Project No: 13092-01

August 18, 2021

Mr. Brian Hardy *Richland Communities, Inc.* 3161 Michelson Drive, Suite 425 Irvine, CA 92626

Subject: Updated Geotechnical Evaluation, Proposed "Stoneridge" Industrial and Mixed-Use Development, Tentative Tract Map No. 32372, Unincorporated Area of Riverside County, California

In accordance with your request and authorization, LGC Geotechnical, Inc. has performed an updated geotechnical evaluation for the proposed "Stoneridge" industrial and mixed-use development, Tentative Tract Map No. 32372, located in an unincorporated area of Riverside County, California. The purpose of our study was to evaluate the existing onsite geotechnical conditions, confirm that the site can be developed from a geotechnical perspective, and provided updated recommendations regarding the proposed design.

Should you have any questions regarding this report, please do not hesitate to contact our office. We appreciate this opportunity to be of service.

Respectfully Submitted,

LGC Geotechnical, Inc.

Ryan Douglas, RCE 84840 Project Engineer

Dennis Boratynec, GE 2770 Vice President

DJB/RLD/BPG/amm

Distribution: (4) Addressee (electronic copy)

Barry Graham, CEG 2749

Barry Graham, CEG 2749 Senior Staff Geologist

TABLE OF CONTENTS

<u>Secti</u>	<u>on</u>		<u>Page</u>
1.0	INTR	ODUCTION	1
	1.1	Purpose and Scope of Services	1
	1.2	Existing Conditions	
	1.3	Background and Project Description	
	1.4	Subsurface Geotechnical Evaluation	
	1.5	Laboratory Testing	
2.0	GEOT	ECHNICAL CONDITIONS	6
	2.1	Regional Geology	6
	2.2	Site-Specific Geology	6
		2.2.1 Quarternary Very Old Fan Deposits (Map Symbol - Qvof)	6
		2.2.2 Cretaceous Lakeview Mountain Tonalite (Map Symbol - Klmt)	6
	2.3	Geologic Structure	7
	2.4	Groundwater	7
	2.5	Landslides, Debris Flows and Rock Falls	7
	2.6	Seiche	8
	2.7	Subsidence	8
	2.8	Field Infiltration Testing	9
	2.9	Preliminary Seismic Design Parameters	10
	2.10	Faulting and Seismic Hazards	11
		2.10.1 Liquefaction and Dynamic Settlement	11
		2.10.2 Lateral Spreading	12
	2.11	Seismic Refraction Lines	12
	2.12	Rippability	12
	2.13	Oversized Material	13
	2.14	Settlement and Collapse/Swell Potential	13
	2.15	Expansion Potential	14
3.0	CONC	LUSIONS	15
4.0	PREL	IMINARY RECOMMENDATIONS	17
	4.1	Site Earthwork	17
		4.1.1 Site Preparation	17
		4.1.2 Removals and Recompaction	18
		4.1.3 Geologic Mapping	19
		4.1.4 Over-excavation	
		4.1.5 Removal and Overexcavation Bottom Preparation	
		4.1.6 Material for Fill	
		4.1.7 Fill Placement and Compaction	
		4.1.7.1 Oversized Placement and Compaction	
		4.1.8 Trench and Conventional Retaining Wall Backfill and Compaction	
		4.1.9 Shrinkage and Bulking	22

	4.1.10 Temporary Excavations	23
4.2	Settlement Monitoring	
4.3	Slope Stability	24
	4.3.1 Cut Slopes	24
	4.3.2 Fill Slopes	25
	4.3.3 Slope Maintenance Guidelines	25
4.4	Subdrains	25
4.5	Preliminary Foundation Recommendations	26
	4.5.1 Slab Design and Construction	26
	4.5.2 Foundation Design Parameters	27
	4.5.3 Foundation Construction	
	4.5.4 Lateral Load Resistance	
4.6	Foundation Setback from Top-of-Slope and Bottom-of-Slope	
4.7	Lateral Earth Pressures for Conventional Retaining Wall Design	29
4.8	Soil Corrosivity to Concrete and Metal	
4.9	Subsurface Water Infiltration	
4.10	Control of Surface Water and Drainage Control	
4.11	Preliminary Asphalt Concrete Pavement Sections	
4.12	Preliminary Portland Cement Concrete Pavement Sections	
4.13	Nonstructural Concrete Flatwork	
4.14	Grading, Foundation and Retaining Wall Plan Review	
4.15	Geotechnical Observation and Testing During Construction	35
LIMI	rations	

5.0

TABLE OF CONTENTS (cont'd)

LIST OF ILLUSTRATIONS, TABLES, AND APPENDICES

<u>Figures</u>

- Figure 1 Site Location Map (Page 5)
- Figure 2 Retaining Wall Backfill Criteria (Rear of Text)

<u>Sheets</u>

Sheet 1 through 3 – Geotechnical Map (In Pocket)

<u>Tables</u>

- Table 1 Summary of Infiltration Testing (Page 9)
- Table 2 Seismic Design Parameters (Page 10)
- Table 3 Estimated Shrinkage (Page 22)
- Table 4 Allowable Soil Bearing Pressures (Page 27)
- Table 5 Lateral Earth Pressures Select Sandy Soils (Page 29)
- Table 6 Preliminary Asphalt Concrete Paving Section Options (Page 32)
- Table 7 Preliminary PCC Pavement Section Options (Page 33)
- Table 8 Minimum Guidelines for Nonstructural Concrete Flatwork for Very Low to Low Expansion Potential (Page 34)

<u>Appendices</u>

- Appendix A References
- Appendix B Logs of Exploratory Borings, Test Pits, & CPTs
- Appendix C Laboratory Test Results
- Appendix D Seismic Refraction Survey Report
- Appendix E Infiltration Test Results
- Appendix F Liquefaction Analysis
- Appendix G General Earthwork Specifications for Rough Grading

1.0 INTRODUCTION

1.1 <u>Purpose and Scope of Services</u>

This report presents the results of our updated geotechnical evaluation for the proposed "Stoneridge" industrial and mixed-use development, Tentative Tract Map No. 32372, located in an unincorporated area of Riverside County, California. The conclusions and recommendations included herein supersede those provided in our previous reports (LGC Geotechnical, 2017a, 2017b, & 2019).

The purpose of our study was to evaluate the existing onsite geotechnical conditions, confirm that the site can be developed from a geotechnical perspective, and provided updated recommendations regarding the current proposed design. Our services consisted of a limited subsurface geotechnical evaluation and review of previous geotechnical reports, preliminary site plans and readily available geotechnical information including in-house maps and reports.

1.2 <u>Existing Conditions</u>

The proposed "Stoneridge" industrial/mixed use development includes multiple undeveloped parcels equaling approximately 583-acres. The irregular-shaped site is located approximately 4 miles east of Interstate-215 and just south of Ramona Expressway (see Figure 1 – Site Location Map). In general, the site is bound to the north by Ramona Expressway, to the east by undeveloped land associated with the San Jacinto River floodplains, to the south by Nuevo Road, and to the west by undeveloped land. The site is generally situated along the eastern flank of some relatively small hills associated with plutonic rocks of the Peninsular Ranges geomorphic province. In general, the site gently slopes southeast toward the San Jacinto River. Topographically, the elevations on the site range from approximately 1420 feet above mean sea level (msl) in the east portion of the site to approximately 1555 feet above msl in the west portion of the site.

1.3 Background and Project Description

Previously the subject site was proposed for a mixed-use development, featuring commercial spaces, 781 single-family residential lots of medium/medium high density, a sports park, trails, open space, water quality basins and associated street improvements. A portion of the subject site was evaluated with regards to the first phase of the previously proposed development (LGC Geotechnical, 2017a) which would have included approximately 285 single-family residential lots, interior roadways, a detention basin and other associated improvements. The previous subsurface evaluation consisted of the excavation of thirteen hollow-stem auger borings (HS-1 through HS-13), ten backhoe test pits (T-1 through T-10), and eleven cone penetration tests (CPT-1 through CPT-11) to evaluate onsite geotechnical conditions.

The approximate locations of all the borings, test pits, and cone penetration tests are included on the Geotechnical Map (Sheets 1 through 3). Exploratory boring, test pit, and cone penetration test logs are presented in Appendix B and laboratory test results are included in Appendix C. A current site plan was recently provided, which depicts an approximately 100-acre reduction in size of the overall project development. Based on our review of the updated site plan prepared by Hunsaker & Associates (2021), the proposed industrial and mixed-use development of the subject site includes the development of 11 planning areas for mixed-use development including a hotel, retail buildings, multi-tenant commercial buildings, commercial buildings and retail/business park lots. In addition, it is our understanding that site development will include the construction of underground utilities, streets, parking areas, open space, conservation areas and water quality basins.

Maximum design cuts and fills are anticipated to be on the order of approximately 60 and 35 feet, respectively. Additionally, the maximum design cut, and fill slope heights are both anticipated to be on the order of approximately 75 feet.

1.4 <u>Subsurface Geotechnical Evaluation</u>

LGC Geotechnical performed a subsurface geotechnical evaluation of the subject site consisting of the excavation of twelve additional hollow-stem auger borings, twelve backhoe test pits, thirteen cone penetration tests, and two infiltration tests to evaluate onsite geotechnical conditions of areas not previously evaluated. In addition, five seismic refraction lines were performed northwest of the subject site, in an area no longer included within the project limits, to evaluate the potential for near surface hard rock.

Twelve hollow-stem borings (HS-14 through HS-25) were drilled by 2R Drilling under subcontract to LGC Geotechnical. The total depth drilled of the hollow-stem borings ranged from approximately 20 to 50 feet below existing grade. An LGC Geotechnical representative observed the drilling operations, logged the borings, and collected soil samples for laboratory testing. The borings were excavated using a truck mounted drill rig equipped with 8-inch-diameter hollow-stem augers. Driven soil samples were collected by means of the Standard Penetration Test (SPT) and Modified California Drive (MCD) sampler. Samples were generally obtained at 2.5-foot vertical increments in the upper ten feet and at 5-foot vertical increments below ten feet. The MCD is a split-barrel sampler with a tapered cutting tip and lined with a series of 1-inch-tall brass rings. The SPT sampler and MCD sampler were driven using a 140-pound automatic hammer falling 30 inches to advance the sampler a total depth of 18 inches or until refusal. The blow counts for each 6-inch increment of penetration were recorded on the boring logs. Bulk samples were also collected and logged at select depths for laboratory testing. At the completion of drilling the borings were backfilled with cuttings.

Twelve exploratory test pits (T-11 through T-20) were excavated, sampled, and logged to depths ranging from approximately 5 to 10 feet below the existing ground surface. The test pits were geotechnically logged and sampled by a representative of LGC Geotechnical, Inc. Soil descriptions are presented in the test pit logs, which are included in Appendix B. The test pit excavations were backfilled and compacted with the excavated materials to the ground surface. Please note that some settlement of the backfill may occur over time and the excavations should be topped off as needed.

Thirteen Cone Penetration Test (CPT) soundings (CPT-12 through CPT-24) were performed by Gregg Drilling & Testing, Inc. under subcontract with LGC Geotechnical. The CPT probe was pushed to target depths or refusal at each test location in general accordance with the current ASTM

standards (ASTM D5778 and ASTM D3441). The CPT equipment consists of a cone penetrometer assembly mounted at the end of a series of hollow sounding rods. The interior of the cone penetrometer is instrumented with strain gauges that allow the simultaneous measurement of cone tip and friction sleeve resistance during penetration. The cone penetration assembly is continuously pushed into the soil by a set of hydraulic rams at a standard rate of approximately 0.8-inch per second while the cone tip resistance and sleeve friction resistance are recorded at approximately every 2 inches and stored in digital form. A specially designed all-wheel drive 25-ton truck provides the required reaction weight for pushing the cone assembly.

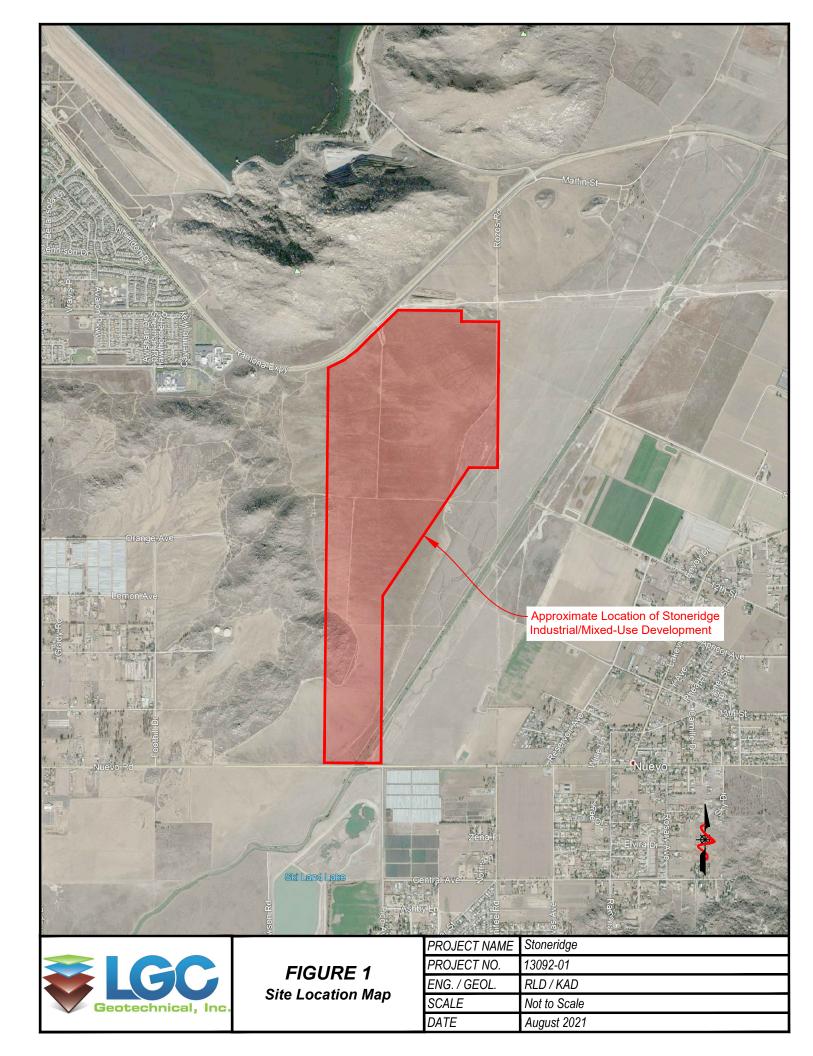
Two additional borings (I-1 and I-2) were excavated to approximately 10 and 5 feet below the existing ground surface, respectively. Subsequent to excavation, the borings were converted into infiltration test wells. Test well installation consisted of placing a 3-inch diameter perforated PVC pipe in each excavated borehole and backfilling the annulus with crushed rock including the placement of approximately 2 inches of crushed rock at the bottom of each borehole. Infiltration testing was performed in accordance with guidelines set forth by the County of Riverside (2011). The PVC pipes were removed, and the holes were subsequently backfilled with native soils at the completion of testing.

The five seismic refraction lines (S-1 through S-5) were performed by Terra Geosciences in order to assess the general seismic velocity characteristics of the underlying bedrock materials with regards to rippability during grading. The seismic refraction lines were performed in proposed cut areas with dense bedrock and line lengths were maximized based on access and topography in order to achieve anticipated maximum cut depths. The line lengths were on the order of approximately 150 feet which resulted in a maximum obtainable depth of approximately 60 feet below existing ground.

The approximate locations of borings, trenches, CPTs, infiltration tests, and seismic lines are presented on the Geotechnical Map (Sheets 1 through 3). Boring logs, test pit logs, and CPT outputs are presented in Appendix B. Laboratory test results are presented in Appendix C. A report summarizing the findings and conclusions of the seismic refraction lines is presented in Appendix D.

1.5 <u>Laboratory Testing</u>

Representative samples were retained for laboratory testing during our field evaluation. Laboratory testing included in-situ moisture and density tests, fines content/sieve analysis, Atterberg Limits (liquid limit and plastic limits), consolidation, collapse/swell, direct shear, expansion index, laboratory compaction and corrosion (sulfate, chloride content, pH, and minimum resistivity).


The following is a brief summary of the laboratory test results:

- Dry density of the samples collected ranged from approximately 100 pounds per cubic foot (pcf) to 137 pcf, with an average of 124 pcf. Field moisture contents ranged from approximately 1 to 39 percent, with an average of 6 percent.
- Twelve fines content tests were performed and indicated fines contents (passing No. 200 sieve) ranging from 8 to 39 percent. Based on the Unified Soils Classification System (USCS),

the tested samples range from "coarse-grained".

- Three Atterberg Limit (liquid limit and plastic limit) tests were performed. Results indicated a Plasticity Index (PI) values of NP (not plastic), 4 and 14.
- Two consolidation tests were performed. The load versus deformation plots are provided in Appendix C.
- Four collapse/swell tests were performed. The load versus deformation plots are provided in Appendix C.
- Eight laboratory compaction test of near surface samples were performed. Results are presented in Appendix C.
- Expansion potential testing indicated expansion index values ranging from 0 to 33, corresponding to "Very Low" to "Low" expansion potential.
- Four direct shear tests were performed. Plots are presented in Appendix C.
- Corrosion testing indicated soluble sulfate content less than 0.02 percent, chloride contents ranging from approximately 31 to 104 parts per million (ppm), pH values ranging from approximately 5.78 to 7.90, and minimum resistivity values of approximately 1,146 to 15,000 ohm-cm.

A summary of the laboratory test results is presented in Appendix C. The moisture and dry density results are presented on the boring logs in Appendix B.

2.0 GEOTECHNICAL CONDITIONS

2.1 <u>Regional Geology</u>

The property is regionally located in the Peninsular Ranges geomorphic province which extends from the Los Angeles Basin south to Baja California. The province is characterized by numerous southwest trending mountain ranges and valleys that are geologically controlled by a series of paralleling major active faults. More specifically, the site is located in the northern portion of the Perris block which is bordered to the northeast by the San Jacinto Fault Zone and to the southwest by the Chino/Elsinore Fault Zone. The Peninsular Ranges batholith is comprised of Cretaceous aged plutonic rocks mainly of tonalitic composition. Near the site, the plutonic rocks are associated with the Lakeview Mountain Pluton which primarily consists of biotite-hornblende tonalite characterized by ubiquitous schlieren and the lack of potassium feldspar (CGS, 2003). The site is situated on the western margin of an alluvial flood plain associated with the San Jacinto River. Most of the alluvial areas west of the San Jacinto River consists of Pleistocene age fluvial deposits similar to those observed at the subject site. These alluvial materials generally form the large area flanking the Perris Valley and the west side of the San Jacinto River Valley.

