 2A – Run South then West – 1 Pipe: This will require (1) 24" pipe Option 2B – Nun South then West – 2 Pipes: This will require (2) 18" pipes

#### 5.0 FEMA ANALYSIS

No FEMA or flooding analysis has been performed by these calculations.

#### 6.0 REFERENCES

The following references were utilized in the creation of this hydrology report:

Brater & King, Handbook of Hydraulics, 6th ed.

Hydrology Manual, Riverside County Flood Control & Water Conservation District, April 1978



#### 7.0 DECLARATION OF RESPONSIBLE CHARGE

I hereby declare that I am the engineer of work for this project, that I have exercised responsible charge over the design of the project as defined in Section 6703 of the Business and Professions code, and that the design is consistent with current standards.

I understand that the check of project drawings and specifications by the agency is confined to a review only and does not relieve me, as engineer of work, of my responsibilities for project design.

Wilfredo Ventura



1/23/18

Date

## 8.0 ATTACHMENTS

The following attachment sections are provided for reference:

#### 8.1 ATTACHMENT 1: STANDARD EXCERPTS

This attachment contains excerpts from the standards. Please refer to the attached references.

#### 8.2 ATTACHMENT 2: CALCULATIONS

This attachment contains the calculations. Calculations are provided here for reference.

## 8.3 ATTACHMENT 3: HYDROLOGY EXHIBITS

This attachment contains select exhibits that are provided here for reference.



# ATTACHMENT 1: STANDARD EXCERPTS

This attachment contains various excerpts from the Riverside County Flood Control & Water Conservation District Hydrology Manual (April 1978 edition). Please see the attached excerpts from the standards.



PLATE C-1.53



| R<br>H                                |                               |                                                                      | <u>ــــ</u>                                                  | RAINFA                                 |                                                                                                                                | INT                                                                               | ENSIT                        | <br> <br>                                                                                                                  | NCHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ES PE                                                                      | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
|---------------------------------------|-------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| YDR                                   | MIRA                          | LOMA                                                                 |                                                              | MURRIETA<br>& RANCHO                   | - TEME<br>Califo                                                                                                               | CULA<br>RNIA                                                                      | Z                            | 10RCD                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PALW                                                                       | SPRING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PERRIS                       | VALLEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| C 8                                   | DURATION<br>MINUTES           | FREGU<br>10<br>Year                                                  | ENCY<br>100<br>Year                                          | DURATION<br>MINUTES                    | FREG<br>10<br>Year                                                                                                             | UENCY<br>100<br>YEAR                                                              | DURATION<br>MINUTES          | 4 FREG<br>10<br>YEAR                                                                                                       | UENCY<br>100<br>Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DURATION<br>MINUTES                                                        | FREG<br>10<br>YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UENCY<br>100<br>YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DURATION<br>MINUTES          | FREQU<br>10<br>YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ENCY<br>100<br>YEAR                     |
| WC<br>Man                             | w @ r @ @                     | 2.84<br>2.58<br>2.37<br>2.37<br>2.21<br>2.08                         | + + 8<br>+ 07<br>3 - 75<br>3 - 49<br>3 - 28                  | ις <b>ο μ</b> α α                      | 3.45<br>3.12<br>2.87<br>2.67<br>2.50                                                                                           | 5.10<br>4.61<br>3.94<br>3.64                                                      | 50000                        | 2.77<br>2.53<br>2.34<br>2.19<br>2.07                                                                                       | 4.16<br>3.79<br>3.51<br>3.29<br>3.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50000                                                                      | 4 . 23<br>3 . 80<br>3 . 80<br>3 . 02<br>3 . 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.76<br>6.08<br>5.56<br>8.15<br>8.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | un vo r∼ co o                | 2.66<br>2.66<br>2.09<br>1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.78<br>3.46<br>3.21<br>3.01<br>2.84    |
| <b>D</b><br>IUAL                      | 0 - 0 - 4                     | 1.96<br>1.87<br>1.78<br>1.78<br>1.71<br>1.64                         | 3.10<br>2.95<br>2.82<br>2.60<br>2.60                         | 10110                                  | 2.36<br>2.13<br>2.013<br>1.96                                                                                                  | 891<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80 | 011284<br>11151              | 1.96<br>1.87<br>1.79<br>1.72<br>1.72                                                                                       | 2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.5888<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.5888<br>2.588<br>2.588<br>2.588<br>2.588<br>2.5888<br>2.588<br>2.588<br>2.588<br>2.588<br>2.588<br>2.5 | 1112                                                                       | 999<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 * . 52<br>9 9 4 . 52<br>9 9 9 7 8<br>9 9 7 8<br>9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8                                                                                                                                                                                          | 1110<br>1132<br>1132<br>1132 | 1.88<br>1.79<br>1.72<br>1.65<br>1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.55<br>2.55<br>2.34<br>2.33<br>2.33    |
|                                       | 200 200<br>200 200<br>200 200 | 1.58<br>1.59<br>1.59<br>1.59<br>1.59<br>1.59<br>1.59<br>1.59<br>1.59 | 01 01 00000000000000000000000000000000                       | 00 98400<br>00 198400<br>00            | 1.89<br>1.82<br>1.76<br>1.71<br>1.61<br>1.61<br>1.53                                                                           | 2.55<br>2.66<br>2.55<br>2.55<br>2.45<br>2.38<br>2.38<br>2.38                      | 15<br>16<br>19<br>20<br>20   | 1.60<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.5                                                        | 2.40<br>2.32<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13<br>2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | 2.53<br>2.15<br>2.08<br>2.01<br>2.01<br>2.89<br>1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64000 64<br>54000 64<br>64000 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20 1987155<br>20 1987765     | 1. 24<br>1. 45<br>1. 45 | 2.21<br>2.14<br>2.08<br>2.02<br>1.97    |
| INTEN<br>CU                           | 498 0N498 0<br>NNN MMMMM 4    | 1.24<br>1.11<br>1.14<br>1.00<br>1.00<br>1.00<br>1.00<br>4.4<br>4     | 1.95<br>1.87<br>1.73<br>1.73<br>1.67<br>1.67<br>1.53<br>1.49 | 496 0N498 0<br>NNN MMMMM 4             | 1.46<br>1.39<br>1.39<br>1.29<br>1.128<br>1.117<br>1.117<br>1.117                                                               | 2.15<br>2.06<br>1.99<br>1.78<br>1.778<br>1.778<br>1.778<br>1.778                  | 4900 ON4900 O<br>NNN MMMMM 4 | 1.22<br>1.22<br>1.17<br>1.17<br>1.17<br>1.17<br>1.01<br>1.03<br>1.01                                                       | • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14980 074988 0<br>14980 074988 0<br>14980 074988 0                         | 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000 | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1408 ON408 0<br>1000 mmmm 4  | 11.22<br>1.11<br>1.11<br>1.10<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| STANDARD<br>SITY – DURAT<br>RVES DATA | α<br>888446 6008<br>9000 0000 |                                                                      | 1.40<br>1.32<br>1.26<br>1.15<br>1.15<br>1.03<br>1.00         | 4ທທາດ ທິດທ່ວຍ<br>ທິວານວີ່ທີ່ວີທີ່ວີທີ່ | 1<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | 98446 0000<br>98446 0000     | 88<br>88<br>77<br>77<br>88<br>80<br>77<br>77<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 88446 0000                                                                 | 0055<br>005<br>005<br>005<br>005<br>005<br>005<br>005<br>005<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11111<br>1000<br>1000<br>1000<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001<br>1001 | ະ∢າບດັ່ດທ່ວຍ<br>ຫວາວທີ່ວນວນ  | 90<br>90<br>91<br>91<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12<br>                                  |
| ION                                   | SLOPE .                       | 1<br>2<br>3<br>0<br>3<br>0<br>1<br>3<br>0                            |                                                              | SLOPE                                  | ÷                                                                                                                              | 00                                                                                | SL OP.                       | ы<br>ч                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SLOP                                                                       | *<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SLOPE                        | 6<br>4<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |

| RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL-COVER COMPLEXES FOR PERVIOUS AREAS-AMC II |         |              |      |          |       |    |
|-----------------------------------------------------------------------------------|---------|--------------|------|----------|-------|----|
|                                                                                   |         | Quality of   | Soil |          | Group |    |
|                                                                                   |         | Cover (2)    | A    | В        | С     | D  |
| NATURAL COVERS -                                                                  |         |              |      |          |       |    |
|                                                                                   |         |              |      |          |       |    |
| Barren                                                                            |         |              | 78   | 86       | 91    | 93 |
| (Rockland, eroded and graded land)                                                |         |              |      |          |       |    |
| Chaparrel, Broadleaf                                                              |         | Poor         | 53   | 70       | 80    | 85 |
| (Manzonita, ceanothus and scrub oak)                                              |         | Fair         | 40   | 63       | 75    | 81 |
|                                                                                   |         | Good         | 31   | 57       | 71    | 78 |
| Chaparrel, Narrowleaf                                                             |         | Poor         | 71   | 82       | 88    | 91 |
| (Chamise and redshank)                                                            |         | Fair         | 55   | 72       | 81    | 86 |
| Grass. Annual or Perennial                                                        |         | Poor         | 67   | 78       | 86    | 89 |
|                                                                                   |         | Fair         | 50   | 69       | 79    | 84 |
|                                                                                   |         | Good         | 38   | 61       | 74    | 80 |
| Meadows or Cienegas                                                               |         | Poor         | 63   | 77       | 85    | 88 |
| (Areas with seasonally high water ta                                              | ble,    | Fair         | 51   | 70       | 80    | 84 |
| principal vegetation is sod forming                                               | grass)  | Good         | 30   | 58       | 72    | 78 |
| Open Brush                                                                        |         | Poor         | 62   | 76       | 84    | 99 |
| (Soft wood shrubs - buckwheat, sage,                                              | etc.)   | Fair         | 46   | 66       | 77    | 83 |
|                                                                                   |         | Good         | 41   | 63       | 75    | 81 |
| Woodland                                                                          |         | Poor         | 45   | 66       | 77    | 03 |
| (Coniferous or broadleaf trees predo                                              | minate. | Fair         | 36   | 60<br>60 | 73    | 79 |
| Canopy density is at least 50 perce                                               | nt)     | Good         | 28   | 55       | 70    | 77 |
| Woodland, Grass                                                                   |         | Poor         | 57   | 73       | 82    | 86 |
| (Coniferous or broadleaf trees with                                               | canopy  | Fair         | 44   | 65       | 77    | 82 |
| density from 20 to 50 percent)                                                    |         | G <b>ood</b> | 33   | 58       | 72    | 79 |
| URBAN COVERS -                                                                    |         |              |      |          |       |    |
| Residential or Commercial Landscaping                                             |         | Good         | 32   | 56       | 69    | 75 |
| (Lawn, shrubs, etc.)                                                              |         |              |      |          |       |    |
| Turf                                                                              |         | Poor         | 58   | 74       | 83    | 87 |
| (Irrigated and mowed grass)                                                       |         | Fair         | 44   | 65       | 77    | 82 |
| (IIIIgacca and morea grass)                                                       |         | Good         | 33   | 58       | 72    | 79 |
| AGRICULTURAL COVERS -                                                             |         |              |      |          |       |    |
|                                                                                   |         | 00           | 00   |          |       |    |
| (Land plowed but not tilled or seede                                              | d)      |              | /6   | 85       | 90    | 92 |
|                                                                                   |         |              |      |          |       |    |
| 1                                                                                 |         |              |      |          |       |    |
| RCFC & WCD                                                                        | RUNOFF  | INDEX        | NL   | IMB      | ERS   | \$ |
| FOR                                                                               |         |              |      |          |       |    |
| INANUAL INANUAL                                                                   | PE      | ERVIOUS      | AR   | ΕA       |       |    |

| RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL-COVER COMPLEXES FOR PERVIOUS AREAS-AMC II |                      |                |                |                |                |  |  |
|-----------------------------------------------------------------------------------|----------------------|----------------|----------------|----------------|----------------|--|--|
| Cover Type (3)                                                                    | Quality of           | Soil Group     |                |                |                |  |  |
|                                                                                   | Cover (2)            | A              | В              | С              | D              |  |  |
| AGRICULTURAL COVERS (cont.) -                                                     |                      |                |                |                |                |  |  |
| Legumes, Close Seeded<br>(Alfalfa, sweetclover, timothy, etc.)                    | Poor<br>Good         | 66<br>58       | 77<br>72       | 85<br>81       | 89<br>85       |  |  |
| Orchards, Deciduous<br>(Apples, apricots, pears, walnuts, etc.)                   |                      | See            | Not            | e 4            |                |  |  |
| Orchards, Evergreen<br>(Citrus, avocados, etc.)                                   | Poor<br>Fair<br>Good | 57<br>44<br>33 | 73<br>65<br>58 | 82<br>77<br>72 | 86<br>82<br>79 |  |  |
| Pasture, Dryland<br>(Annual grasses)                                              | Poor<br>Fair<br>Good | 67<br>50<br>38 | 78<br>69<br>61 | 86<br>79<br>74 | 89<br>84<br>80 |  |  |
| Pasture, Irrigated<br>(Legumes and perennial grass)                               | Poor<br>Fair<br>Good | 58<br>44<br>33 | 74<br>65<br>58 | 83<br>77<br>72 | 87<br>82<br>79 |  |  |
| Row Crops<br>(Field crops - tomatoes, sugar beets, etc.)                          | Poor<br>Good         | 72<br>67       | 81<br>78       | 88<br>85       | 91<br>89       |  |  |
| Small Grain<br>(Wheat, oats, barley, etc.)                                        | Poor<br>Good         | 65<br>63       | 76<br>75       | 84<br>83       | 88<br>87       |  |  |
| Vineyard                                                                          |                      | See            | Note           | e 4            |                |  |  |
|                                                                                   |                      |                |                |                |                |  |  |

Notes:

- All runoff index (RI) numbers are for Antecedent Moisture Condition (AMC) II.
- 2. Quality of cover definitions:
  - Poor-Heavily grazed or regularly burned areas. Less than 50 percent of the ground surface is protected by plant cover or brush and tree canopy.
  - Fair-Moderate cover with 50 percent to 75 percent of the ground surface protected.
  - Good-Heavy or dense cover with more than 75 percent of the ground surface protected.
- 3. See Plate C-2 for a detailed description of cover types.
- 4. Use runoff index numbers based on ground cover type. See discussion under "Cover Type Descriptions" on Plate C-2.
- 5. Reference Bibliography item 17.



HYDROLOGY MANUAL



#### ACTUAL IMPERVIOUS COVER

| Land Use (1)                                          | Range-Percent      | Recommended Value<br>For Average<br>Conditions-Percent(2) |
|-------------------------------------------------------|--------------------|-----------------------------------------------------------|
| Natural or Agriculture                                | 0 - 10             | 0                                                         |
| Single Family Residential: (3)                        |                    |                                                           |
| 40,000 S. F. (1 Acre) Lots                            | <b>10 -</b> 25     | 20                                                        |
| 20,000 S. F. ( <sup>1</sup> / <sub>2</sub> Acre) Lots | 30 <b>-</b> 45     | 40                                                        |
| 7,200 - 10,000 S. F. Lots                             | 45 <del>-</del> 55 | 50                                                        |
| Multiple Family Residential:                          |                    |                                                           |
| Condominiums                                          | <b>45 -</b> 70     | 65                                                        |
| Apartments                                            | 65 <del>-</del> 90 | 80                                                        |
| Mobile Home Park                                      | 60 <b>-</b> 85     | 75                                                        |
| Commercial, Downtown<br>Business or Industrial        | 80 <b>-</b> 100    | 90                                                        |

Notes:

- Land use should be based on ultimate development of the watershed. Long range master plans for the County and incorporated cities should be reviewed to insure reasonable land use assumptions.
- 2. Recommended values are based on average conditions which may not apply to a particular study area. The percentage impervious may vary greatly even on comparable sized lots due to differences in dwelling size, improvements, etc. Landscape practices should also be considered as it is common in some areas to use ornamental gravels underlain by impervious plastic materials in place of lawns and shrubs. A field investigation of a study area should always be made, and a review of aerial photos, where available may assist in estimating the percentage of impervious cover in developed areas.
- 3. For typical horse ranch subdivisions increase impervious area 5 percent over the values recommended in the table above.