2.2 <u>Site-Specific Geology</u>

Based on the Geologic Map of the 7.5-foot Perris Quadrangle (CGS, 2003) the subject site is underlain by Very Old Fan Deposits of the late Pleistocene. In addition, Lakeview Mountain plutonic bedrock is present along and adjacent to the western boundary of the subject site. The presence of some minor amounts of artificial fill (not mapped) associated with existing "dirt" roadway construction and past agricultural uses should be anticipated. The approximate lateral limits of the geologic units are depicted on the Geotechnical Map (Sheets 1 through 3).

2.2.1 Quaternary Very Old Fan Deposits (Map Symbol - Qvof)

Quaternary Very Old Fan deposits generally flank steep bedrock slopes and consist of reddish brown, well indurated sand deposits (CGS, 2003). During our subsurface field evaluation, these deposits were observed to generally consist of brown, gray, brown, and reddish-brown sand, silty sand and clayey sand. The upper approximately 1-foot of the alluvial material was observed to be desiccated and contained rootlets.

2.2.2 <u>Cretaceous Lakeview Mountain Tonalite (Map Symbol – Klmt)</u>

The Lakeview Mountain Tonalite is descried as a medium to coarse grained biotitehornblende tonalite with an absence of potassium (alkali) feldspar (CGS, 2003). During our subsurface field evaluation, these materials were observed to generally be gray to brown, medium to coarse grained rock with abundant hornblende and biotite. The bedrock ranged from moderately to slightly weathered.

2.3 <u>Geologic Structure</u>

Both the Quaternary Old Fan deposits and the Cretaceous Lake View Mountain Tonalite were observed to be massive and lacking any significant geologic structure during our subsurface exploration.

2.4 <u>Groundwater</u>

Groundwater was not encountered during our subsurface field evaluation to the maximum explored depth of approximately 50 feet below existing ground. Based on nearby available well data (CDWR, 2018), recent high groundwater for Well 337981N1171695W001 south of the subject site was measured at an elevation of approximately 1357 feet above mean sea level (msl) in March of 2013. This corresponds to depth of approximately 63 below existing grades in the southeastern (lowest) portion of the subject site.

Seasonal fluctuations of groundwater elevations should be expected over time. In general, groundwater levels fluctuate with the seasons and local zones of perched groundwater may be present within the near-surface deposits due to local seepage or during rainy seasons. Local perched groundwater conditions or surface seepage may develop once site development is completed and landscape irrigation commences.

2.5 Landslides, Debris Flows and Rock Falls

Review of readily available geologic resources and field observations of the surficial conditions do not indicate the presence of landslides on the site or in the immediate vicinity. In general, the site consists of relatively flat-lying very old fan deposits which are not considered susceptible to landslides, seismically-induced landslides, or other mass wasting processes (debris flows, rockfalls, etc.).

In general, the cause of debris flows is a combination of heavy rainfall, loose soil, and steep slope conditions. Based on reviewed documents (USGS, 1975 and Weber, 1979), debris flows have the potential to occur on slopes that have a gradient steeper than approximately 18 degrees which is approximately equivalent to a 3:1 (horizontal to vertical) slope ratio. Debris flows are most common and have higher flow velocity on slopes with gradients ranging from approximately 2:1 to 1:1 (horizontal to vertical). Generally, the steeper the slope, the more prone it is to develop a fast moving, violent debris flow. In addition, debris flows generally begin at drainage heads where there is a concentration of water during heavy rainfall. Approximately 2:1 (horizontal to vertical) cut, and fill slopes are proposed for the "Stoneridge" industrial and mixed-use development. Cut and fill slopes will consist of either hard Lakeview Tonalite Bedrock or dense compacted fill soils, respectfully. These slopes are considered surficially stable as long as they are designed and constructed with proper surface drainage (purview of civil engineer) and are properly maintained after construction. Therefore, it is our opinion that the potential for the development is considered very low.

A rockfall is a fragment of rock, or block of rocks, that detaches from a vertical to sub-vertical cliff or bluff in a downward motion. Boulder outcrops are present within the subject site along

the western boundary. The natural slopes located intermittently along the western boundary, where outcrops are observed, generally have a slope gradient of 3:1 (horizontal to vertical) or shallower. During grading a majority of the western boundary will be cut in order to produce an approximately 2:1 (vertical to horizontal) slope exposing dense Lakeview Tonalite Bedrock. Due to the shallow slope gradients of the existing slopes and proposed manufactured slopes, the potential for rockfalls to impact the proposed development is considered low. Loose boulders and/or "corestones" at or near design grade should be removed during slope grading in order to further mitigate potential rockfalls.

2.6 <u>Seiche</u>

A seiche is an underwater wave that oscillates through a body of water which may be triggered by earthquakes or landslides. In general, seiches are small (on the order of a few inches) and are present in larger lakes as a result of the depth, temperature, and contours of the body of water. Due to the lack of an onsite body of water the potential for the subject site to be impacted by seiches is considered low.

2.7 <u>Subsidence</u>

Per the County Interactive Geographic Information Services (RCIT, 2019), the proposed development is located within an area considered to be potentially susceptible to subsidence. A specific ground subsidence evaluation was previously performed by Western Technologies, Inc. (1990) due to the observation of well-defined fissures within and nearby the subject site. Based on the report prepared by Western Technologies (1990), the observed fissure was located in the eastern central portion of the proposed development and trended approximately north-south, near parallel with the San Jacinto River. Previous subsurface evaluations found that the observed fissure extended to a maximum depth of approximately 17 feet below the existing ground surface (Aragon, 1989). Aerial photograph review indicated that the fissure "daylighted" to the surface relatively rapidly between 1974 to 1976 and has been followed by a slower rate of modification since that time (Western, 1990). In addition, it was concluded that the observed fissuring is a result of localized subsidence from the horizontal shrinkage of fine-grained clayey floodplain sediments induced by historic groundwater withdrawal (Western, 1990). In general, potential constraints on the proposed development from the existing fissure may be mitigated utilizing specialized grading techniques, geotextile reinforcement, and requiring post-tension/stiffened building foundations within 25 feet of the existing fissure (Western, 1990).

Based on Figure No. 1 from the subsidence evaluation report (Western, 1990), at its closest the proposed industrial and mixed-use Stoneridge development is located approximately 700 feet northwest of the subject fissure (see Sheet 2 of 3 for approximate fissure location). Therefore, the observed fissure does not significantly impact the proposed development. However, if additional well-defined fissures are observed prior to or during grading operations, the geotechnical consultant of record should provide specific recommendations in order to mitigate any potential impact on the development. As mentioned above, recommendations for mitigation may consist of specialized grading techniques, geotextile reinforcement, and/or post-tension/stiffened foundations within the immediate area of an observed fissure. Recommendations should be provided on a case-by-case basis based on the subsurface conditions encountered during grading operations and proximity to proposed improvements.

As described on the county website, subsidence on a much larger regional scale is possible if groundwater resources are not managed properly. Mitigation against such a large-scale groundwater drawdown cannot be done by means of typical grading or construction methods within the limits of the proposed project, but instead "requires regional cooperation among all agencies" and, therefore, is not a site-specific geotechnical consideration. Based on our review, it appears that the majority of the areas located within the Lakeview Basin comprised of alluvial deposits are considered potentially susceptible to subsidence (RCIT, 2019). Surveys performed across the Lakeview Basin since 1967 indicate that regional subsidence is most likely continuing at a very slow and decreasing rate (Western, 1990). Thus, based on current conditions, the potential impact of regional subsidence on the proposed development is considered very low.

2.8 <u>Field Infiltration Testing</u>

Two field percolation tests were performed on Borings I-1 and I-2 to approximate depths of 10 and 5 feet below existing grade, respectively. Estimation of infiltration rates was performed in general accordance with guidelines set forth by the County of Riverside (2011). In general, a 3-inch diameter perforated PVC pipe was placed in each borehole to be tested and the annulus was backfilled with gravel, including placement of about 2 inches of gravel at the bottom of the borehole. The infiltration wells were pre-soaked prior to testing. Based on the County of Riverside methodology, the calculated (observed) infiltration rates are provided in Table 1. These infiltration rates do not include any factor of safety (to be determined by the project Civil Engineer); however, they have been normalized to correct the 3-D flow that occurs within the field test to 1-D flow out of the bottom of the boring only. The locations of the infiltration tests were coordinated with the civil engineer. The approximate infiltration test locations are shown on the Geotechnical Maps (Sheets 1 and 3) and the infiltration test data is included in Appendix E and summarized in Table 1 below.

TABLE 1

Infiltration Test Location	Approximate Infiltration Test Depth Below Existing Grade (ft)	Observed Infiltration Rate* (Inch/Hr.)
I-1	10	0.1
I-2	5	0.5

Summary of Infiltration Testing

*Normalized to One-Dimensional Flow, does not include any Factor of Safety

It should be emphasized that infiltration test results are only representative of the location and depth where they are performed. Varying subsurface conditions may exist outside of the test locations which could alter the calculated infiltration rates indicated above. Infiltration tests are performed using relatively clean water free of particulates, silt, etc.

2.9 <u>Preliminary Seismic Design Parameters</u>

The site seismic characteristics were evaluated per the guidelines set forth in Chapter 16, Section 1613 of the 2019 California Building Code (CBC) and applicable portions of ASCE 7-16 which has been adopted by the CBC. Please note that the following seismic parameters are only applicable for code-based acceleration response spectra and are not applicable for where site-specific ground motion procedures are required by ASCE 7-16. Representative site coordinates of latitude 33.8297 degrees north and longitude -117.1570 degrees west were utilized in our analyses. The maximum considered earthquake (MCE) spectral response accelerations (S_{MS} and S_{M1}) and adjusted design spectral response acceleration parameters (S_{DS} and S_{D1}) for Site Class C are provided in Table 1 below. The structural designer should contact the geotechnical consultant if structural conditions (e.g., number of stories, seismically isolated structures, etc.) require site-specific ground motions.

TABLE 2

Selected Parameters from 2019 CBC, Section 1613 - Earthquake Loads	Seismic Design Values	Notes/Exceptions
Distance to applicable faults classifies the "Near-Fault" site.	site as a	Section 11.4.1 of ASCE 7
Site Class	С	Chapter 20 of ASCE 7
Ss (Risk-Targeted Spectral Acceleration for Short Periods)	1.500g	From SEAOC, 2021
S ₁ (Risk-Targeted Spectral Accelerations for 1-Second Periods)	0.600g	From SEAOC, 2021
F _a (per Table 1613.2.3(1))	1.200	For Simplified Design Procedure of Section 12.14 of ASCE 7, F _a shall be taken as 1.4 (Section 12.14.8.1)
F _v (per Table 1613.2.3(2))	1.400	-
S_{MS} for Site Class C [Note: $S_{MS} = F_aS_S$]	1.800g	-
S_{M1} for Site Class C [Note: $S_{M1} = F_v S_1$]	0.840g	-
S_{DS} for Site Class C [Note: $S_{DS} = (^2/_3) S_{MS}$]	1.200g	-
S_{D1} for Site Class C [Note: $S_{D1} = (^2/_3) S_{M1}$]	0.560g	-
C_{RS} (Mapped Risk Coefficient at 0.2 sec)	0.923	ASCE 7 Chapter 22
C _{R1} (Mapped Risk Coefficient at 1 sec)	0.902	ASCE 7 Chapter 22

Seismic Design Parameters

A deaggregation of the PGA based on a 2,475-year average return period (MCE) indicates that an

earthquake magnitude of 8.1 at a distance of approximately 10.1 km from the site would contribute the most to this ground motion. A deaggregation of the PGA based on a 475-year average return period (Design Earthquake) indicates that an earthquake magnitude of 8.1 at a distance of approximately 10.1 km from the site would contribute the most to this ground motion (USGS, 2014).

Section 1803.5.12 of the 2019 CBC (per Section 11.8.3 of ASCE 7) states that the maximum considered earthquake geometric mean (MCE_G) Peak Ground Acceleration (PGA) should be used for liquefaction potential. The PGA_M for the site is equal to 0.711g (SEAOC, 2021). The design PGA is equal to 0.48g ($S_{DS}/2.5$).

2.10 Faulting and Seismic Hazards

The subject site is not located within a State of California Earthquake Fault Zone (i.e., Alquist-Priolo Earthquake Fault Act Zone) and no active faults are known to cross the site. A fault is considered "Holocene-active" if evidence of surface rupture in Holocene time (the last approximately 11,000 years) is present. The possibility of damage due to ground rupture is considered low since no active faults are known to cross the site. The closest known active fault is the Casa Loma Fault of the San Jacinto Fault Zone located approximately 5 miles northeast of the subject site.

Secondary effects of seismic shaking resulting from large earthquakes on the major faults in the Southern California region, which may affect the site, include ground lurching and shallow ground rupture, soil liquefaction, and dynamic settlement. These secondary effects of seismic shaking are a possibility throughout the Southern California region and are dependent on the distance between the site and causative fault, and the onsite geology. A discussion of these secondary effects is provided in the following sections.

2.10.1 Liquefaction and Dynamic Settlement

Liquefaction is a seismic phenomenon in which loose, saturated, granular soils behave similarly to a fluid when subject to high-intensity ground shaking. Liquefaction occurs when three general conditions coexist: 1) shallow groundwater; 2) low density non-cohesive (granular) soils; and 3) high-intensity ground motion. Studies indicate that loose, saturated, near surface cohesionless soils exhibit the highest liquefaction potential, while dry, dense, cohesionless soils and cohesive soils exhibit low to negligible liquefaction potential. In general, cohesive soils are not considered susceptible to liquefaction, depending on their plasticity and moisture content (Bray & Sancio, 2006). Effects of liquefaction on level ground include settlement, sand boils, and bearing capacity failures below structures. Dynamic settlement of dry sands can occur as the sand particles tend to settle and densify as a result of a seismic event.

The site is located within a zone with a low to moderate potential for liquefaction according to maps prepared by the County of Riverside (2019). Site soils are not generally susceptible to liquefaction due to a lack of groundwater in the upper 50 feet and generally dense to very dense sandy soils. However, isolated layers may be susceptible to dry sand

seismic settlement. Seismically induced dry sand settlements were estimated by the procedures outlined by Pradel (Pradel, 1998) using the PGA_M per the 2019 CBC and a moment magnitude of 8.1 (USGS, 2014).

Based on the data obtained from our field evaluation, seismic settlement due to dry sands is estimated to be on the order of about 1-inch, or less. Differential settlement may be estimated as half of the total settlement over a horizontal span of 40 feet (e.g., ½ inch over 40 feet). Seismic settlement calculations were performed using the program CLiq (GeoLogismiki, 2017) and are provided in Appendix F.

2.10.2 Lateral Spreading

Lateral spreading is a type of liquefaction-induced ground failure associated with the lateral displacement of surficial blocks of sediment resulting from liquefaction in a subsurface layer. Once liquefaction transforms the subsurface layer into a fluid mass, gravity plus the earthquake inertial forces may cause the mass to move downslope towards a free face (such as a river channel or an embankment). Lateral spreading may cause large horizontal displacements and such movement typically damages pipelines, utilities, bridges, and structures.

Due to the lack of groundwater in the upper 50 feet and low probability of liquefaction, the potential for lateral spreading is also considered low.

2.11 Seismic Refraction Lines

To aid in evaluation of the rippability of the materials to be encountered within the proposed deeper cuts on the site, five seismic refraction lines were performed (see Geotechnical Map for locations). The data gathered via the seismic lines, provides estimated seismic velocities of the onsite materials to depths up to approximately 60 feet below the surface for this study. A detailed discussion of the methodology and graphic representation of the results are presented in Appendix D.

2.12 <u>Rippability</u>

In general, undocumented artificial fill, colluvium, and very old fan deposits are anticipated to be easily to moderately rippable utilizing conventional heavy-duty earth moving equipment (Caterpillar D9 with single shank or equivalent).

In general, the upper portions of site bedrock (Lakeview Mountain Tonalite) are anticipated to have a moderate to very difficult rippability utilizing heavy duty conventional earth moving equipment. Based on seismic refraction lines conducted just outside the project boundaries but within the subject bedrock, excavation difficulty of these materials increases with depth. Blasting should be anticipated as non-rippable bedrock materials have been identified within the depth of the design cut. In general, the subsurface data collected indicates that the bedrock materials can be generally classified into three zones of rippability (rippable, marginally rippable, and non-

rippable). Seismic refraction data is summarized below, and the locations of the seismic lines are depicted on the Geotechnical Map (Sheet 2).

The estimated depths to the different rippability classifications (rippable, marginally rippable, and non-rippable) are based on the onsite seismic refraction topographic models and the seismic velocities are summarized below. In general, the site bedrock may be considered:

- <u>Rippable</u> (seismic velocity < 4,000 ft/sec) to depths ranging from approximately 0 to 15 feet below existing ground surface.
- <u>Marginally Rippable</u> (seismic velocity 4,000 ft/sec to 7,000 ft/sec) to depths ranging from approximately 15 to 25 feet below existing ground surface.
- <u>Non-Rippable or Blasting</u> (seismic velocity >7,000 ft/sec) at depths greater than approximately 25 to 50 feet below existing ground surface, with the exception of shallow core stones.

Please note that the velocity ranges of these classifications are approximate and that rock characteristics, including jointing and fracturing spacing and orientation, are a major factor in determining rippability. Isolated core stones consisting of generally non-rippable rock may be encountered at depths shallower than approximately 25 feet below existing ground surface in the bedrock areas.

Localized zones of potentially non-rippable bedrock should be anticipated to be encountered above the estimated non-rippable bedrock depths. It is recommended that contractors review the provided subsurface data and independently determine the potential heavy ripping/blasting depths, lateral extents, quantities, etc. based on their experience. For further details regarding rippability please refer to the seismic refraction survey report (Appendix D).

2.13 <u>Oversized Material</u>

Oversized material (material larger than 8 inches in maximum dimension) may be generated during site grading. Recommendations are provided for appropriate handling of oversized materials in Appendix G. If feasible, crushing oversized materials onsite, incorporating them into "rock fills" (windrows, rock blankets or individual rock burial), or exporting oversized materials may be considered. Isolated core stones consisting of generally irreducible rock may be encountered in the bedrock areas. Special handling recommendations should be provided on a case-by-case basis, if encountered.

2.14 Settlement and Collapse/Swell Potential

Static settlement of the site will be induced by subjecting the existing grades to design grades (adding fill) and by the proposed structural building loads. The underlying very old fan deposits encountered were found to be medium dense to very dense and are generally not considered susceptible to long term consolidation settlement. Due to the primarily coarse-grained nature and apparent density of the site soils, static settlement should occur immediately during increasing grades; therefore, static settlement from increasing grades should not affect the proposed structural improvements. Static foundation settlement due to structural building loads

is discussed in Section 4.4. Recommendations for settlement monitoring of deep fills, greater than approximately 40 feet, are provided in Section 4.2.

In addition to static settlement, recent and previous laboratory testing indicates the presence of potentially collapsible native alluvial soils within the upper approximately 10 feet. Four of the six samples tested for collapse/consolidation experienced hydro-collapse and the resulting two experienced soil swell or expansion. The collapse potential (or hydro-collapse) of the four samples ranged from approximately 0 to 0.9 percent, which is considered to be slightly susceptible to hydro-collapse. To reduce the potential for adverse settlements in the proposed building areas, we recommend implementing our earthwork recommendations provided in Section 4.1.