# ATTACHMENT 2: CALCULATIONS

This attachment contains the project's calculations. Please see the attached calculations.



#### **100 YEAR DESIGN STORM EVENT ROUTING**

**Riverside County Rational Hydrology Program** CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2014 Version 9.0 Rational Hydrology Study Date: 01/24/18 File:2017045D1CULVERTS.out \*\*\*\*\*\*\*\*\* Hydrology Study Control Information \*\*\*\*\*\*\*\*\*\* English (in-lb) Units used in input data file Rational Method Hydrology Program based on **Riverside County Flood Control & Water Conservation District** 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 Standard intensity-duration curves data (Plate D-4.1) For the [Perris Valley] area used. 10 year storm 10 minute intensity = 1.880(In/Hr)10 year storm 60 minute intensity =  $0.780(\ln/Hr)$ 100 year storm 10 minute intensity = 2.690(In/Hr)100 year storm 60 minute intensity = 1.120(In/Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity =  $1.120(\ln/Hr)$ Slope of intensity duration curve = 0.4900 Process from Point/Station 1.110 to Point/Station 1.230 \*\*\*\* INITIAL AREA EVALUATION \*\*\*\* Initial area flow distance = 580.000(Ft.) Top (of initial area) elevation = 1548.000(Ft.) Bottom (of initial area) elevation = 1539.000(Ft.) Difference in elevation = 9.000(Ft.) Slope = 0.01552 s(percent)= 1.55  $TC = k(0.530)^{(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 15.541 min. Rainfall intensity = 2.171(In/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.875 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 3) = 95.60Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 0.684(CFS) Total initial stream area = 0.360(Ac.) Pervious area fraction = 1.000



Process from Point/Station 1.110 to Point/Station 1.310 \*\*\*\* CONFLUENCE OF MINOR STREAMS \*\*\*\* Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.360(Ac.) Runoff from this stream = 0.684(CFS) Time of concentration = 15.54 min. Rainfall intensity =  $2.171(\ln/Hr)$ Process from Point/Station 1.210 to Point/Station 1.220 \*\*\*\* INITIAL AREA EVALUATION \*\*\*\* Initial area flow distance = 525.000(Ft.) Top (of initial area) elevation = 1547.000(Ft.) Bottom (of initial area) elevation = 1539.000(Ft.) Difference in elevation = 8.000(Ft.) Slope = 0.01524 s(percent)= 1.52  $TC = k(0.530)^{(length^3)/(elevation change)}^{0.2}$ Initial area time of concentration = 14.988 min. Rainfall intensity = 2.210(In/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.876 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000RI index for soil(AMC 3) = 95.60Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 7.702(CFS) Total initial stream area = 3.980(Ac.) Pervious area fraction = 1.000 1.220 to Point/Station Process from Point/Station 1.310 \*\*\*\* PIPEFLOW TRAVEL TIME (User specified size) \*\*\*\* Upstream point/station elevation = 1539.000(Ft.) Downstream point/station elevation = 1534.000(Ft.) Pipe length = 80.00(Ft.) Manning's N = 0.013No. of pipes = 1 Required pipe flow = 7.702(CFS)Given pipe size = 18.00(ln.) Calculated individual pipe flow = 7.702(CFS)Normal flow depth in pipe = 6.68(In.)Flow top width inside pipe = 17.39(In.)Critical Depth = 12.90(In.)Pipe flow velocity = 12.91(Ft/s)Travel time through pipe = 0.10 min. Time of concentration (TC) = 15.09 min.



```
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 3.980(Ac.)
Runoff from this stream =
                        7.702(CFS)
Time of concentration = 15.09 min.
Rainfall intensity = 2.203(In/Hr)
Summary of stream data:
Stream Flow rate
                  TC
                           Rainfall Intensity
No.
       (CFS)
               (min)
                             (In/Hr)
1
     0.684
           15.54
                          2.171
2
     7.702 15.09
                          2.203
Largest stream flow has longer or shorter time of concentration
Qp = 7.702 + sum of
            Qa
                  Tb/Ta
            0.684 * 0.971 =
                              0.664
Qp =
       8.367
Total of 2 streams to confluence:
Flow rates before confluence point:
   0.684
            7.702
Area of streams before confluence:
    0.360
            3.980
Results of confluence:
Total flow rate = 8.367(CFS)
Time of concentration = 15.092 min.
Effective stream area after confluence =
                                    4.340(Ac.)
Process from Point/Station 1.310 to Point/Station
                                                 1.520
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****
Estimated mean flow rate at midpoint of channel =
                                             8.675(CFS)
Depth of flow = 1.675(Ft.), Average velocity = 1.785(Ft/s)
           ******* Irregular Channel Data **********
Information entered for subchannel number 1:
Point number
              'X' coordinate 'Y' coordinate
           1
                   0.00
                              2.00
           2
                   5.00
                              1.00
           3
                   6.00
                              0.00
           4
                   7.00
                              1.00
           5
                               2.00
                   13.00
Manning's 'N' friction factor = 0.020
_____
Sub-Channel flow =
                    8.675(CFS)
           flow top width =
                            9.430(Ft.)
  ' velocity= 1.785(Ft/s)
                    4.860(Sq.Ft)
           area =
```