2.15 <u>Expansion Potential</u>

Based on the results of laboratory testing, site soils are anticipated to have a "Very Low" to "Low" expansion potential. Final expansion potential of site soils should be determined at the completion of grading. Results of expansion testing at finish grades will be utilized to confirm final foundation design.

3.0 <u>CONCLUSIONS</u>

Based on the results of our subsurface evaluation and geotechnical review of the proposed plan, it is our opinion that the proposed improvements are feasible from a geotechnical standpoint, provided that the recommendations provided here and in future reports are incorporated during site grading and development. A summary of our geotechnical conclusions are as follows:

- The geologic units mapped on the site include Quaternary Very Old Fan deposits and Cretaceous Lakeview Mountain Tonalite. Localized zones of potentially compressible soils overlie portions of the site including undocumented artificial fill, topsoil and near-surface portions of the old fan deposits.
- Groundwater was not encountered during our subsurface field evaluation to the maximum explored depth of approximately 50 feet below existing ground and is not considered a significant issue with regards to future development.
- The subject study area is not located within a mapped State of California Earthquake Fault Zone, and based upon our review of published geologic mapping, no known active or potentially active faults are known to exist within or in the immediate vicinity of the site. Therefore, the potential for ground rupture as a result of faulting is considered very low. The closest known active fault is the Casa Loma Fault of the San Jacinto Fault Zone located approximately 5 miles northeast of the subject site.
- The main seismic hazard that may affect the site is from ground shaking from one of the active regional faults. The subject site will likely experience strong seismic ground shaking during its design life.
- According to the County of Riverside GIS website, portions of the site are located in mapped zones for low to moderate liquefaction susceptibility. Due to the generally dense to very dense nature of the soil and lack of groundwater in the upper 50 feet, site soils are generally not considered susceptible to liquefaction. However, isolated sandy layers may be susceptible to dry sand settlement. Total seismic settlement due to dry sand settlement is estimated to be on the order of about 1-inch, or less. Differential settlement may be estimated as half of the total settlement over a horizontal span of 40 feet (e.g., ½ inch over 40 feet).
- Some of the site bedrock should be anticipated to be easily to very difficult to excavate (rippability) utilizing heavy-duty machinery. In general, the site bedrock is considered to be rippable to marginally rippable at depths shallower than approximately 25 feet below the existing ground surface and non-rippable (blasting) at depths greater than approximately 25 to 50 feet below existing ground surface, with the exception of shallow core stones.
- Oversize particles (larger than 8 inches in maximum dimension) will require reduction in size or placement in rock disposal areas. Rock disposal areas are generally located in areas that are deeper than 10 feet below finish design grades or approximately 2 feet below the deepest utility, whichever is deeper.
- Oversized core stones that will require special handling may be encountered throughout the bedrock.
- From a geotechnical perspective, the existing onsite soils are considered suitable material for use as general fill, provided that they are relatively free from oversize rocks (larger than 8 inches in maximum dimension), construction debris, and significant organic material.
- Design cut and fill slopes are anticipated to be both grossly and surficially stable, as long as they are constructed in accordance with our geotechnical recommendations and are properly landscaped and maintained throughout their design life.
- Total fill depths greater than approximately 40 feet require surface settlement monitoring be performed after grading is completed to ensure long-term fill settlement is within tolerable limits prior

to commencement of building construction. The "total fill depth" refers to the depth of new fill or the cumulative depth of new fill placed over existing fill.

- Based on the results of laboratory testing, site soils have a "Very Low" to "Low" expansion potential. Mitigation measures will be required for any planned foundations and or site improvements to minimize the impacts of expansive soils. Final expansion potential of site soils should be determined at the completion of grading.
- Existing on-site soils are generally granular in nature and slope face compaction may be difficult to achieve. Additionally, erosion rills generally develop on slopes consisting of granular materials that are subject to heavy rain prior to establishment of properly designed and maintained landscaping. Completed cut and fill slopes should be immediately planted and irrigated, as vegetation has a positive effect on surficial stability.
- Existing native slopes surrounding the development are anticipated to be grossly stable; however, minor surficial failures may occur over time.

4.0 PRELIMINARY RECOMMENDATIONS

The following recommendations are to be considered preliminary and should be confirmed upon completion of grading and earthwork operations. In addition, they should be considered minimal from a geotechnical viewpoint, as there may be more restrictive requirements from the architect, structural engineer, building codes, governing agencies, or the owner.

It should be noted that the following geotechnical recommendations are intended to provide sufficient information to develop the site in general accordance with the 2019 CBC requirements. With regard to the possible occurrence of potentially catastrophic geotechnical hazards such as seismic shaking, earthquake-induced landslides, liquefaction, etc. the following geotechnical recommendations should provide adequate protection for the proposed development to the extent required to reduce seismic risk to an "acceptable level." The "acceptable level" of risk is defined by the California Code of Regulations as "that level that provides reasonable protection of the public safety, though it does not necessarily ensure continued structural integrity and functionality of the project" [Section 3721(a)]. Therefore, repair and remedial work of the proposed improvements may be required after a significant seismic event. With regards to the potential for less significant geologic hazards to the proposed development such as expansive soils, fill settlement, groundwater seepage, etc., the recommendations contained herein are intended as a reasonable protection against potential damaging effects. It should be understood, however, that our recommendations are intended to maintain the structural integrity of the proposed development and structures given the site geotechnical conditions but cannot preclude the potential for some cosmetic distress or nuisance issues to develop as a result of the site geotechnical conditions.

The geotechnical recommendations contained herein must be confirmed to be suitable or modified based on the actual as-graded conditions.

4.1 <u>Site Earthwork</u>

We anticipate that earthwork at the site will consist of rough grading followed by retaining wall construction, utility construction, foundation construction, and asphalt paving of the interior streets and drives. We recommend that earthwork onsite be performed in accordance with the following recommendations, the County of Riverside/2019 CBC requirements, and the General Earthwork and Grading Specifications for Rough Grading included in Appendix G. In case of conflict, the following recommendations shall supersede those included as part of Appendix G. The following recommendations should be considered preliminary and may be revised by the geotechnical consultant based on the actual conditions encountered during site grading.

4.1.1 Site Preparation

Prior to grading of areas to receive structural fill or engineered structures, the areas should be cleared of surface obstructions and unsuitable material (such as undocumented fill, colluvium, and topsoil). Vegetation and debris should be removed and properly disposed of offsite. Holes resulting from the removal of buried obstructions, which extend below proposed removal bottoms, should be replaced with suitable compacted fill material.

4.1.2 <u>Removal and Recompaction</u>

In order to provide a relatively uniform bearing condition for the planned building structures and improvements, we recommend the site soils be removed and recompacted. Unsuitable and potentially compressible materials not removed by design cuts should be excavated to competent very old fan deposit materials or bedrock and replaced with compacted fill soils. In general, this includes existing undocumented artificial fill, residual soil, and upper weathered/desiccated portions of the very old fan deposits. Subsurface site soils should be removed and recompacted according to the criteria outlined below. Updated recommendations may be required based on additional field evaluation, changes to building layouts and actual structural loads.

<u>Industrial and Commercial Buildings</u>: We recommend that soils within the proposed building pads be temporarily removed and recompacted to minimum depths of approximately 3 to 8 feet below existing grade or 2 feet beneath the base of the foundations, whichever is deeper. Estimated removal and recompaction depths are presented on the Geotechnical Maps (Sheets 1 through 3). Where adequate space is available, the base of removal and recompaction bottoms should extend laterally a minimum distance equal to the depth of removal and recompaction below finish grade or at a minimum distance of 5 feet beyond the edges of the proposed building foundations, whichever is larger.

<u>Minor Site Structures</u>: For minor site structures such as free-standing walls, screen walls, trash enclosures, etc., removal and recompaction should extend at least 5 feet beneath existing grade or 2 feet beneath the base of foundations, whichever is deeper. In general, the envelope for removal and recompaction should extend laterally a minimum distance of 5 feet beyond the edges of the proposed improvements mentioned above, where space permits.

<u>Pavement:</u> Within pavement areas, removal and recompaction should extend to a depth of at least 2 feet below the existing grade or 2 feet beneath the finished subgrade (i.e., beneath planned aggregate base/asphalt concrete or PCC), whichever is deeper. The envelope for removal and recompaction should extend laterally a minimum distance of 2 feet beyond the edges of pavement, where space permits.

Local conditions may be encountered during excavation that could require deep remedial grading beyond the above noted minimum in order to obtain an acceptable subgrade. The actual depths and lateral extents of grading will be determined by the geotechnical consultant, based on subsurface conditions encountered during grading. Removal and recompaction areas should be accurately staked in the field by the Project Surveyor.

Several methods will be utilized in determining the suitability of the material observed in the removal bottom excavations. Observation of material, proof rolling, probing, and occasional field density testing of the removal bottoms shall be performed by a field technician and/or field geologist. When field density test data is utilized for approval of material, an in-place relative compaction of 85 percent or greater and a degree of saturation of 85 percent or greater will be considered suitable.

4.1.3 Geologic Mapping

Removals, backcuts, and keyway excavations (where applicable) must be geologically mapped by the geotechnical consultant during earthwork construction to confirm the anticipated conditions. The grading contractor must trim the backcuts with a slope board to remove loose material to allow for confirmation mapping. Updated and/or revised geotechnical recommendations may be required based on observed conditions.

4.1.4 <u>Over-excavation</u>

In order to provide a uniform fill blanket beneath proposed structures, it is recommended that design cut, and cut/fill transition pads be over-excavated a minimum of 3 feet below ultimate finish pad grade, or a minimum of 2 feet below planned footings, whichever is greater. A maximum 3:1 differential fill thickness, up to a maximum over-excavation depth of 10 feet, underneath individual building pads should be maintained in order to reduce the potential for future differential settlement. Over-excavation should extend laterally a minimum of 5 feet beyond proposed building footprints. The over-excavation bottoms should be graded with a minimum 2 percent tilt towards deeper fill areas in order to reduce the potential for ponding of water.

Minor site structure foundations (e.g., retaining wall footings, trash enclosure footings, etc.) located on cut or cut/fill transition areas should be over-excavated a minimum of 1-foot below and 2 feet beyond the edges of the proposed footings. In addition, streets in design cut areas should be over-excavated a minimum of 2 feet below design subgrade elevations. In order to avoid difficult excavation during utility installation, streets in bedrock cut areas may be over-excavated to a depth equivalent to 1-foot below the lowest utility, if desired. Extending the street over-excavation to 1-foot below deepest utility, in bedrock cut areas, will help mitigate potential excavation difficulties during underground utility installation.

Over-excavations/undercuts must be confirmed and mapped by the geotechnical consultant prior to subsequent fill placement. The actual depth and lateral extents of over-excavation should be determined by the geotechnical consultant, based on subsurface conditions encountered during grading. Over-excavation areas should be accurately staked in the field by the Project Surveyor. Please note that some estimated removals in the western portion of the site may extend deeper than the recommended over-excavation in order to remove unsuitable materials (see Removals Section).

4.1.5 <u>Removal and Overexcavation Bottom Preparation</u>

In general, removal bottoms, over-excavation/undercut bottoms, and areas to receive compacted fill should be scarified to a minimum depth of 6 to 8 inches, brought to a near-optimum moisture condition (generally within optimum and 2 percent above optimum moisture content) and re-compacted per project requirements.

Removal bottoms, over-excavation/undercut bottoms, and areas to receive fill should be observed and accepted by the geotechnical consultant prior to fill placement.

4.1.6 <u>Material for Fill</u>

From a geotechnical perspective, the onsite soils are generally considered suitable for use as general compacted fill, provided they are relatively free of organic materials and construction debris. Any encountered oversized material (material larger than 8 inches in maximum dimension) must be appropriately handled as outlined in Appendix G.

From a geotechnical perspective, any required import soils for general fill (i.e., not retaining wall backfill), should consist of clean, relatively granular soils of Very Low expansion potential (expansion index 20 or less based on ASTM D4829) and no particles larger than 3 inches in greatest dimension. Import for any required retaining wall backfill should meet the criteria outlined in the following paragraph. <u>Source samples should be provided to the geotechnical consultant for laboratory testing a minimum of 3 working days prior to any planned importation.</u>

Conventional (masonry) retaining wall backfill should consist of sandy soils with a maximum of 35 percent fines (passing the No. 200 sieve) per American Society for Testing and Materials (ASTM) Test Method D1140 (or ASTM D6913/D422) and a "Very Low" expansion potential (EI of 20 or less per ASTM D4829). Soils should also be screened of organic materials, construction debris, and any material greater than 3 inches in maximum dimension. Much of the site sandy soils should be suitable for retaining wall backfill once screened of material greater than 3 inches in maximum dimension; therefore, select grading and stockpiling of onsite soils meeting the criteria above will be required by the contractor for obtaining suitable retaining wall backfill soil. These preliminary findings should be confirmed during grading.

Aggregate base (crushed aggregate base or crushed miscellaneous base) should conform to the latest requirements of Section 200-2 of the Standard Specifications for Public Works Construction ("Greenbook") for untreated base materials (except processed miscellaneous base) or Caltrans Class 2 aggregate base.

The placement of demolition materials in compacted fill is acceptable from a geotechnical viewpoint provided the demolition material is broken up into pieces not larger than typically used for aggregate base (approximately 1-inch in maximum dimension) and well blended into fill soils with essentially no resulting voids. Demolition material placed in fills must be free of construction debris (wood, brick, etc.) and reinforcing steel. If asphalt concrete fragments will be incorporated into the demolition materials, approval from an environmental viewpoint may be required and is not the purview of the geotechnical consultant. From our previous experience, we recommend that asphalt concrete fragments be limited to fill areas within planned street areas below future utilities (i.e., not within building pad areas).

4.1.7 Fill Placement and Compaction

Material to be placed as fill should be brought to near optimum moisture content (generally at optimum to 2 percent above optimum moisture content) and recompacted to at least 90 percent relative compaction (per ASTM D1557). It is anticipated that moisture conditioning of site soils will be required in order to achieve adequate compaction. Some

of the site soils will require additional moisture in order to achieve the required compaction. Very moist soils are also present that will require drying and or mixing prior to reusing the materials in compacted fills.

The optimum lift thickness to produce a uniformly compacted fill will depend on the type and size of compaction equipment used. In general, fill should be placed in uniform lifts not exceeding 8 inches in compacted thickness. Each lift should be thoroughly compacted and accepted prior to subsequent lifts. Generally, placement and compaction of fill should be performed in accordance with local grading ordinances and under observation and testing by LGC Geotechnical. Any encountered oversized material as previously defined must be appropriately handled (Appendix G).

Fill placed on any slopes greater than 5:1 (horizontal to vertical) should be properly keyed and benched into firm and competent soils as it is placed in lifts. During backfill of temporary excavations, fill should be properly benched into firm and competent soils as it is placed in lifts.

Fill slope faces should also be compacted to minimum project recommendations. This may require overbuilding of the slope face and trimming back to design grades. Placement of sand or gravel lacking cohesive soil for binder on the outer slope face should be avoided in order to reduce potential for surficial instability such as erosion rills. To improve surficial stability, vegetation specified by the landscape architect should be established on the slope face as soon as it is practical, refer to Section 4.3.1

Aggregate base material (crushed aggregate base and crushed miscellaneous base) should be compacted to a minimum of 95 percent relative compaction at or slightly above optimum moisture content per ASTM D1557. Subgrade below aggregate base should be compacted to a minimum of 90 percent relative compaction at near-optimum moisture content (generally within optimum and 2 percent above optimum moisture content) per ASTM D1557.

4.1.7.1 Oversized Placement and Compaction

Oversized material (material larger than 8 inches in maximum dimension) may be generated during site grading. Recommendations are provided for appropriate handling of oversized materials in General Earthwork & Grading Specifications, Appendix G. Oversize material should not be placed in deep fill areas where an increased minimum relative compaction is required. If feasible, crushing oversized materials or exporting to an offsite location may be considered.

4.1.8 <u>Trench and Conventional Retaining Wall Backfill and Compaction</u>

The onsite soils may generally be suitable as trench backfill, provided the soils are generally free of material greater than 6 inches in diameter and organic matter. If trenches are shallow or the use of conventional equipment may result in damage to the utilities, sand having a sand equivalent (SE) of 30 or greater (per CTM 217) may be used to bed and shade pipes. Sand backfill within the pipe bedding zone may be densified by jetting or flooding

and then tamped to ensure adequate compaction. Subsequent trench backfill should be compacted in uniform lifts by mechanical means to at least the recommended minimum relative compaction (per ASTM D1557).

Conventional (masonry) retaining wall backfill should consist of sandy soils outlined in above Section 4.1.6. The limits of select sandy backfill should extend at minimum ½ the height of the retaining wall or the width of the heel (if applicable), whichever is greater, refer to Figure 2 (Rear of Text). Retaining wall backfill soils should be compacted in relatively uniform thin lifts to at least 90 percent relative compaction (per ASTM D1557). Jetting or flooding of retaining wall backfill materials should not be permitted.

In backfill areas where mechanical compaction of soil backfill is impractical due to space constraints, typically sand-cement slurry may be substituted for compacted backfill. The slurry should contain about one sack of cement per cubic yard. When set, such a mix typically has the consistency of compacted soil. Sand cement slurry placed near the surface within landscape areas should be evaluated for potential impacts on planned improvements.

A representative from LGC Geotechnical should observe, probe, and test the backfill to verify compliance with the project recommendations.

4.1.9 Shrinkage and Bulking

Volumetric changes in earth quantities will occur when excavated onsite earth materials are replaced as properly compacted fill. The following is an estimate of shrinkage factors for the various geologic units found onsite. These estimates are based on in-place densities of the various materials and on the estimated average degree of relative compaction that will be achieved during grading.

<u>TABLE 3</u>

Estimated Shrinkage

Soil Type	Allowance	Estimated Range
Qvof	Shrinkage	0 to 10 %
Klmt (within 5 feet from existing)	Bulking	5 to 10 %
Klmt (deeper than 5 feet from existing)	Bulking	15 to 20 %

Subsidence due to earthwork equipment is expected to be on the order of 0.1 feet. It should be stressed that these values are only estimates and that actual shrinkage factors are extremely difficult to predict. The effective shrinkage of onsite soils will depend primarily on the type of compaction equipment and method of compaction used onsite by the contractor. Additionally, the geology onsite varies; the above estimates are generalized groupings of similar lithologies and should be expected to vary across the site laterally and with depth. The above shrinkage estimates are intended as an aid for others in determining preliminary earthwork quantities. However, these estimates should be used with some caution since they are not absolute values.

Due to the combined variability in topographic surveys, inability to precisely model the removals and variability in on-site near-surface conditions, it is our opinion that the site will <u>not</u> balance at the end of grading. If importing/exporting a large volume of soils is <u>not</u> considered feasible or economical, we recommend a balance area be designated onsite that can fluctuate up or down based on the actual volume of soil. We recommend a "balance" area that can accommodate on the order of 5 to 10 percent (plus or minus) of the total grading volume be considered.

4.1.10 <u>Temporary Excavations</u>

Temporary excavations should be performed in accordance with project plans, specifications, and all Occupational Safety and Health Administration (OSHA) requirements. Excavations should be laid back or shored in accordance with OSHA requirements before personnel or equipment are allowed to enter. We anticipate temporary slopes required for removals, over-excavations and haul roads to be grossly stable at 1:1 (horizontal to vertical) or flatter.

The contractor must request observation of temporary excavations by a representative of LGC Geotechnical, not only to confirm the geotechnical conditions, but to also help provide observation of early warning signs of potential failures. Based on our field evaluation, the majority of site soils are anticipated to be OSHA Type "C" soils (refer to the attached boring logs). Sandy soils are present and should be considered susceptible to caving. Soil conditions should be regularly evaluated during construction to verify conditions are as anticipated. The contractor shall be responsible for providing the "competent person" required by OSHA standards to evaluate soil conditions. Close coordination with the geotechnical consultant should be maintained to facilitate construction while providing safe excavations. Excavation safety is the sole responsibility of the contractor.

Surcharge loads (vehicular traffic, soil stockpiles, construction equipment, etc.) should be set back from the perimeter of excavations a minimum distance equivalent to a 1:1 projection from the bottom of the excavation or 5 feet, whichever is greater, unless the cut is properly shored and designed for the applicable surcharge load. Once an excavation has been initiated, it should be backfilled as soon as practical. Prolonged exposure of temporary excavations may result in some localized instability. Excavations should be planned so that they are not initiated without sufficient time to shore/fill them prior to weekends, holidays, or forecasted rain.

It should be noted that any excavation that extends below a 1:1 (horizontal to vertical) projection of an existing foundation will remove existing support of the structure foundation. If requested, temporary shoring parameters will be provided.

4.2 <u>Settlement Monitoring</u>

Fill soils are subject to post-grading settlement. This even occurs to properly compacted fill soils with properly constructed subdrains. <u>Total fill depths greater than approximately 40 feet require</u> <u>surface settlement monitoring be performed after grading is completed to ensure long-term fill</u> <u>settlement is within tolerable limits prior to commencement of building construction.</u> The total fill depth refers to the depth of new design fill or the cumulative depth of new design fill placed over older artificial fill.

Specific recommendations for installation of settlement monitoring equipment, settlement monitoring procedures, approximate number of settlement monitoring points, frequency of readings and estimated settlement monitoring period will be provided in a future report once actual grading plans are available.

4.3 <u>Slope Stability</u>

Based on the preliminary site plans, the findings of our limited geotechnical evaluation and previous experience with similar geotechnical conditions, design cut and fill slopes up to a maximum height of approximately 90 feet are anticipated to be both grossly and surficially stable as designed, as long as they are constructed in accordance with the recommendations provided in the Sections below and our General Earthwork and Grading Specifications for Rough Grading (Appendix G). Slope stability analysis should be performed once grading plans are available to confirm this.

4.3.1 <u>Cut Slopes</u>

Based on the preliminary grading plan (Hunsaker, 2019), cut slopes with a maximum inclination of approximately 2:1 (horizontal to vertical) are proposed in the site bedrock and very old fan deposits. Cut slopes within the site bedrock are considered grossly and surficially stable as designed. The owner may elect to construct stabilization fills for the proposed cut slopes in the very old fan deposits over 5 feet in height in accordance with the detail provided in Appendix G. Stabilization fills should be a minimum of 15 feet wide. They should be a minimum of 2 feet deep, determined from the lowest toe-of-slope elevation, and tilted back towards the heel a minimum 2 percent or 1-foot (whichever is greater).

Stabilization fill backcuts should be excavated so that at least a minimum 15-foot fill width is maintained for the entire height of the stability fill slope. In general, backcuts should be excavated at a maximum 1.5:1 (horizontal to vertical) inclination. Properly outletted back drains should be constructed along stabilization fill backcuts in accordance with the General Earthwork and Grading Specifications for Rough Grading included in Appendix G. Flatter backcut inclinations may be required based on observed conditions during grading. The backcuts should not be initiated prior to forecasted rain or be left open for extended periods of time.

Backcuts and stabilization fill excavations must be geologically mapped by the

geotechnical consultant during excavation to confirm the anticipated conditions. If adverse conditions are exposed, additional analysis and/or remediation measures may be required. The grading contractor must trim the backcuts with a slope board to remove loose material to allow for confirmational mapping. Updated and/or revised geotechnical recommendations may be required based on observed conditions.

4.3.2 Fill Slopes

Design fill slopes depicted on the preliminary grading plan (Hunsaker, 2019) are anticipated to be both grossly and surficially stable as designed provided they are constructed in accordance with the General Earthwork and Grading Specifications for Rough Grading included in Appendix G and properly maintained subsequent to construction (Section 4.3.3). Fill slopes should be constructed with a maximum slope ratio of 2:1 (horizontal to vertical). Slope faces should be compacted to project recommendations. To improve surficial stability, vegetation specified by the landscape architect should be established on the slope face as soon as it is practical.

4.3.3 Slope Maintenance Guidelines

It is recommended that any graded slopes be planted with groundcover vegetation as soon as practical to protect against erosion by reducing runoff velocity. Deep-rooted vegetation that requires little water and is able to survive local climate conditions should also be established to protect against surficial slumping. Under no circumstances should slopes be allowed to be bare of vegetation. Landscape vegetation must not be "trimmed" to root structures leaving no protection of the slopes. Irrigation levels should be kept to the minimum level necessary to establish healthy plant growth. Slopes must not be overwatered. If automatic sprinklers are used, they must be adjusted during periods of rainfall. A landscape professional must be consulted for landscape recommendations.

A program for the elimination of burrowing animals in both native and graded slope areas must be established to protect slope stability by reducing the potential for surface water to penetrate into the slope face. Continuous erosion control, rodent control, and maintenance are essential to the long-term stability of all slopes. Trenches excavated on a slope face for utility or irrigation lines and/or for any purpose must be properly backfilled and compacted to project recommendations to the slope face. Observation/testing and acceptance by the geotechnical consultant during trench backfill are recommended. V-ditches should be inspected and cleared of loose soil and/or debris on a routine basis, especially prior to and during the rainy season.

4.4 <u>Subdrains</u>

If unanticipated groundwater or areas of potential future groundwater seepage and/or accumulation are encountered during grading subdrain systems may be recommended by the geotechnical consultant. Subdrains are to be properly outletted and connected to a suitable discharge point.

A representative of the project civil engineer should survey the installed subdrains for alignment and grade prior to fill placement above the subdrains. The location and elevations of subdrains and subdrain outlets should be recorded on as-built plans and made available to future owners. It is the responsibility of the contractor to locate and protect subdrain outlets prior to the completion of work.

4.5 Preliminary Foundation Recommendations

The proposed structures may be supported on spread or continuous footings and conventional slabs, provided earthwork is performed in accordance with the recommendations presented in this report. All footings should be supported on properly compacted fill. Please note that the following foundation recommendations are <u>preliminary</u> and must be confirmed by LGC Geotechnical at the completion of grading.

Preliminary foundation recommendations are provided in the following sections. The foundation design must be performed by the structural engineer based on the following geotechnical parameters and minimum values provided.

4.5.1 Slab Design and Construction

Minimum slab thicknesses of 6 inches and 4 inches are recommended for new slabs in the truck bay/warehouse areas and office areas, respectively. Slabs are to be supported on compacted fill soils properly prepared in accordance with the recommendations provided in this report. Minimum slab reinforcement should be determined by the structural engineer based on the imposed loading, crack control, etc. Additional slab-ongrade recommendations can be provided for alternative building types upon request.

It is recommended that subgrade soils below slabs be moisture conditioned in order to maintain the recommended moisture content up to the time of concrete placement. The recommended moisture content of the slab subgrade soils should be approximately 2 percent above optimum moisture content to a minimum depth of 12 inches. The moisture content of the slab subgrade should be verified by the geotechnical engineer within 1 to 2 days prior to concrete placement. In addition, this moisture content should be maintained around the immediate perimeter of the slab during construction and up to occupancy of the building structures.

Some post-construction moisture migration should be expected below the foundation. The following recommendations should be applied for office areas and/or other portions of the proposed truck bays that may be sensitive to nuisance moisture migrating through the slab from the subgrade soils. The following recommendations are for informational purposes only, as they are unrelated to the geotechnical performance of the foundation. The following recommendations may be superseded by the foundation engineer and/or owner.

In general, interior floor slabs with moisture sensitive floor coverings should be underlain by a minimum 15 mil thick vapor retarder, which has a water vapor transmission rate (permeance) of less than 0.3 perms, as determined by ASTM E 96, and

meets the applicable code requirements (ASTM E 1745).

It is the responsibility of the contractor to ensure that the moisture/vapor retarder systems are properly installed in accordance with the project plans and manufacturers specifications, and that the moisture/vapor retarder materials are free of tears and punctures prior to and as a result of concrete placement. Additional moisture reduction and/or prevention measures may be needed, depending on the performance requirements of future interior floor coverings.

The foundation/structural engineer should determine whether the use of a capillary break (sand or gravel layer) in conjunction with the vapor retarder is necessary or required by code. Sand layer thickness and location (above and/or below vapor retarder) should also be determined by the foundation/structural engineer. Sand layers should be installed, where applicable, in accordance with ACI Publication 302 – "Guide for Concrete Floor and Slab Construction."

4.5.2 Foundation Design Parameters

Provided our earthwork recommendations are implemented, the proposed buildings may be supported on shallow foundation systems. Minimum continuous wall and column footing widths are to be 12 inches and 24 inches, respectively. Minimum foundation embedment is to extend a minimum of 24 inches below the adjacent exterior grade. Interior column footings may be placed 12 inches beneath the floor slab. The following allowable bearing pressures for both continuous and column spread footings presented in Table 4 below are recommended for corresponding footing widths and embedments.

<u>TABLE 4</u>

Allowable Static Bearing Pressure (psf)	Minimum Footing Width (feet)	Minimum Footing Embedment* (feet)
4,000	5	2
3,500	3	2
2,500	1	1

Allowable Soil Bearing Pressures

* Refers to minimum depth measured below lowest adjacent grade, or slab if internal footing.

These allowable bearing values indicated above (exclusive of the weight of the footings) are for total dead loads and frequently applied live loads and may be increased by $\frac{1}{3}$ for short duration loading (i.e., wind or seismic loads). The allowable bearing pressures are applicable for level (ground slope equal to or flatter than 5H:1V) conditions only.

In addition, it is recommended that the perimeter building foundations be continuous across all exterior doorways to reduce moisture migration beneath the slab.

In utilizing the above-mentioned allowable bearing capacity and provided our earthwork recommendations are implemented, foundation settlement due to structural loads is anticipated to be on the order of 1-inch or less. Differential static settlement may be taken as half of the static settlement (i.e., ½-inch over a horizontal span of 40 feet). Furthermore, seismic dry sand settlement is anticipated to be on the order of ½-inch or less. Differential seismic settlement may be taken as half of the seismic settlement (i.e., ¼-inch over a horizontal span of 40 feet).

4.5.3 Foundation Construction

The foundation is to be excavated into competent compacted artificial fill placed during grading operations. It is recommended that the foundation subgrade soils be evaluated by the geotechnical engineer prior to steel and/or concrete placement.

The geotechnical parameters provided herein assume that if the areas adjacent to the foundation are planted and irrigated, these areas will be designed with proper drainage and adequately maintained so that ponding, which causes significant moisture changes below the foundation, does not occur. Our recommendations do not account for excessive irrigation and/or incorrect landscape design. Plants should only be provided with sufficient irrigation for life and not overwatered to saturate subgrade soils. Sunken planters placed adjacent to the foundation should either be designed with an efficient drainage system or liners to prevent moisture infiltration below the foundation.

4.5.4 Lateral Load Resistance

Resistance to lateral loads can be provided by friction acting at the base of foundations and by passive earth pressure. For concrete/soil frictional resistance, an allowable coefficient of friction of 0.35 may be assumed with dead-load forces. For slabs constructed over a moisture retarder, the allowable friction coefficient should be provided by the manufacturer. An allowable passive lateral earth pressure of 275 psf per foot of depth (or pcf) to a maximum of 2,750 psf may be used for the sides of footings poured against properly compacted fill. Allowable passive pressure may be increased to 375 pcf (maximum of 3,750 psf) for short duration seismic loading. This passive pressure is applicable for level (ground slope equal to or flatter than 5H:1V) conditions. Frictional resistance and passive pressure may be used in combination without reduction. We recommend that the upper foot of passive resistance be neglected if finished grade will not be covered with concrete or asphalt. The provided allowable passive pressures are based on a factor of safety of 1.5 and 1.1 for static and seismic loading conditions, respectively.

4.6 <u>Foundation Setback from Top-of-Slope and Bottom-of-Slope</u>

Foundations should have adequate setback from top and bottom of slopes. Per the 2019 CBC, the minimum top-of-slope setback is H/3, with a maximum required setback of 40 feet, where H is the total height of the slope. The minimum bottom-of-slope setback is H/2, with a maximum required setback of 15 feet. Refer to Chapter 18 of the 2019 CBC. Foundation setback criteria should be reviewed based on the precise grading plans.

4.7 Lateral Earth Pressures for Conventional Retaining Wall Design

New retaining walls are expected to be required in truck dock (court) areas. Additionally, the proposed development may require some small retaining walls to facilitate the new site grades. The following may be used for design of site retaining walls. Lateral earth pressures are provided as equivalent fluid unit weights, in psf per foot of depth (or pcf). These values do not contain an appreciable factor of safety, so the retaining wall designer should apply the applicable factors of safety and/or load factors during design. A soil unit weight of 120 pcf may be assumed for calculating the actual weight of soil over the wall footing.

The following lateral earth pressures are presented in Table 5 below for approved onsite select sandy soils with a maximum of 35 percent fines (passing the No. 200 sieve per ASTM D-421/422) and a "Very Low" expansion potential (EI of 20 or less per ASTM D4829). Much of the site sandy soils should be suitable for retaining wall backfill once screened of material greater than 3 inches in maximum dimension; therefore, select grading and stockpiling of onsite soils meeting the criteria above will be required by the contractor for obtaining suitable retaining wall backfill soil. The retaining wall designer should clearly indicate on the retaining wall plans the required sandy backfill.

TABLE 5

	Equivalent Fluid Unit Weight (pcf)		
Conditions	Level Backfill	2:1 Sloped Backfill	
	Select Sandy Backfill	Select Sandy Backfill	
Active	35	55	
At-Rest	55	70	

Lateral Earth Pressures - Select Sandy Soils

If the wall can yield enough to mobilize the full shear strength of the soil, it can be designed for "active" pressure. If the wall cannot yield under the applied load, the earth pressure will be higher. This would include 90-degree corners of retaining walls. Such walls should be designed for "at-rest." The equivalent fluid pressure values assume free-draining conditions and a drainage system will be installed and maintained to prevent the build-up of hydrostatic pressures. If conditions other than those assumed above are anticipated, the equivalent fluid pressure values should be provided on an individual-case basis by the geotechnical engineer.

Retaining wall structures should be provided with appropriate drainage and appropriately waterproofed. To reduce, but not eliminate, saturation of near-surface (upper approximate 1-foot) soils in front of the retaining walls, the perforated subdrain pipe should be located as low as possible behind the retaining wall. The outlet pipe should be sloped to drain to a suitable outlet. In general, we do not recommend retaining wall outlet pipes be connected to area drains. If subdrains are connected to area drains, special care should be taken to maintain these drains.

Typical conventional retaining wall drainage is shown on Figure 3. It should be noted that the recommended subdrain does not provide protection against seepage through the face of the wall and/or efflorescence. Waterproofing and outlet systems are not the purview of the geotechnical consultant.

Surcharge loading effects from any adjacent structures should be evaluated by the retaining wall designer. In general, structural loads within a 1:1 (horizontal: vertical) upward projection from the bottom of the proposed retaining wall footing will surcharge the proposed retaining wall. In addition to the recommended earth pressure, retaining walls adjacent to streets should be designed to resist a uniform lateral pressure of 85 pounds per square foot (psf) due to normal street vehicle traffic, if applicable. Uniform lateral surcharges may be estimated using the applicable coefficient of lateral earth pressure using a rectangular distribution. A factor of 0.45 and 0.3 may be used for at-rest and active conditions, respectively. The retaining wall designer should contact the geotechnical consultant for any required geotechnical input in estimating surcharge loads.

If required, the retaining wall designer may use a seismic lateral earth pressure increment of 10 pcf for a level backfill condition. This increment should be applied in addition to the provided static lateral earth pressure using a triangular distribution with the resultant acting at H/3 in relation to the base of the retaining structure (where H is the retained height). Per Section 1803.5.12 of the 2019 CBC, the seismic lateral earth pressure is applicable to structures assigned to Seismic Design Category D through F for retaining wall structures supporting more than 6 feet of backfill height. The provided seismic lateral earth pressure should not be used for retaining walls exceeding 10 feet in height. If a retaining wall greater than 10 feet in height or a retaining wall with a sloping backfill condition is proposed, the retaining wall designer should contact the geotechnical engineer for specific seismic lateral earth pressure increments based on the configuration of the planned retaining wall structures. This seismic lateral earth pressure is estimated using the procedure outlined by the Structural Engineers Association of California (Lew, et al, 2010).

Soil bearing and lateral resistance (friction coefficient and passive resistance) are provided in Section 4.4. Earthwork considerations (temporary backcuts, backfill, compaction, etc.) for retaining walls are provided in Section 4.1 (Site Earthwork) and the subsequent earthwork related sub-sections.

4.8 Soil Corrosivity to Concrete and Metal

Although not corrosion engineers (LGC Geotechnical is not a corrosion consultant), several governing agencies in Southern California require the geotechnical consultant to determine the corrosion potential of soils on buried concrete and metal facilities. We therefore present the results of our testing with regard to corrosion for the use of the client and other consultants, as they determine necessary.

Preliminary corrosion testing of a near-surface bulk sample indicated a soluble sulfate content less than approximately 0.02 percent, chloride contents ranging from approximately 31 to 104 parts per million (ppm), pH values ranging from approximately 5.8 to 7.9, and minimum resistivities ranging from approximately 1,446 to 15,000 ohm-cm. Based on Caltrans Corrosion Guidelines (Caltrans, 2015), soils are considered corrosive to structural elements if the pH is 5.5 or less, or the chloride concentration is 500 ppm or greater, or the sulfate concentration is 2,000

ppm (0.2 percent) or greater. Based on the preliminary test results, soils are not considered corrosive using Caltrans criteria.