Froude number = 0.438

т т

Upstream point elevation = 1534.000(Ft.) Downstream point elevation = 1533.000(Ft.) Flow length = 630.000(Ft.) Travel time = 5.88 min. Time of concentration = 20.97 min. Depth of flow = 1.675(Ft.) Average velocity = 1.785(Ft/s) Total irregular channel flow = 8.675(CFS) Irregular channel normal depth above invert elev. = 1.675(Ft.) Average velocity of channel(s) = 1.785(Ft/s) Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.871 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000 RI index for soil(AMC 3) = 95.60Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 1.874(In/Hr) for a 100.0 year storm Subarea runoff = 0.523(CFS) for 0.320(Ac.) Total runoff = 8.889(CFS) Total area = 4.660(Ac.) Depth of flow = 1.685(Ft.), Average velocity = 1.795(Ft/s)

```
Along Main Stream number: 1 in normal stream number 1

Stream flow area = 4.660(Ac.)

Runoff from this stream = 8.889(CFS)

Time of concentration = 20.97 min.

Rainfall intensity = 1.874(In/Hr)
```



Initial area flow distance = 745.000(Ft.) Top (of initial area) elevation = 1540.000(Ft.) Bottom (of initial area) elevation = 1536.000(Ft.) Difference in elevation = 4.000(Ft.)Slope = 0.00537 s(percent)= 0.54  $TC = k(0.530)^{(length^3)/(elevation change)}^{0.2}$ Initial area time of concentration = 21.240 min. 1.863(In/Hr) for a 100.0 year storm Rainfall intensity = UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.871 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000RI index for soil(AMC 3) = 95.60Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 9.398(CFS) Total initial stream area = 5.790(Ac.) Pervious area fraction = 1.000 1.420 to Point/Station Process from Point/Station 1.520 \*\*\*\* PIPEFLOW TRAVEL TIME (User specified size) \*\*\*\* Upstream point/station elevation = 1536.000(Ft.) Downstream point/station elevation = 1533.000(Ft.) Pipe length = 60.00(Ft.) Manning's N = 0.013No. of pipes = 1 Required pipe flow = 9.398(CFS)Given pipe size = 18.00(ln.) Calculated individual pipe flow = 9.398(CFS) Normal flow depth in pipe = 7.92(In.)Flow top width inside pipe = 17.87(In.)Critical Depth = 14.22(In.)Pipe flow velocity = 12.55(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 21.32 min.Process from Point/Station 1.410 to Point/Station 1.520 \*\*\*\* CONFLUENCE OF MINOR STREAMS \*\*\*\* Along Main Stream number: 1 in normal stream number 2 Stream flow area = 5.790(Ac.) Runoff from this stream = 9.398(CFS) Time of concentration = 21.32 min. Rainfall intensity = 1.860(In/Hr)