Based on preliminary laboratory test results of representative site soil samples, onsite soils are anticipated to have a designated sulfate exposure class of "S0" per ACI 318-14, Table 19.3.1.1. Concrete in direct contact with the onsite soils can be designed according to ACI 318, Table 19.3.2.1 using the "S0" sulfate classification.

Laboratory testing may need to be performed at the completion of grading by the project corrosion engineer to further evaluate the as-graded soil corrosivity characteristics. Accordingly, revision of the corrosion potential may be needed, should future test results differ substantially from the conditions reported herein. The client and/or other members of the development team should consider this during the design and planning phase of the project and formulate an appropriate course of action.

4.9 <u>Subsurface Water Infiltration</u>

Recent regulatory changes have occurred that mandate that storm water be infiltrated below grade into subsurface soils rather than collected in a conventional storm drain system. Typically, a combination of methods are implemented to reduce surface water runoff and increase infiltration including; permeable pavements/pavers for roadways and walkways, directing surface water runoff to grass-lined swales, retention areas, drywells, etc.

It should be noted that collecting and concentrating surface water for the purpose of intentionally infiltrating below grade, conflicts with the geotechnical engineering objective of directing surface water away from slopes, structures and other improvements. The geotechnical stability and integrity of a site is reliant upon appropriately handling surface water. In general, we do not recommend that surface water be intentionally infiltrated into the subsurface soils.

Considering the low tested preliminary infiltration rates combined with the fact that the developed site will consist of compacted fill over dense native materials, we do not recommend that surface water be intentionally infiltrated into subsurface soils unless additional infiltration testing is performed in the proposed basin locations.

4.10 <u>Control of Surface Water and Drainage Control</u>

From a geotechnical perspective, we recommend that compacted finished grade soils adjacent to the proposed warehouse structures be sloped away from the proposed structures towards an approved drainage device or unobstructed swale. Drainage swales, wherever feasible, should not be constructed within 5 feet of buildings. Where lot and building geometry necessitates that the drainage swales be routed closer than 5 feet to structural foundations, we recommend the use of area drains together with drainage swales. Drainage swales used in conjunction with area drains should be designed by the project civil engineer <u>so that a properly constructed and maintained system will prevent ponding within 5 feet of the foundation.</u> Code compliance of grades is not the purview of the geotechnical consultant.

Planters with open bottoms adjacent to buildings should be avoided. Planters should not be designed adjacent to buildings unless provisions for drainage, such as catch basins, liners, and/or area drains, are made. Overwatering must be avoided.

4.11 <u>Preliminary Asphalt Concrete Pavement Sections</u>

Preliminary laboratory testing resulted in R-values of 67 and 43 for the onsite soils. Preliminary minimum street sections are provided in Table 6 below for Traffic Indices of 5.5, 6.0, 7.0 and 8.0 and a preliminary R-value of 40. Pavement sections are based on Caltrans Highway Design Manual (Caltrans, 2008) and the County of Riverside minimum pavement sections. These recommendations must be confirmed with additional R-value testing of representative near-surface soils at the completion of grading and after underground utilities have been installed and backfilled. Final street sections should be confirmed by the project civil engineer based upon the projected design Traffic Index. If requested, LGC Geotechnical will provide sections for alternate TI values.

<u>TABLE 6</u>

Assumed Traffic Index	5.0	6.0	7.0	8.0
R-Value Subgrade	40	40	40	40
AC Thickness	3.0 inches	4.0 inches	4.0 inches	5.0 feet
Aggregate Base Thickness	6.0 inches	6.0 inches	7.0 inches	8.0 feet

Preliminary Asphalt Concrete Paving Section Options

Aggregate base material (crushed aggregate base and crushed miscellaneous base) should be compacted to a minimum of 95 percent relative compaction at or slightly above optimum moisture content per ASTM D1557. Subgrade below aggregate base should be compacted to a minimum of 90 percent relative compaction at or slightly above optimum moisture content per ASTM D1557. Earthwork recommendations are provided in Section 4.1 "Site Earthwork" and the related subsections of this report.

The thicknesses shown are <u>minimum</u> thicknesses. Increasing the thickness of any or all of the above layers will reduce the likelihood of the pavement experiencing distress during its service life. The above recommendations are based on the assumption that proper maintenance and irrigation of areas adjacent to the roadway will occur through the design life of the pavement. Failure to maintain a proper maintenance and/or irrigation program may jeopardize the integrity of the pavement.

4.12 <u>Preliminary Portland Cement Concrete Pavement Sections</u>

Preliminary laboratory testing resulted in R-values of 67 and 43 for the onsite soils. Preliminary minimum Portland Cement Concrete (PCC) pavement street sections are provided below in Table 7 for Traffic Indices of 6.0, 7.0, and 8.0 to be utilized in the design of the truck parking/circulation areas or loading docks. These sections are based on a preliminary assumed R-value of 40. These

recommendations must be confirmed with R-value testing of representative near-surface soils at the completion of grading and after underground utilities have been installed and backfilled. Final street sections should be confirmed by the project civil engineer based upon the projected design Traffic Index. If requested, LGC Geotechnical will provide sections for alternate TI values. The appropriate paving section must be selected by the project civil engineer/client based on design traffic indexes.

TABLE 7

<u>Preliminary PCC Pavement Section Options</u>

Provided Traffic Index	6.0	7.0	8.0
PCC Thickness	6.0 inches	8.0 inches	9.5 inches
95% Compacted Subgrade	12.0 inches	12.0 inches	12.0 inches

We recommend a PCC pavement section consisting of thicknesses presented above over 12 inches of compacted subgrade. The concrete should have a minimum compressive strength of 3,250 psi at the time the pavement is subjected to traffic. To reduce the potential (but not eliminate) for cracking, paving should provide control joints at regular intervals not exceeding 14 feet in each direction, depth of $\frac{1}{3}$ the concrete thickness. Contraction and construction joints should include a joint filler/sealer to prevent migration of water into the subgrade soils. The type of joint sealer and filler material should be specified by the pavement designer and should be maintained throughout the life of the pavement. Dowels are recommended at joints to reduce potential offsets. The above section does not include steel reinforcement. Steel reinforcement (typically No. 3 rebars at 24 inches on-center each way) may be added to reduce the potential for cracking.

Subgrade below the PCC pavement should be compacted to a minimum of 95 percent relative compaction per ASTM D1557 near optimum moisture content (generally within optimum and 2 percent above optimum moisture content). Earthwork recommendations are provided in Section 4.1 "Site Earthwork" and the related sub-sections of this report.

The thicknesses shown are <u>minimum</u> thicknesses. Increasing the thickness of any or all of the above layers will reduce the likelihood of the pavement experiencing distress during its service life. The above recommendations are based on the assumption that proper maintenance and irrigation of the areas adjacent to the roadway will occur through the design life of the pavement. Failure to maintain a proper maintenance and/or irrigation program may jeopardize the integrity of the pavement.

4.13 <u>Nonstructural Concrete Flatwork</u>

Nonstructural concrete flatwork (such as walkways, patios, bicycle trails, etc.) has a high potential for cracking due to changes in soil volume related to soil-moisture fluctuations. To reduce the potential for excessive cracking and lifting, concrete should be designed in accordance with the minimum guidelines outlined in Table 8 on the following page. These guidelines will reduce the potential for irregular cracking and promote cracking along construction joints but will not eliminate all cracking or lifting. Thickening the concrete and/or

adding additional reinforcement will further reduce cosmetic distress. Please note that these are preliminary recommendations that will need to be confirmed and/or modified based on asgraded conditions at the completion of grading.

TABLE 8

<u>Minimum Guidelines for Nonstructural Concrete Flatwork for</u> <u>Very Low to Low Expansion Potential</u>

	Private Drives	Patios/ Entryways	City Sidewalk Curb and Gutters
Minimum Thickness (in.)	4 (full)	4 (full)	City/Agency Standard
Presoaking	Wet down prior to placing	Wet down prior to placing	City/Agency Standard
Reinforcement	No. 3 at 24 inches on centers	No. 3 at 24 inches on centers	City/Agency Standard
Thickened Edge (in.)	8 x 8		City/Agency Standard
Crack Control Joints	Saw cut or deep open tool joint to a minimum of ¹ / ₃ the concrete thickness	Saw cut or deep open tool joint to a minimum of ¹ / ₃ the concrete thickness	City/Agency Standard
Maximum Joint Spacing	10 feet or quarter cut whichever is closer	6 feet	City/Agency Standard
Aggregate Base Thickness (in.)			City/Agency Standard

To reduce the potential for concrete flatwork to separate from the loading dock or building slab, the builder may elect to install dowels to tie these two elements together.

4.14 Grading, Foundation and Retaining Wall Plan Review

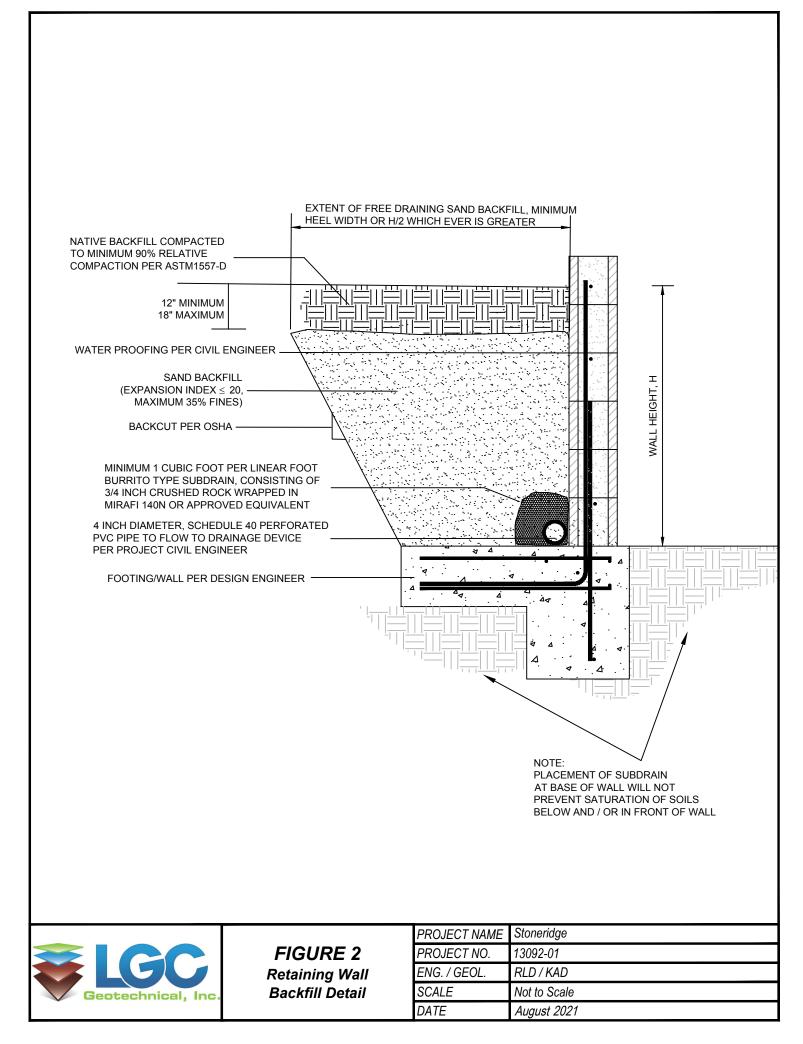
When available, project plans (rough grading, precise grading, retaining wall, foundation, etc.) should be reviewed by LGC Geotechnical in order to verify our geotechnical recommendations are properly implemented. A 40-scale geotechnical grading plan review should be performed prior to construction of the proposed development. Updated recommendations and/or additional field work may be necessary in the future.

4.15 Geotechnical Observation and Testing During Construction

The recommendations provided in this report are based on limited subsurface observations and geotechnical analysis. The interpolated subsurface conditions should be checked in the field during construction by a representative of LGC Geotechnical. Geotechnical observation and testing are required per Section 1705 of the 2019 California Building Code (CBC).

Geotechnical observation and/or testing should be performed by LGC Geotechnical at the following stages:

- During rough grading (removal/over-excavation bottoms, fill placement, etc.);
- Geologic mapping of temporary backcuts;
- During retaining wall backfill and compaction;
- During utility trench backfill and compaction;
- During precise grading;
- After presoaking building pads and other concrete-flatwork subgrades, and prior to placement of aggregate base or concrete;
- After building and wall footing excavation and prior to placement of steel reinforcement and/or concrete;
- Preparation of pavement subgrade and placement of aggregate base; and
- When any unusual soil conditions are encountered during any construction operation subsequent to issuance of this report.


5.0 LIMITATIONS

Our services were performed using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable soils engineers and geologists practicing in this or similar localities. No other warranty, expressed or implied, is made as to the conclusions and professional advice included in this report.

This report is based on data obtained from limited observations of the site, which have been extrapolated to characterize the site. While the scope of services performed is considered suitable to adequately characterize the site geotechnical conditions relative to the proposed development, no practical evaluation can completely eliminate uncertainty regarding the anticipated geotechnical conditions in connection with a subject site. Variations may exist and conditions not observed or described in this report may be encountered during grading and construction.

The findings of this report are valid as of the present date. However, changes in the conditions of a site can and do occur with the passage of time, whether they be due to natural processes or the works of man on this or adjacent properties. The findings and conclusions presented in this report can be relied upon only if LGC Geotechnical has the opportunity to observe the subsurface conditions during grading and construction of the project, in order to confirm that our preliminary findings are representative for the site. This report is intended exclusively for use by the client, any use of or reliance on this report by a third party shall be at such party's sole risk.

In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and modification.

Appendix A References

APPENDIX A

<u>References</u>

- American Concrete Institute, 2014, Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14).
- American Society of Civil Engineers (ASCE), 2013, Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10, Third Printing, 2013.
- American Society for Testing and Materials (ASTM), Volume 04.08 Soil and Rock (I): D420 D5876.
- Aragon Geotechnical Consultants, Inc., 1989, Preliminary Soil and Foundation Investigation for Proposed 750-Acre Master Planned Community, Stoneridge Project south of Ramona Expressway and North of Nuevo Road, Nuevo Area, Riverside, California, Project 3600SF, dated November 30, 1989.
- Architects Orange, 2019, Conceptual Master Plan 2, Richland Stoneridge Industrial/Mixed-Use, County of Riverside, California, dated May 28, 2019
- Bray, J.D., and Sancio, R. B., 2006, Assessment of Liquefaction Susceptibility of Fine-Grained Soils, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, pp. 1165-1177, dated September 2006.
- California Building Standards Commission, 2016, California Building Code, California Code of Regulations Title 24, Volumes 1 and 2, dated July 2016.
- California Department of Transportation (Caltrans), 2015, Corrosion Guidelines, Version 2.1, dated January 2015.
- California Department of Water Resources (CDWR), 2018, Water Data Library, Website Address: <u>http://wdl.water.ca.gov/waterdatalibrary</u>
- California Geological Survey (CGS), 2002, Guidelines for Evaluating the Hazard of Surface Rupture, California Geological Survey Note No. 49, Revised May 2002
- _____, 2003, Geologic Map of the Perris 7.5' Quadrangle, Riverside California, Scale 1:24,000, Open-File Report 03-270, dated 2003.
- _____, 2018, Fault-Rupture Hazard Zones in California, Alquist-Priolo Earthquake Fault Zoning Act with Index to Earthquake Fault Zones Maps, Special Publication 42.
- County of Riverside, 2015, County of Riverside Environmental Impact Report, No. 521, Section 4.11 Flood and Dam Inundation Hazards, dated 2015.

Hunsaker & Associates, 2021, Richland Stoneridge Industrial, Mass Grading Plans, dated June 2, 2021.

Lew, et al, 2010, Seismic Earth Pressures on Deep Basements, Structural Engineers Association of

California (SEAOC) Convention Proceedings.

- LGC Geotechnical, Inc., 2017a, Preliminary Geotechnical Evaluation, Proposed "StoneRidge" Phase 1 Development, Tentative Tract Map No. 32372, Unincorporated Territory of Riverside County, California, dated February 23, 2017.
- _____, 2017b, Response to Geotechnical Review Comments, Riverside County Planning Department Review Sheet dated June 6, 2017, Proposed "StoneRidge" Phase 1 Development, Tentative Tract Map No. 32372, Unincorporated Territory of Riverside County, California, dated September 20, 2017.
- NCEER, 1997, "Proceeding of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils", T. L. Youd and I. M. Idriss Editors, Technical Report NCEER-97-0022, NCEER, Buffalo, NY.
- Riverside County Integrated Technologies (RCIT), 2017, Interactive Geographic Information Services, Website Address: <u>http://gis.rivcoit.org/</u>
- Riverside County Planning Department, 2017, Review Comments, County Geologic Report No. 2556, "Preliminary Geotechnical Evaluation, Proposed "StoneRidge" Phase 1 Development, Tentative Tract Map No. 32372, Unincorporated Territory of Riverside County, California, dated February 23, 2017", dated June 6, 2017.
- Pradel, Daniel, 1998, Procedure to evaluate earthquake-induced settlement in dry sandy soils, *Journal of Geotechnical and Geoenvironmental Engineering*, Volume 124(4), pp. 364-368, dated April and October 1998.
- Southern California Earthquake Center (SCEC), 1999, "Recommended Procedure for Implementation of DMG Special Publication 117, Guidelines for Analyzing and Mitigation Liquefaction Hazards in California", Edited by Martin, G.R., and Lew, M., dated March 1999.
- Tokimatsu, K., and Seed, H. B., 1987, "Evaluation of Settlements in Sands Due to Earthquake Shaking", Journal of Geotechnical Engineering, ASCE, Vol. 113, No. 8, pp. 861-878.
- Structural Engineers Association of California (SEAOC), 2021, Seismic Design Maps, Retrieved June 30, 2021, from https://seismicmaps.org/
- United States Geological Survey (USGS), 1975, Soil Slips, Debris Flows, and Rainstorms in the Santa Monica Mountains and Vicinity, Southern California, by Russell H. Campbell, U.S. Geologic Survey Professional Paper 851.
 - _____, 2014, Unified Hazard Tool, Dynamic: Conterminous U.S. 2014 (update) (v4.2.0), Retrieved June 30, 2021, from: <u>https://earthquake.usgs.gov/hazards/interactive/</u>
- Weber, F.H., Jr., and Treiman, J.A., 1979, Slope Instability and Debris Flows, Los Angeles Area: California Geology, v. 32, no. 1, p. 3-5.
- Western Technologies, Inc., 1990, Ground Subsidence investigation Proposed 750-Acre Residential Development, Stoneridge Project, South of Ramona Expressway and North of Nuevo Road, Nuevo Area, Riverside County, California, Project 4560K006, dated July 20, 1990.

Appendix B Logs of Exploratory Borings, CPTs and Trenches

				Geot	techi	nica	Bor	ing Log Borehole HS-1				
Date:	3/29/	201						Drilling Company: Cal Pac				
-			Richla			dge		Type of Rig: Limited Access				
			er: 130					Drop: 30" Hole Diameter:	8"			
			op of H					Drive Weight: 140 pounds				
Hole	Locat	tion:	: See C	Seoted	chnical	Мар		Page 1	of 2			
(ft)		Log	lumber	nt	ity (pcf)	(%)	mbol	Logged By CAC Sampled By CAC Checked By DJB	est			
Elevation (ft)	Depth (ft)	Graphic L	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol	DESCRIPTION	Type of Test			
	0											
1470-	-	B-1	R-1	6	119.4	8.0	SM	@0'-T.D <u>Quaternary Very Old Fan Deposits</u> @0'-2' Silty SAND; brown, moist, loose, wheat grass crops at surface.	-200			
	- 5 —		R-2	6 5 4 8	133.8	8.4	SC	@2.5' - Clayey SAND; dark brown, moist, fine to coarse grains with approx. 5% gravel, loose.				
1465-	_			8 21 50/5"	129.7			@5' - Clayey SAND; dark brown, slightly moist, very dense.	200			
	- - 10		R-3	18 30 50/5"		9.5		@7.5' - Clayey SAND; dark brown, slightly moist, very dense.	-200			
1460-	-		R-4	19 31 41	133.1	10.0		@10' - Clayey SAND; dark brown, slightly moist, very dense.				
1455-	 15 		SPT-1	7 9 9		8.9		@15' - Clayey SAND; dark brown, medium dense, top inch and bottom 2 inches of sample contained reddish brown layers.				
1450-	 20 		R-5	50/5"	112.2	7.1		@20' - Clayey SAND; dark brown, moist, loose, transitions to reddish brown, very dense.				
1445-	_ 25 — _ _		SPT-2	23 34 40		5.8		@25' - Clayey SAND; dark brown, moist, very dense.				
	30 - </td											
	SUBSURFACE CONDITIONS MAY DIFFER AT OTHER RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY SUBSURFACE CONDITIONS AND MAY CHANGE AT THIS LOCATION SA SEVE ANALYSIS COADITIONS AND MAY CHANGE AT THIS LOCATION SA SEVE ANALYSIS WITH THE PASSAGE OF TIME. THE DATA SA SEVE ANALYSIS PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CN CONSULDATION CONDITIONS ENCOUNTERED. THE DESCRIPTIONS CN CONSOLIDATION PROVIDED ARE QUALITATIVE FIELD DESCRIPTIONS CN COROSION ND ARE NOT BASED ON QUANTITATIVE CN COLAPSE/SWELL RV RVALUE RV RVALUE VIDED ARE QUALITATIVE SING ANALYSIS. SPONDWATER TABLE A											

				Geo	techi	nica	Bor	ing Log Borehole HS-1	
Date:	3/29/	201						Drilling Company: Cal Pac	
				and - S	Stoneri	dge		Type of Rig: Limited Access	
Proje	ect Nu	mbe	er: 130)92-01				Drop: 30" Hole Diameter:	8"
					~1471'			Drive Weight: 140 pounds	
Hole	Locat	tion:	: See (Geote	chnical	Мар		Page 2	of 2
			<u> </u>		(J			Logged By CAC	
			Sample Number		Dry Density (pcf)		<u></u>	Sampled By CAC	
(ft)		g	۳		ty (Moisture (%)	USCS Symbol	Checked By DJB	Type of Test
Б	(ft)			no	nsi	.е (Syl		Г Т
ati	th	hi	ld		De	stui	S.		0 0
Elevation (ft)	Depth (ft)	Graphic Log	an	Blow Count	Σ.	lois	SC		уŊ
ш		0						DESCRIPTION	
1440-	³⁰ _		R-6	12 33 34 -	121.5	4.4		@30' - Clayey SAND; dark brown, moist, very dense.	
	- - 35 —		SPT-3	-		5.2			
1435-	-		571-5	50/6"		5.2		@35' - Clayey SAND; dark brown, moist, very dense.	
	- - 40		R-7	- 20	123.8	5.2			
1430-	-		K-7	30 50/6"	123.0	5.2		@40' - Clayey SAND; dark brown, moist, very dense.	
1425-	- 45		SPT-4	- - 30 28		5.3		@45' - Clayey SAND; dark brown, moist, very dense.	
	- - 50		R-8	- - - 25	115.6	4.7		@50' - Clayey SAND; dark brown, moist, very dense.	
1420-	_			25 50/6"					
	-			-				Total Depth = 51.5' Groundwater Not Encountered Backfilled with Cuttings on 3/29/2016	
1415-	55 — –			- - -					
	_			-					
	- 60 —			-					
Image: Constraint of the constraint									

				Geo	techi	nica	Bor	ing Log Borehole HS-2	
Date:	3/29/	201						Drilling Company: Cal Pac	
Proje	ct Na	me:	Richla	and - S	Stoneri	dge		Type of Rig: Limited Access	
			er: 130					Drop: 30" Hole Diameter:	8"
					~1471'			Drive Weight: 140 pounds	
Hole	Locat	ion	: See (Geote	chnical	Мар		Page 1	of 1
			Ъ.		G)			Logged By CAC	
		-	a dr		d		lod	Sampled By CAC	t.
L) (fl		Ě	N	unt	sity	%)	ym	Checked By DJB	Tes
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol		Type of Test
eva	pth	apl	Ц Ц	≥		oist	SC		be
ш		Ģ	Se	B	ā	Ŭ	SN	DESCRIPTION	Τ
1470-	0			-				@0'-15.5' - Quaternary Very Old Fan Deposits	
	-			-			SM	@0'-2' Silty SAND; brown, moist, loose, wheat grass	
	_		R-1	6 4 3	118.1	7.7	00	crops at surface.	DS
							SC	@2.5' - Clayey SAND; dark brown, moist, mica flakes, loose.	
1465-	5 —		R-2	5 9 13	125.3	9.9		@5' - Clayey SAND; dark brown, moist, mica flakes,	
	-			-		10 -		medium dense.	
	-		R-3	9 16 21	127.5	10.5		@7.5' - Clayey SAND; dark brown, moist, mica flakes, medium dense.	
	10 —		SPT-1	8 9 14		10.3		@10' - Clayey SAND; dark brown, slightly moist, dense,	
1460-	_			∆ 14				traces of bedrock parent material.	
	_			_					
	15 —		R-4	50/5"	110.1	8.6		@15' - Clayey SAND; dark brown, slightly moist, very	
1455-	_			50/5				dense, transition to bedrock.	
								@15.5'-T.D <u>Cretaceous Lakeview Mountain Tonalite</u>	
	_			_					
	20 —		SPT-2			1.8		@20' - Excavates to SAND; gray to brown, moist, very	
1450-	-			50/4"				dense; medium to coarse grained; white/black/orange.	
	-			-					
	-			_					
	25 —				1110	FO			
1445-			R-5	50/3"	114.8	5.8		No Recovery	
	-			-				Total Depth = 26.5'	
	-			-				Groundwater Not Encountered	
	 30 —							Backfilled with Cuttings on 3/29/2016	
	50				тыр			ILY AT THE LOCATION SAMPLE TYPES: TEST TYPES:	
	THIS SUMMARY APPLIES ONLY AT THE LOCATION SAMPLE TYPES: TEST TYPES: OF THIS BORING AND AT THE TIME OF DRILLING. B BULK SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY SUBSURFACE CONDITIONS MAY DIFFERA TO THER LOCATIONS AND MAY CHANGE AT THIS LOCATION R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY UCATIONS AND MAY CHANGE AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS PRESENTED IS A SIMPLIFICATION OF THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL SA SIEVE ANALYSIS CONDITIONS RECOUNTERED. THE DESCRIPTIONS PROVIDED ARE QUALITATIVE FIELD DESCRIPTIONS SA CR CORROSION ROUNDWATER TABLE AL ATTERBERG LIMITS CO COLARSES/WELL RV RVALUE W REVIEW RENOR MALYSIS. FIELD OF SCRIPTIONS AVAIL AVAIL								

				Geot	techi	nica	Bor	ing Log Borehole HS-3	
Date:	3/29/	201						Drilling Company: Cal Pac	
					Stoneri	dge		Type of Rig: Limited Access	
			er: 130					Drop: 30" Hole Diameter:	8"
			-		~1463'			Drive Weight: 140 pounds	- 5 4
Hole	Locat	lon:			chnical	мар		Page 1	ot 1
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol	Logged By CAC Sampled By CAC Checked By DJB DESCRIPTION	Type of Test
	0	m						@0'-8' - Quaternary Very Old Fan Deposits	RV
1460-	_	B-1	R-1	- - 6 7	114.8	5.8	SM	@0'-2' Silty SAND; brown, moist, loose, wheat grass crops at surface.	
	- 5 —		R-2	7	123.9	6.7	SC	@2.5' - Clayey SAND; dark brown, moist, medium dense, mica flakes.	
	-		-	50/6"				@5' - Clayey SAND; dark reddish brown, slightly moist, very dense, mica flakes.	
1455–	-		R-3	30 50/3"	127.5	7.6		@7.5' - Clayey SAND; reddish brown with traces of bedrock parent material, very dense.	
	10 —		R-4	50\5"	117.5	3.8		@8'-T.D Cretaceous Lakeview Mountain Tonalite	
1450-	-		-	-				@10' - Excavates to SAND; gray to brown, moist, very dense, medium coarse grained; white/black/orange.	
	15 —		SPT-1	50/5"		2.3		@15' - Excavates to SAND; gray to brown, moist, very dense, medium coarse grained; white/black/orange.	
1445–	-		-	-					
	20		R-5	50/3"				@20' - No Recovery	
1440-	- - 25			-				Total Depth = 21.5' Groundwater Not Encountered Backfilled with Cuttings on 3/29/2016	
1435-	-			-					
	_ 30 —			-					
This Summary APPLies ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTERED. THE DESCRIPTIONS PROVIDED ARE QUALITATIVE FIELD DESCRIPTIONS AND ARE NOT BASED ON QUANTITATIVE ENGINEERING ANALYSIS. SAMPLE TYPES: B BULK SAMPLE R RING SAMPLE G GRAB SAMPLE SHUK SAMPLE R RING SAMPLE G GRAB SAMPLE G RAB SAMPLE CAN CONSOLIDATION G GRAB SAMPLE CAN CONSOLIDATION CONSOLIDATION CONSOLIDATION CONSOLIDATION CONSOLIDATION CONSOLIDATION CONSOLIDATION CONSOLIDATION COLLAPSE/SWELL RV R VALUE #200 DIRECT SHEAR DS DIRECT SHEAR SAMPLE CAN CORROSION CONSOLIDATION CONSOLIDATION CONSOLIDATION CONSOLIDATION CONSOLIDATION COLLAPSE/SWELL RV R VALUE #200 DIRECT SHEAR SAMPLE SIZE SPT STANDARD PENETRATION SAH SEVE AND 420 SHOULDATION CONSOLIDATIO									DMETER K rs

	Geotechnical Boring Log Borehole HS-4												
Date:	3/29/	2010						Drilling Company: Cal Pac					
					Stoneri	dge		Type of Rig: Limited Access					
			er: 130					Drop: 30" Hole Diameter: 8	3"				
			-		~1549'			Drive Weight: 140 pounds					
Hole	Locat	ion:	See	Jeoteo	chnical	Мар		Page 1 of	· 1				
			ы С		cf)			Logged By CAC					
$\overline{\mathbf{x}}$		~	ă L		d)	$\widehat{}$		Sampled By CAC	ït				
) (fi		Ď	n Z	nnt	sity	%)	, E	Checked By DJB	Les				
tior	(ft	. <u>c</u>	<u>e</u>	Ö	ens	ar	С С		of -				
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol		Type of Test				
Ele	De	Ü	Sa	Blc	Dry	Mo	NS	DESCRIPTION	Тy				
	0	Π	-	-					CR, El				
	_	В-1	R-1	- 29 50/5"			SM	@0'-2' Silty SAND; brown, moist, loose, wheat grass crops at surface.	_ 1				
1545-	_	Ш		50/5"			SC	@2.5' - Clayey SAND; reddish brown, sligtly moist with					
	5 —		R-2	33 50/3"				approx 2% gravel, very dense, mica flakes.					
				00,0				@5' - Clayey SAND; reddish brown, sligtly moist with					
	_		SPT-1	50/6"				approx 2% gravel, very dense, mica flakes, transitions to bedrock after 5".					
1540-	- 10		4					@5.5' - T.D Cretaceous Lakeview Mountain Tonalite					
				_				@7.5' - No Recovery					
1535–	- - 15		-	-				Total Depth = 9' Groundwater Not Encountered Backfilled with Cuttings on 3/29/2016					
1530-	- - 20 -		-	-									
1525–	- 25 -		-	-									
1520-	- - 30 —		-	-									
	Ecotechnical, Inc.					HIS BORING GURFACE C TIONS AND THE PASS GENTED IS A DITIONS EN ADDITIONS EN	AND AT THI ONDITIONS I MAY CHANG AGE OF TIME SIMPLIFICA COUNTEREE QUALITATIVE ASED ON QU	LY AT THE LOCATION TIME OF DRILLING. MAY DIFFER AT OTHER GE AT THIS LOCATION E. THE DATA TION OF THE ACTUAL D. THE DESCRIPTIONS E FIELD DESCRIPTIONS E FIELD DESCRIPTIONS ANTITATIVE SAMPLE TYPES: B BULK SAMPLE G GRAB SAMPLE SAMPLE CA Modified Sampler) G GRAB SAMPLE TEST SAMPLE TEST SAMPLE C CORCOSION C C CORCOSION C C COLAPSE/SWELL RV R-VALUE -#200 % PASSING # 200 SECT SHEAR DIRECT SHEAR D DIRECT SHEAR D DIRECT SHEAR D MAXIMUM DENSITY MAXIMUM DENSITY SAMPLE SAMPLE C GRAB SAMPLE C CORCOSION C C COLAPSE/SWELL RV R-VALUE -#200 % PASSING # 200 SECT C C CORCOSION					

				Geo	techi	nica	l Bor	ing Log Borehole HS-5	
	3/29/		6					Drilling Company: Cal Pac	
					Stoneri	dge		Type of Rig: Limited Access	
-			er: 130					Drop: 30" Hole Diameter:	8"
			-		~1489'			Drive Weight: 140 pounds	
Hole	Loca	lion			chnical	мар		Page 1 d	DT 1
			e		cf)			Logged By CAC	
(t)		g	а ш		d) /	()	lod	Sampled By CAC	st
Elevation (ft)	t)	Log	Sample Number	Count	Dry Density (pcf)	Moisture (%)	USCS Symbol	Checked By DJB	Type of Test
atio	Depth (ft)	Graphic		ပိ)en	iure	S S		of
eva	eptl	ap		Blow	У П	oist	Ü		/pe
Ē		G	Š	ā	Ā	Ň	Š	DESCRIPTION	-
	0_		-	-				@0'-10' - Quaternary Very Old Fan Deposits	MD
	-	B-1		- 15	125.9	9.1	SM	@0'-2' Silty SAND; brown, moist, loose, wheat grass crops at surface.	
	_		R-1	15 32 48	125.9	9.1	SC	@2.5' - Silty SAND; light brown, moist, very dense, mica	
1485-	_ 5 —						30	flakes.	
	5_	Ш	R-2	3 50/6"	127.9	8.5			
	_			-				@5' - Clayey SAND; brown, moist, very dense, mica flakes.	
	_		R-3	21 30 40	118.6	5.9			
1480-	_			40				@10'-T.D <u>Cretaceous Lakeview Mountain Tonalite</u>	
	10 —		R-4	30 50/4"	120	3.9		@10' - Excavates to SAND; gray to brown, moist, very	
	_			50/4				dense, medium coarse grained; white/black/orange,	
	_			-				moderately to highly weathered.	
1475-				_					
1.170	15 —		SPT-1	35		3.1		@15' - Excavates to SAND; gray to brown, moist, very	
	_			35 50/4"		0.1		dense, medium coarse grained; white/black/orange.	
	_			-				Total Depth = 16.5'	
	_			-				Groundwater Not Encountered	
1470-	 20			_				Backfilled with Cuttings on 3/29/2016	
	20			_					
	_			-					
	-			-					
1465-	_			-					
	25 —			-					
	-			_					
				_					
1460-	-			-					
	30 —			-					
OFF THIS SUMMARY APPLIES ONLY AT THE LOCATION SAMPLE TYPES: TEST TYP OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WIT THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTERED. THE DESCRIPTIONS AND ARE NOT BASED ON QUANTITATIVE ENGINEERING ANALYSIS. SAMPLE TYPES: TEST TYP Image: Construction of the actual CONDITIONS AND MAY CHANGE AT THIS LOCATION WIT THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTERED. THE DESCRIPTIONS AND ARE NOT BASED ON QUANTITATIVE ENGINEERING ANALYSIS. SAMPLE TYPES: TEST TYPES Image: Construction of the actual CONDITIONS AND ANY CHANGE AT THIS LOCATION PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTERED. THE DESCRIPTIONS AND ARE NOT BASED ON QUANTITATIVE ENGINEERING ANALYSIS. BULK SAMPLE BULK SAMPLE SAMPLE TYPES: TEST TYPES DS R									r Meter S Sieve

				Geo	techi	nica	Bor	ing Log Borehole HS-6	
Date:	3/29/	201						Drilling Company: Cal Pac	
					Stoneri	dge		Type of Rig: Limited Access	
			ər: 130					Drop: 30" Hole Diameter:	8"
					~1499'			Drive Weight: 140 pounds	<u> </u>
Hole	Locat	ion:	See (Geote	chnical	Мар		Page 1 e	of 1
			e		cf)			Logged By CAC	
£		D	qu up		đ		poq	Sampled By CAC	st
ן (f	()	Lo	Nu	nnt	sity	%)	л Б	Checked By DJB	Te
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol		Type of Test
eva	spth	apl	mg	N		oist	ő		,pe
Ĕ		G	Se	Ē	ā	Й	ŝ	DESCRIPTION	Γ
	0			-				@0'-7.5' - Quaternary Very Old Fan Deposits	
	_			-			SM	@0'-2' Silty SAND; brown, moist, loose, wheat grass	
	_		R-1	8 9 12	110.1	3.8	~~~	crops at surface.	-200
1495-	_			12			SC	@2.5' - Silty SAND; light brown, dry, medium dense, with approx 1% gravel.	DS
	5 —		R-2	22 19 30	132.3	8.2			
				30				@5' - Clayey SAND; dark brown, moist, dense, mica flakes.	
	_		R-3	12 17 19	115.9	11.6		@7.5'-T.D Cretaceous Lakeview Mountain Tonalite	-200
1490-	_			19					
	10 —		R-4	17 30 30	134.8	4.0		@7.5' - Excavates to SAND; gray to brown, moist, dense, medium coarse grained; white/black/orange.	
	_			- 30				@10' - Excavates to SAND; gray to brown, moist,	
	_			-	$ $ \land			dense, medium coarse grained; white/black/orange.	
1485-	45			-				Total Depth = 11.5'	
	15 —			_				Groundwater Not Encountered Backfilled with Cuttings on 3/29/2016	
	_			_					
	_			-					
1480-	_			-					
	20 —			-					
				_					
1475-	-			-					
	25 —			-					
	_			-					
	-								
1470-				_					
	30 —			-					
								LIV AT THE LOCATION SAMPLE TYPES: TEST TYPES: E TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR	
	\geq		C		SUBS	SURFACE C	ONDITIONS	MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSIT GE AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS E THE DATA SPT STANDARD PENETRATION S&H SIEVE AND HYDRC	OMETER
			5		PRES	SENTED IS	A SIMPLIFICA	E. THE DATA TEST SAMPLE EI EXPANSION INDEX ATION OF THE ACTUAL CN CONSOLIDATION D. THE DESCRIPTIONS CR CORROSION	
	Ge	ote	chnic	al, Ir	PROV	/IDED ARE	QUALITATIV ASED ON QU	E FIELD DESCRIPTIONS GROUNDWATER TABLE AL ATTERBERG LIMIT JANTITATIVE CO COLLAPSE/SWELL RV R-VALUE	
					LING			-#200 % PASSING # 200	SIEVE