Initial area flow distance = 250.000(Ft.) Top (of initial area) elevation = 1539.000(Ft.) Bottom (of initial area) elevation = 1533.000(Ft.) Difference in elevation = 6.000(Ft.)Slope = 0.02400 s(percent)= 2.40  $TC = k(0.530)^{(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 10.172 min. 2.672(In/Hr) for a 100.0 year storm Rainfall intensity = UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.880 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000Decimal fraction soil group D = 1.000RI index for soil(AMC 3) = 95.60Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 0.282(CFS) Total initial stream area = 0.120(Ac.) Pervious area fraction = 1.000



```
Along Main Stream number: 1 in normal stream number 3
Stream flow area = 0.120(Ac.)
Runoff from this stream = 0.282(CFS)
Time of concentration = 10.17 min.
Rainfall intensity = 2.672(In/Hr)
Summary of stream data:
```

StreamFlow rateTCRainfall IntensityNo.(CFS)(min)(In/Hr)

8.889 1 20.97 1.874 2 9.398 21.32 1.860 3 0.282 10.17 2.672 Largest stream flow has longer time of concentration Qp = 9.398 + sum of la/lb Qb 8.889 \* 0.992 = 8.819 Qb la/lb 0.282 \* 0.696 = 0.196

Qp = 18.413

Total of 3 streams to confluence:Flow rates before confluence point:8.8899.3980.282Area of streams before confluence:4.6605.7900.120

Results of confluence: Total flow rate = 18.413(CFS) Time of concentration = 21.320 min. Effective stream area after confluence = 10.570(Ac.) End of computations, total study area = 10.57 (Ac.) The following figures may be used for a unit hydrograph study of the same area.

Area averaged pervious area fraction(Ap) = 1.000Area averaged RI index number = 89.0

| 100-YEAR DESIGN STORM EVENT COMPLIANCE POINT A SUMMARY |          |  |  |  |
|--------------------------------------------------------|----------|--|--|--|
| DATA                                                   | 100-YEAR |  |  |  |
| AMC                                                    | 3        |  |  |  |
| STUDY NODE POINT                                       | 1.52     |  |  |  |
| INTENSITY (IN/HR)                                      | 2.672    |  |  |  |
| TOTAL DISCHARGE (cfs)                                  | 18.4     |  |  |  |
| TIME OF CONCENTRATION (MIN)                            | 21.32    |  |  |  |
| AREA (ACRES)                                           | 10.57    |  |  |  |



#### OPTION 1A: RUN NORTH THEN WEST - (1) 24" PIPE

\_\_\_\_\_

CIVILCADD/CIVILDESIGN Engineering Software, (c) 2004 - 2014 Version 9.0

\*\*\* Improved Channel Analysis \*\*\*

Upstream (headworks) Elevation = 1533.000(Ft.) Downstream (outlet) Elevation = 1517.000(Ft.) Runoff/Flow Distance = 590.000(Ft.) Maximum flow rate in channel(s) = 18.400(CFS)

\*\*\* CALCULATED DEPTH DATA AT FLOW = 18.40(CFS) \*\*\* Pipe length = 590.00(Ft.)Manning's N = 0.013 No. of pipes = 1Required pipe flow = 18.400(CFS)Pipe size = 24.00(In.)Calculated individual pipe flow = 18.400(CFS)Normal flow depth in pipe = 11.92(In.)Flow top width inside pipe = 24.00(In.)Critical Depth = 18.54(In.)Pipe flow velocity = 11.82(Ft/s)