				Geot	techi	nica	l Bor	ing Log Borehole HS-7			
Date:								Drilling Company: Cal Pac			
					Stoneri	dge		Type of Rig: Limited Access			
			er: 130					Drop: 30" Hole Diameter:	8"		
					~1578'			Drive Weight: 140 pounds			
Hole	Locat	tion:	See (Seote	chnical	Мар		Page 1 c	of 1		
			Ľ.		cf)			Logged By CAC			
		_	qu		d)			Sampled By CAC	t		
Ľ,	•	O	Jur	nt	sity	%)	,mt	Checked By DJB	les		
ion	(ft	Graphic Log	e e	Blow Count	Dry Density (pcf)	ıre	USCS Symbol		Type of Test		
vat	pth	hde	du	≥	Ď	istı	CS		e e		
Elevation (ft)	Depth (ft)	G	Sample Number	Blo	Dry	Moisture (%)	NS	DESCRIPTION	Typ		
	0			-				@0'-3' - Quaternary Very Old Fan Deposits			
	_		-	-			SM	@0'-2' Silty SAND; brown, moist, loose, wheat grass			
1575-	_		R-1	25 50/5"	127.7	3.8		crops at surface.			
	_							@3'-T.D <u>Cretaceous Lakeview Mountain Tonalite</u>			
	5 — _		R-2	50/6"	122.5	2.6		@2.5' - Silty SAND; transitions to parent bedrock material.			
4570	_		-	-				@5' - Excavates to SAND; gray to brown, moist, very dense, medium coarse grained; white/black/orange.			
1570-	-			_							
	10 —			_				Total Depth = 6.5' Groundwater Not Encountered			
	-		-	-				Backfilled with Cuttings on 3/30/2016			
	_		-	-							
1565-	_		-	-							
	_		-	-							
	15 —		F	-							
	_			_							
1560-											
1000	_		-	-							
	20 —		-	-							
	_		-	-							
	-		-	-							
1555-	_		-	-							
	-			-							
	25 —			-							
1550-	_			-							
	_		-	-							
	30 —		-	-							
	30 THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTERED. THE DESCRIPTIONS PROVIDED ARE QUALITATIVE FIELD DESCRIPTIONS AND ARE NOT BASED ON QUANTITATIVE ENGINEERING ANALYSIS. SAMPLE TYPES: B DS DIRECT SHEAR DS DIRECT SHEAR DS VICATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTERED. THE DESCRIPTIONS PROVIDED ARE QUALITATIVE FIELD DESCRIPTIONS PROVIDED ARE QUALITATIVE FIELD DESCRIPTIONS AND ARE NOT BASED ON QUANTITATIVE ENGINEERING ANALYSIS. SAMPLE TYPES: B DS DIRECT SHEAR DS DIRECT SHEAR DS VICATIONS ENCOUNTERED. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTERED. THE DESCRIPTIONS PROVIDED ARE QUALITATIVE FIELD DESCRIPTIONS PROVIDED ARE QUALITATIVE FIELD DESCRIPTIONS AND ARE NOT BASED ON QUANTITATIVE ENGINEERING ANALYSIS. GROUNDWATER TABLE AL ATTERBERG LIMITS CO VICATION SENSING # 200 SIEVE WICATION CONSTRUCTION WICATION CONSTRUCTION WICATION CONSTRUCTION										

			(Geot	techi	nical	Bor	ing Log Borehole HS-8	
	3/30/							Drilling Company: Cal Pac	
			Richla			dge		Type of Rig: Limited Access	
			ər: 130					Drop: 30" Hole Diameter:	8"
			op of H					Drive Weight: 140 pounds	
Hole	Locat	tion:	See G	Seoted	chnical	Мар		Page 1 c	of 1
			5		cf)			Logged By CAC	
			qu		d)			Sampled By CAC	t
(H	•	ဝို	Aur	nt	sity	%)	, jt	Checked By DJB	ſes
ion	(ft	Graphic Log	e	l Q	Dry Density (pcf)	ıre	Ś		of J
vat	pth	hde	du	S S	Ŏ	istu	S		e e
Elevation (ft)	Depth (ft)	Gra	Sample Number	Blow Count	Dry	Moisture (%)	USCS Symbol	DESCRIPTION	Type of Test
1545-	0		_					@0'-8' - Quaternary Very Old Fan Deposits	
	-		- R-1	10	130.2	10.3	SM	@0'-2' Silty SAND; brown, moist, loose, wheat grass crops at surface.	
	-		1.1	10 19 19	100.2	10.0	SC	@2.5' - Clayey SAND; dark brown, slightly moist,	
	5 —		R-2	10				medium dense, fine to coarse grain with approx 2%	
1540-	-		R-2	10 21 24				gravel. @5' - increase to 5% gravel	
			R-3	11 50/5"				@6'-T.D Cretaceous Lakeview Mountain Tonalite	
	_			50/5"				@7.5' - Excavates to SAND; gray to brown, moist, very dense, medium coarse grained; white/black/orange.	
1535-	10 —		SPT-1	33 50/5"		4.1		@10' - Excavates to SAND; gray to brown, moist, very	
1535-	_			}				dense, medium coarse grained; white/black/orange.	
	-		-					Total Depth = 11.5'	
	 15							Groundwater Not Encountered Backfilled with Cuttings on 3/30/2016	
1530-	13 -							Dackinica with Cattings on 3/30/2010	
	_		-						
	_		-						
	20		ļ						
1525-			-						
	_		-						
	_		-						
	_		-						
	25 —		-						
1520-	_		-						
	_								
	30 —		_						
Geotechnical, Inc.						HIS BORING SURFACE C TIONS AND THE PASS SENTED IS A DITIONS EN ADDITIONS EN	AND AT THI ONDITIONS I MAY CHAN AGE OF TIME SIMPLIFICA COUNTEREI QUALITATIVE ASED ON QU	ALY AT THE LOCATION SAMPLE TYPES: TEST TYPES: LE TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY GE AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS E. THE DATA SPT STANDARD PENETRATION SA SIEVE ANALYSIS ATION OF THE ACTUAL D TEST SAMPLE CN CONSOLIDATION D. THE DESCRIPTIONS GROUNDWATER TABLE AL ATTERBERG LIMITS JANTITATIVE GROUNDWATER TABLE AL ATTERBERG LIMITS V R-VALUE #200 % PASSING # 200 S	METER S

				Geo	techi	nica	Bor	ing Log Borehole HS-9	
Date:	3/30/	201						Drilling Company: Cal Pac	
				and - S	Stoneri	dge		Type of Rig: Limited Access	
			er: 13(Drop: 30" Hole Diameter:	8"
Eleva	ation o	of To	op of l	Hole:	~1446'			Drive Weight: 140 pounds	
Hole	Locat	ion	: See	Geote	chnical	Мар		Page 1 c	of 1
			<u>ب</u>		L (Logged By CAC	
			Sample Number		Dry Density (pcf)		<u> </u>	Sampled By CAC	
(Ħ		Log	un l	t	t (Moisture (%)	USCS Symbol	Checked By DJB	Type of Test
Elevation (ft)	(ft)	Ц С		Blow Count	nsi	e (Syl		Τ
ati	Depth (ft)	Graphic	d		De	stu	လ္လ		0 9
<u>e</u>	ep	jra	an	<u><u></u></u>	2	lois	ISC		<u>y</u>
ш		0	м м			2		DESCRIPTION	•
1445-	0_	Π		-				@0'-8' - Quaternary Very Old Fan Deposits	RV
	_	<mark>Р</mark> -1		-			SM	@0'-2' Silty SAND; brown, moist, loose, wheat grass	
	_		R-1	13 20 30	131.1	8.8		crops at surface.	
	_			30			SC	@2.5' - Silty SAND; light brown, dry to slightly moist, mica flakes, dense.	
	5 —		R-2	10 11 13	121.8	5.2		Thica hakes, dense.	
1440-				13				@5' - Clayey SAND; dark brown, moist, medium dense.	
	_		R-3	13 50/5"	128.3	1.3		@6'-T.D <u>Cretaceous Lakeview Mountain Tonalite</u>	
	_ 10 —					1.0		@7.5' - Sandy CLAY; dark brown, moist, dense, transitions to highly weathered bedrock.	
1435-			SPT-1	19 50/5"		1.3			
	_			-				@10' - Excavates to SAND; gray to brown, moist, very dense, medium coarse grained; white/black/orange.	
	_							dense, medium coarse grained, white/black/orange.	
	- 15							Total Depth = 11.5'	
1430-	15							Groundwater Not Encountered Backfilled with Cuttings on 3/30/2016	
1400	_			_					
	_			-					
	_			-					
	20 —			-					
1425-	_								
	_			-					
	_			-					
	-			-					
1400	25 —			-					
1420-	-			[]					
	30 —			-					
 '			1					ILY AT THE LOCATION SAMPLE TYPES: TEST TYPES: E TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR	
					SUBS	SURFACE C	ONDITIONS	MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY GE AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS	
			C		WITH PRES	I THE PASS SENTED IS /	AGE OF TIM	E. THE DATA SPIT STANDARD PENETRATION S& SIEVE AND HYDRO TEST SAMPLE EI EXPANSION INDEX TION OF THE ACTUAL CN CONSOLIDATION	
	PROVIDED ARE QU							D. THE DESCRIPTIONS CR CORROSION E FIELD DESCRIPTIONS CR GROUNDWATER TABLE AL ATTERBERG LIMITS	s
		_ 00		ang it		ARE NOT B NEERING A		JANTITATIVE CO COLLAPSE/SWELL RV R-VALUE #200 % PASSING # 200 S	SIEVE

Geotechnical Boring Log Borehole HS-10												
Date:	3/30/	201						Drilling Company: Cal Pac				
					Stoneri	dge		Type of Rig: Limited Access				
			er: 130					Drop: 30" Hole Diameter:	8"			
					~1446'			Drive Weight: 140 pounds				
Hole	Locat	ion:	See (Geote	chnical	Мар		Page 1	of 2			
			5		cf)			Logged By CAC				
			qu		bc			Sampled By CAC				
Ë,		Log	n	I I	ity	%)	l ŭ	Checked By DJB	es			
io	(ft)	ic I	e e	5	Sue	Ire	S		of T			
vat	oth	hdı	du	≥	ð	stu	S		e o			
Elevation (ft)	Depth (ft)	Graphic	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol	DESCRIPTION	Type of Test			
1445-	0			-				@0'-8' - Quaternary Very Old Fan Deposits				
	_	Р		-			SM	@0'-2' Silty SAND; brown, slightly moist, loose, wheat				
	_		R-1	3 3 3	109.2	3.8		grass crops at surface.				
	_ 5 —							@2.5' - Silty SAND; brown, slightly moist, mica flakes, loose.				
1440-	5-	Ш	R-2	13 15 20	128.5	8.3	sc	@5' - Clayey SAND; dark brown, moist, medium dense.				
	_		R-3	- 7	120.7	7.5		@7.5' - Clayey SAND; dark brown, moist, medium dense.	-200,			
				7 10 10		1.0			CO			
	10 —		SPT-1	5		10.8		@10' - Clayey SAND; dark brown, moist, medium dense.				
1435-	_			5 5 10								
				-								
	_			-								
	15 —		R-4	17				@15' - Clayey SAND; dark brown, moist, very dense,				
1430-	_			17 32 40				approximately 2% gravel,				
	_			-								
				_								
	20 —		SPT-2	1 11		4.3		@20' - SAND with Silty SAND; reddish brown, slightly				
1425-	-			11 12 12			SP-SM					
	_			-								
	-			-								
	25 —			10				@25' - Clayey SAND; dark brown, moist, dense,				
1420-			R-5	16 23 40			SC	difficulty drilling.				
	-			-								
	-			-								
	- 30			-								
	THIS SUMMARY APPLIES ONLY AT THE LOCATION SAMPLE TYPES: TEST TYPES:											
	OF THIS BORING AND AT THE TIME OF DRILLING, SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION G GRAB SAMPLE SA G GRAB SAMPLE SA G GRAB SAMPLE SA G GRAB SAMPLE SA SIEVE ANALYSIS											
			5		WITH	THE PASS	SAGE OF TIME	SEAT THIS LOCATION SPT STANDARD RENETRATION SPH SIEVE AND HYDRO				
	CONDITIONS ENCOUNTERED. THE DESCRIPTIONS PROVIDED ARE QUALITATIVE FIELD DESCRIPTIONS											
				ary m		ARE NOT E		IANTITATIVE – CO COLLAPSE/SWELI RV R-VALUE #200 % PASSING # 200				

			G	ieot	echn	ical	Bori	ng Log Borehole HS-10	
Date:								Drilling Company: Cal Pac	
			Richla			dge		Type of Rig: Limited Access	
			e r: 130					Drop: 30" Hole Diameter:	8"
			op of H					Drive Weight: 140 pounds	
Hole	Locat	ion:	See C	Seoted	chnical	Мар		Page 2 o	of 2
			<u> </u>		(J			Logged By CAC	
			Sample Number		Dry Density (pcf)	_	0	Sampled By CAC	
Elevation (ft)		bo.	n	±	ť	Moisture (%)	USCS Symbol	Checked By DJB	Type of Test
5	(ft)	Graphic Log	Z	Blow Count	nsi	ē	Sy	, , ,	ΤŢ
ati	Depth (ft)	phi) dt		De	stu	SS		о ө
<u>e</u>	eb	ra	an	<u> </u>	<u>></u>	lois	SC		yp
ш	□ 30	_	တ SPT-3					DESCRIPTION	—
1415-	30 _			17 22 44		6	SP-SM	@30' - SAND with SILTY SAND; dark brown, moist, very dense, difficulty drilling.	
	_		L					Total Depth = 31.5' Groundwater Not Encountered	
	35 —		L					Backfilled with Cuttings on 3/30/2016	
1410-	_		Ļ						
	_		F						
	_		-						
	40 —		-						
1405-	_		F						
	_		F						
	_		-						
	-		-						
1400	45		F						
1400-			Ľ						
	_		L						
	50 —		Ļ						
1395-	-		-						
	_		F						
	_		F						
	_		-						
	55 —		-						
1390-	_		-						
	-		-						
	_		-						
	e0 -		F						
	60 —								
			chnica		OF TI SUBS LOCA WITH PRES CONI PROV	HIS BORING SURFACE C ATIONS AND I THE PASS SENTED IS A DITIONS EN ADITIONS EN	AND AT THE ONDITIONS M MAY CHANG AGE OF TIME A SIMPLIFICA ICOUNTEREE QUALITATIVE ASED ON QU	LY AT THE LOCATION E TIME OF DRILLING. MAY DIFFER AT OTHER GE AT THIS LOCATION E. THE DATA TION OF THE ACTUAL D. MAXIMUM DENSITY SAMPLE TYPES: R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY MAXIMUM DENSITY SAMPLE TYPES: DS DIRECT SHEAR DS DIRECT SHEAR MD MAXIMUM DENSITY SAMPLE SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY SAMPLE THE DATA TEST SAMPLE SA SAMPLE SAMPLE SA SAMPLE SAMPLE CA MODIFIED SAMPLE SAMPLE SA SEVE ANALYSIS CN CONSOLIDATION CR CORROSION CR CORROSION CR CORROSION ANTITATIVE RV R-VALUE #200 % PASSING # 200 SI	5

			C	Geot	echn	ical	Bori	ng Log Borehole HS-11	
Date:	3/30/	/201	6					Drilling Company: Cal Pac	
					Stoneri	dge		Type of Rig: Limited Access	
			er: 130					Drop: 30" Hole Diameter: 8'	"
					~1426'			Drive Weight: 140 pounds	
Hole	Locat	tion:	See (Geote	chnical	Мар		Page 1 of	1
			L.		L C			Logged By CAC	
			pe		b		0	Sampled By CAC	
(ft)		bo	μn	ן ד	ty ((%	qu	Checked By DJB	est
Elevation (ft)	(ft)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol		I ype of I est
atio	Depth (ft)	hid	ple	U U	De	tur	ŝ		Ö
ev	ept	rap	am	<u>_</u>		ois	SC		yp.
Ξ		G	Ñ	B		Σ	Ô	DESCRIPTION	_
1425-	0_			-				@0'-T.D Quaternary Very Old Fan Deposits	
	-			-			SM	@0'-2' Silty SAND; brown, moist, loose, wheat grass	
	_		R-1	6	113.8	5.4		crops at surface.	
	_			6 8 8		-	SC	@3' - Clayey SAND; dark brown, moist, approx. 2%	
	5 —		-	-				gravel, mica flakes, medium dense.	
1420-				-				Total Depth = 5'	
								Groundwater Not Encountered	
								Backfilled with 3" perforated pipe with filter sock and	
	 10 —							gravel on 03/30/16	
1415-	10							Backfilled with Cuttings on 3/31/2016	
1415	_			_					
	_			_					
	_			_					
	15 —			_					
1410-	_			_					
	_			-					
	_			-					
	_		-	-					
	20 —			-					
1405-	_			-					
	-			-					
	_			-					
	-			-					
	25 —			-					
1400-	_			-					
	_			-					
	-		-	-					
	30 —			-					
			Chnic		OF T SUBS LOCA WITH PRES CONI PROV	HIS BORING SURFACE C ATIONS AND I THE PASS SENTED IS / DITIONS EN /IDED ARE	AND AT THI ONDITIONS I MAY CHAN AGE OF TIME SIMPLIFICA ICOUNTEREI QUALITATIVE ASED ON QU	ILLY AT THE LOCATION SAMPLE TYPES: TEST TYPES: E TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY GE AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS F. THE DATA SPT STANDARD PENETRATION S& SIEVE ANALYSIS ATION OF THE ACTUAL D. THE DESCRIPTIONS CN CONSOLIDATION D. THE DESCRIPTIONS S GROUNDWATER TABLE AL ATTERBERG LIMITS DANTITATIVE GROUNDWATER TABLE AL ATTERBERG LIMITS V R-VALUE -#200 % PASSING # 200 SIEV	
								-#200 % FASSING # 200 SIEV	