#### OPTION 1B: RUN NORTH THEN WEST - (2) 18" PIPE

CIVILCADD/CIVILDESIGN Engineering Software, (c) 2004 - 2014 Version 9.0

\_\_\_\_\_ \*\*\* Improved Channel Analysis \*\*\* Upstream (headworks) Elevation = 1533.000(Ft.) Downstream (outlet) Elevation = 1517.000(Ft.) Runoff/Flow Distance = 590.000(Ft.) Maximum flow rate in channel(s) = 18.400(CFS)\*\*\* CALCULATED DEPTH DATA AT FLOW = 18.40(CFS) \*\*\* Pipe length = 590.00(Ft.) Manning's N = 0.013 No. of pipes = 2 Required pipe flow = 18.400(CFS)Pipe size = 18.00(In.)Calculated individual pipe flow = 9.200(CFS)Normal flow depth in pipe = 9.34(In.)Flow top width inside pipe = 17.99(In.)Critical Depth = 14.08(In.)Pipe flow velocity = 9.94(Ft/s)

------



#### OPTION 2A: RUN SOUTH THEN WEST - (1) 24" PIPE

\_\_\_\_\_

CIVILCADD/CIVILDESIGN Engineering Software, (c) 2004 - 2014 Version 9.0

\*\*\* Improved Channel Analysis \*\*\*

Upstream (headworks) Elevation = 1533.000(Ft.) Downstream (outlet) Elevation = 1517.000(Ft.) Runoff/Flow Distance = 600.000(Ft.) Maximum flow rate in channel(s) = 18.400(CFS)

\*\*\* CALCULATED DEPTH DATA AT FLOW = 18.40(CFS) \*\*\* Pipe length = 600.00(Ft.)Manning's N = 0.013 No. of pipes = 1Required pipe flow = 18.400(CFS)Pipe size = 24.00(In.)Calculated individual pipe flow = 18.400(CFS)Normal flow depth in pipe = 11.98(In.)Flow top width inside pipe = 24.00(In.)Critical Depth = 18.54(In.)Pipe flow velocity = 11.75(Ft/s)

## OPTION 2B: RUN SOUTH THEN WEST - (2) 18" PIPE

CIVILCADD/CIVILDESIGN Engineering Software, (c) 2004 - 2014 Version 9.0

\*\*\* Improved Channel Analysis \*\*\*

```
Upstream (headworks) Elevation = 1533.000(Ft.)
Downstream (outlet) Elevation = 1517.000(Ft.)
Runoff/Flow Distance = 600.000(Ft.)
Maximum flow rate in channel(s) = 18.400(CFS)
```

```
*** CALCULATED DEPTH DATA AT FLOW = 18.40(CFS) ***

Pipe length = 600.00(Ft.)

Manning's N = 0.013 No. of pipes = 2

Required pipe flow = 18.400(CFS)

Pipe size = 18.00(In.)

Calculated individual pipe flow = 9.200(CFS)

Normal flow depth in pipe = 9.39(In.)

Flow top width inside pipe = 17.98(In.)

Critical Depth = 14.08(In.)

Pipe flow velocity = 9.88(Ft/s)
```



# ATTACHMENT 3: EXHIBITS

This attachment contains the vicinity map and other exhibits used in this report. Please see the attached exhibits.



| 100-YEAR DESIGN STORM EVENT COMPLIANCE POINT A SUMMARY |          |  |  |  |  |
|--------------------------------------------------------|----------|--|--|--|--|
| DATA                                                   | 100-YEAR |  |  |  |  |
| AMC                                                    | 3        |  |  |  |  |
| STUDY NODE POINT                                       | 1.52     |  |  |  |  |
| INTENSITY (IN/HR)                                      | 2.672    |  |  |  |  |
| TOTAL DISCHARGE (cfs)                                  | 18.4     |  |  |  |  |
| TIME OF CONCENTRATION (MIN)                            | 21.32    |  |  |  |  |
| AREA (ACRES)                                           | 10.57    |  |  |  |  |



|         | STUD  |
|---------|-------|
| STORM   | EVENT |
| PLATE   |       |
| AMC     |       |
| SOIL TY | PE    |