			C	Geot	echn	ical	Bori	ing Log Borehole HS-12	
Date:								Drilling Company: Cal Pac	
					Stoneri	dge		Type of Rig: Limited Access	
			er: 130					Drop: 30" Hole Diameter: 8	3"
					~1430'			Drive Weight: 140 pounds	
Hole	Locat	tion:	See (Geote	chnica	Мар		Page 1 of	f 1
			<u> </u>		<u> </u>			Logged By CAC	
			əqu		bc		0	Sampled By CAC	
(Ħ		bo	nπ		t T	(%)	d m	Checked By DJB	est
Elevation (ft)	(ff)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol		Type of Test
ati	Ę	ohi	ble		De	stui	လ္လ		0 0
<u>e</u>	Depth (ft)	ra	an	<u></u>	2	lois	SC		Уp
ш	0	0	S	B		2			<u> </u>
	0 -			-				@0'-T.D Quaternary Very Old Fan Deposits	
	_			-			SM	@0'-2' Silty SAND; brown, moist, loose, wheat grass	
	_		R-1	5	125.3	6.8		crops at surface.	
	_			5 12 22			SC	@3' - Clayey SAND; dark brown, moist, approximately	
1425–	5 —			-				2% gravel, mica flakes, medium dense.	
	-			-				Total Depth = 5'	
	_		-	-				Groundwater Not Encountered	
	_			-				Backfilled with 3" perforated pipe with filter sock and	
1420-	 10			-				gravel on 03/30/16	
1420-	10							Backfilled with Cuttings on 3/31/2016	
	_			_					
	_			_					
	_			_					
1415-	15			-					
_	_			-					
	_			-					
	_			-					
	-		-	-					
1410-	20 —			-					
	_			-					
	_		-	-					
	-		-	-					
	-			-					
1405–	25 —			-					
	_			-					
	_			_					
	_								
1410-	30 —			-					
			Chnic		OF T SUBS LOC/ WITH PRES CON PRO	HIS BORING SURFACE C ATIONS AND I THE PASS SENTED IS / DITIONS EN VIDED ARE	G AND AT TH CONDITIONS I D MAY CHAN AGE OF TIMI A SIMPLIFICA ICOUNTEREI QUALITATIVI ASED ON QU	JLY AT THE LOCATION SAMPLE TYPES: TEST TYPES: IE TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY IGE AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS IGE AT THIS LOCATION SPT STANDARD PENETRATION SA SIEVE ANALYSIS IGE AT THIS LOCATION SPT STANDARD PENETRATION SA SIEVE ANALYSIS IGE AT THIS LOCATION SPT STANDARD PENETRATION SA SIEVE ANALYSIS IGE AT THIS LOCATION CN CONSOLIDATION CN CONSOLIDATION D. THE DESCRIPTIONS IF FIELD DESCRIPTIONS CR CORROSION COLLAPSE/SWELL IJANTITATIVE GROUNDWATER TABLE AL ATTERBERG LIMITS V R-VALUE #200 % PASSING # 200 SIE	

			G	Geot	echn	ical	Bori	ing Log Borehole HS-13	
	3/30/							Drilling Company: Cal Pac	
					Stoneri	dge		Type of Rig: Limited Access	
			er: 130					Drop: 30" Hole Diameter: 8	3"
					~1435'			Drive Weight: 140 pounds	
Hole	Locat	tion:	See G	Seote	chnica	Мар		Page 1 of	f 1
			<u>с</u>		ਿ			Logged By CAC	
		_	hbe		d d		0	Sampled By CAC	÷
(ft	-	õ	l du	nt	<u>it</u>	%)	, at	Checked By DJB	es
ion	(ft)	ic l	e	5	Sue	le	S		of J
vat	oth	hd	du	≥	Ď	istu	S) e (
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol	DESCRIPTION	Type of Test
	0							@0'-7.5' - Quaternary Very Old Fan Deposits	
	_						SM	@0'-2' Silty SAND; brown, moist, loose, wheat grass	
	_		ŀ					crops at surface.	
	_		F						
1430-	5 —		F						
	_		F						
	_		F						
	_		R-1	11 17	127.1	6.0	SC	@8' - Clayey SAND; dark brown, moist, mica flakes,	
1425-	_ 10 —			22				dense.	
1420-	10 _							Total Depth = 10'	
	_							Groundwater Not Encountered	
	_							Backfilled with 3" perforated pipe with filter sock and gravel on 03/30/16	
	_		-					Backfilled with Cuttings on 3/31/2016	
1420-	15 —		F						
	_		F						
	_		F						
			F						
4445	20								
1415-	20 —								
	_								
	_		_						
	_		F						
1410-	25 —								
	_		-						
	_		F						
	_		F						
	-		-						
1405-	30 —								
					OF T	HIS BORING	G AND AT TH	ILY AT THE LOCATION SAMPLE TYPES: TEST TYPES: IE TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY	
			C		LOCA	ATIONS AND	D MAY CHAN	GE AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS SPT STANDARD PENETRATION S&H SIEVE AND HYDROME	ETER
		-	5			SENTED IS A	A SIMPLIFICA	ATION OF THE ACTUAL CN CONSOLIDATION D. THE DESCRIPTIONS CR CORROSION	
	Ge	ote	chnic	al, In	C AND	ARE NOT B	ASED ON QU	E FIELD DESCRIPTIONS GROUNDWATER TABLE AL ATTERBERG LIMITS JANTITATIVE CO COLLAPSE/SWELL RV R-VALUE	
					ENG	NEERING A	INALYSIS.	-#200 % PASSING # 200 SIE	EVE

	Geotechnical Boring Log Borehole HS-14 Date: 6/24/2019 Drilling Company: 2R													
Date:	6/24/	201						Drilling Company: 2R						
Proje	ct Na	me:	Stone	eridge				Type of Rig: CME 75						
Proje	ct Nu	mbe	er: 130)92-01				Drop: 30" Hole Diameter:	8"					
					~1436'	MSL		Drive Weight: 140 pounds						
Hole	Locat	ion:	See (Geoteo	chnical	Мар		Page 1	of 1					
			L		(Logged By CNJ						
			Sample Number		(pcf)		-	Sampled By CNJ						
(ff)		Log	En	i t	y ((%	qu	Checked By KAD	sst					
u u	(ff	с Lo	Ž	Juc	list	e e	Syr	Checked by IAD	L T					
Elevation (ft)	Depth (ft)	Graphic	ple	Blow Count	Density	Moisture (%)	USCS Symbol		Type of Test					
eč:	ept	rap	an	l ≥	Dry [ois	SC		/pe					
Ξ		Ū	š	B	Ō	Ž) IJ	DESCRIPTION	Γ					
1435-	0_			-				@0' to T.D <u>Quaternary Very Old Fan Deposits</u> (Qvof)						
	-		R-1	- 14	122.1	2.3	SM	@2.5' - Silty SAND with trace Gravel: light reddish						
			11-1	14 24 21	122.1	2.5		brown, dry to slightly moist, dense; indurated, pinhole						
	5 —			24	105.0	- 0		porosity						
1430-	_		R-2	24 50/5"	125.9	5.0	SC	@5' - Clayey SAND: reddish brown, slightly moist, very dense; well indurated, pinhole porosity						
	_		R-3	- 36 50/5"	132.8	5.7	SP-SC	@7.5' - SAND with Clay: brown, slightly moist to moist,						
	_		-	- 50/5"				very dense						
	10 —		R-4	32 50/5"	131.6	8.4		@10' - SAND with Clay: brown, moist, very dense						
1425-				_										
	_			-										
	45			-										
1420-	15		SPT-1	8 9 10		5.2		@15' - SAND with Clay: brown, slightly moist, medium dense						
1420	_			/ <u>10</u>				dense						
	_			-										
	20 —		DC	- 15	100.0	F 4								
1415-			R-5	15 18 24	130.8	5.4	SC	@20' - Clayey SAND: brown, moist, dense						
	-			-				Total Depth Drilled = 20'						
	-			-				Groundwater Not Encountered						
	25 —							Backfilled with Cuttings on 6/24/2019						
1410-	25			_										
	_			_										
	_			-										
	-			-										
	30 —			-										
	THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTERED. THE DESCRIPTIONS PROVIDED ARE QUALITATIVE FIELD DESCRIPTIONS AND ARE NOT BASED ON QUANTITATIVE ENGINEERING ANALYSIS. SAMPLE TYPES: B BULK SAMPLE BULK SAMPLE (CA Modified Sampler) B BULK SAMPLE B BULK SAMPLE (CA Modified Sampler) B BULK SAMPLE B BULK SAMPLE (CA Modified Sampler) B BULK SAMPLE B BULK													

Last Edited: 8/1/2019

	Geotechnical Boring Log Borehole HS-15												
Date:	6/24/	201						Drilling Company: 2R					
			Stone					Type of Rig: CME 75					
			ər: 130					Drop: 30" Hole Diameter:	8"				
					~1479'			Drive Weight: 140 pounds	- 5 4				
Hole	Locat	lon:	See		chnical	iviap	1	Page 1					
			er		cf)			Logged By CNJ					
Ð		D	Sample Number		Dry Density (pcf)	(9	USCS Symbol	Sampled By CNJ	ä				
ר (f		Ĕ	Z	nnt	sity	%)	M H	Checked By KAD	Tes				
Elevation (ft)	Depth (ft)	Graphic Log		Blow Count	en	Moisture (%)	SS		Type of Test				
eva	pth	apł		N		oist			be				
Ш		ŋ	Sa	B	²	Mc	ns	DESCRIPTION	Ty				
	0_			-				@0' to T.D <u>Quaternary Very Old Fan Deposits</u> (Qvof)					
	-		R-1	- 8	117.1	2.9	SM	@2.5' - Silty SAND: light brown, dry to slightly moist,					
1475-	_			8 9 9				medium dense; rootlets; pores					
	5 —		R-2	5 6 7	118.1	3.2		@5' - Silty SAND: light brown, slightly moist, medium					
				7				dense; pores, rootlets					
	_		R-3	10 14 17	125.3	3.3	SC	@7.5' - Clayey SAND: brown, moist, medium dense	AL CN				
1470-	-			17									
	10 —		R-4	11 19 20	117.8	1.9	SW-SM		-#200 CO				
				- 20				moist, dense; coarse sand to fine gravel	00				
	_			-									
1465-	-			-									
	15 —		R-5	11	118.0	1.6	SP	@15' - Sand with Gravel: very light brown, dry, medium					
	-			11 14 20				dense					
	-			-									
1460-				_									
1400	20 —		SPT-1	3		6.7	sc	@20' - Clayey SAND: brown, moist, medium dense					
	-					0.7	30	W20 - Clayey SAND. Blown, moist, medium dense					
	-			-				Total Depth Drilled = 20'					
	-			-				Groundwater Not Encountered					
1455-	25 —			-				Backfilled with Cuttings on 6/24/2019					
	20 -			_									
	_			-									
	-			-									
1450-	-			-									
	30 —			-									
	THIS SUMMARY APPLIES ONLY AT THE LOCATION SAMPLE TYPES: TEST TYPES: OF THIS BORING AND AT THE TIME OF DRILLING. B BULK SAMPLE (CA Modified Sampler) DS DIRECT SHEAR SUBSURFACE CONDITIONS MAND MAY CHANGE AT THIS LOCATION SUBSURFACE CONDITIONS MAND UFFER AT OTHER B BULK SAMPLE (CA Modified Sampler) DS DIRECT SHEAR UCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA FRESENTED IS A SIMPLIFICATION OF THE ACTUAL G GRAB SAMPLE SA SIEVE ANALYSIS PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTERED. THE DESCRIPTIONS FRESENTED IS A SIMPLIFICATION OF THE ACTUAL CN CORROSION AND ARE NOT BASED ON QUANTITATIVE FIGINEERING ANALYSIS. GROUNDWATER TABLE A TITERBERG LIMITS VIEW ENGINEERING ANALYSIS. RV R-VALUE RV RVALUE												

Geotechnical Boring Log Borehole HS-16 Date: 6/24/2019 Drilling Company: 2R												
								Drilling Company: 2R				
			Stone					Type of Rig: CME 75				
			ər: 130					Drop: 30" Hole Diameter:	8"			
			op of H					Drive Weight: 140 pounds	()			
Hole	Locat	lon:	See G		chnical	мар		Page 1	of 2			
			5		cf)			Logged By CNJ				
		F	- qu		(pcf)			Sampled By CNJ	÷			
) (ft		ĥ		nt	sity	%)	Ju	Checked By KAD	eo eo			
tior	(tt	ic	e	Ö	ens	nre	Ś		of			
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow Count	Dry Density	Moisture (%)	USCS Symbol		Type of Test			
Ele	De	G	Sa	BIG	Dŋ	Мо	SN	DESCRIPTION	Tyl			
	0							@0' to T.D <u>Quaternary Very Old Fan Deposits</u> (<u>Qvof)</u>				
	-		R-1	15 13 13	122.2	1.3	SM	@2.5' - Silty SAND: brown, dry, medium dense; rootlets, pores, slightly indurated				
1445–	5 — _		R-2	14 17 24	119.0	3.0		@5' - Silty SAND: brown, dry to slightly moist, dense; roots, pores, indurated				
	-		R-3	17 20 24	127.0	3.4	SC	@7.5' - Clayey SAND: brown, slightly moist, dense				
1440-	10 — - -		R-4	18 28 34	130.9	6.4		@10' - Clayey SAND: dark brown, slightly moist, dense, well indurated				
1435–	- - 15 - -		SPT-1	10 13 16		10.2	CL	@15' - Sandy CLAY: brown, moist, hard				
1430-	20		R-5	10 15 21	120.0	3.3	SP	@20' - SAND: dark brown, moist, medium dense				
1425–	 25 		SPT-2	8 18 18		7.6	SC	@25' - Clayey SAND: reddish brown, slightly moist, dense				
THIS SUMMARY APPLIES ONLY AT THE LOCATION SAMPLE TYPES: TEST TYPES: SAMPLE TYPES: DF THIS BORING AND AT THE TIME OF DRILLING. B BULK SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY SUBSURFACE CONDITIONS MAY DIFFER AT OTHER CONDITIONS AND MAY CHANGE AT THIS LOCATION RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY WITH THE PASSAGE OF TIME. THE DATA SECONDITIONS ENCOUNTERED. THE DATA SAMPLE FORENERATION SAH SIEVE AND HYDROMETER PROSENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTERED. THE DESCRIPTIONS CN CONSOLIDATION PROVIDED ARE QUALITATIVE FIELD DESCRIPTIONS PROVIDED ARE QUALITATIVE FIELD DESCRIPTIONS CN CONCOLIDATION AND ARE NOT BASED ON QUANTITATIVE ENGINEERING ANALYSIS. CO COLLAPSE/SWELL RV WV R-VALUE #200 % PASSING # 200 SIEVE #200 % PASSING # 200 SIEVE												

			C	Geot	echn	ical	Bori	ng Log Borehole HS-16			
	6/24/	-	-					Drilling Company: 2R			
			Stone					Type of Rig: CME 75			
			er: 130					Drop: 30" Hole Diameter:	8"		
					~1450'			Drive Weight: 140 pounds			
Hole	Locat	ion:	See	Jeote	chnical	Мар		Page 2 of			
			5		E)			Logged By CNJ			
		-	l dr		d)		0	Sampled By CNJ	÷		
(H		ő	n dr	nt	ity	%)	je je	Checked By KAD	es		
ior	(Ħ	<u>.</u>	<u>e</u>	l Q	ens	ıre	Ś		of]		
vat	oth	hd	du	≥	Ŏ	istu	S		e e		
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol	DESCRIPTION	Type of Test		
	30		R-6	10 17	121.8	5.8	SM	@30' - Silty SAND: brown, slightly moist to moist,			
	-			17 20				medium dense			
	-			-							
	1			-							
1420-	35 —										
1420-	55		SPT-3	6 7 10		8.9		@35' - Silty SAND: brown, slightly moist, medium dense			
	_			-							
	_			-							
	_			-							
1415-	40 —		R-7	16	125.2	5.7	SC	@40' - Clayey SAND: brown, moist, dense			
	-			16 22 31		0					
	-		I F	-							
	-			-							
	-			-							
1410-	45		SPT-4	9 12 13		6.8	SM	@45' - Silty SAND: brown, slightly moist, medium dense			
	1			13							
1405-	50 —			- 20	400.0	4.0		@501_Cilty CAND: heaving alightly regist damage			
	-		R-8	20 27 36	123.2	4.8		@50' - Silty SAND: brown, slightly moist, dense			
	4			-				Total Depth Drilled = 50'			
	-			-				Groundwater Not Encountered			
	-			-				Backfilled with Cuttings on 6/24/2019			
1400-	55 —			-							
	-			-							
	4			-							
	-			-							
	60]							
	00			-							
					OF TH	HIS BORING	G AND AT TH	ILY AT THE LOCATION SAMPLE TYPES: TEST TYPES: E TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSIT	Y		
			M		LOCA WITH	TIONS AND THE PASS	D MAY CHAN AGE OF TIMI	GE AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS E. THE DATA STANDARD PENETRATION S&H SIEVE ANALYSIS TEST SAMPLE EI EYPANSION INDE			
		-			CONE	DITIONS EN	ICOUNTEREI	ATION OF THE ACTUAL CN CONSOLIDATION D. THE DESCRIPTIONS CR CORROSION			
	🕨 Ge	ote	chnic	al, Ir	C. AND		ASED ON QU	E FIELD DESCRIPTIONS GROUNDWATER TABLE AL ATTERBERG LIMI JANTITATIVE CO COLLAPSE/SWELL RV R-VALUE			
					LINGI			-#200 % PASSING # 200	SIEVE		

			C	Geot	echn	ical	Bori	ng Log Borehole HS-17	
	6/24/		9					Drilling Company: 2R	
			Stone					Type of Rig: CME 75	
			er: 130					Drop: 30" Hole Diameter:	8"
					~1450' chnical			Drive Weight: 140 pounds Page 1	of 1
поје	LUCA	.1011.				wap		-	
			e		(pcf)		_	Logged By CNJ	
(f		ō	E	L .	(p	(%	q	Sampled By CNJ	st
i) L	ť)	Ľ	Z	no	lsit <u>,</u>	6) 0	ул Л	Checked By KAD	Те
atio	h (1	hic	ple	Ŭ	Der	ture	S S		e of
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow Count	Dry Density	Moisture (%)	JSCS Symbol		Type of Test
ш		G	S	8	Δ	Σ		DESCRIPTION	μ μ
	0_			-				@0' to T.D <u>Quaternary Very Old Fan Deposits</u>	
	_	x	R-1	- 15	125.8	4.0	SM	(Qvof) @2.5' - Silty SAND: brown, dry, slightly moist, dense;	
	_		R-1	15 25 25	125.0	4.0		roots	
1445-	5 —		R-2	17	105.0	3.9		QEL City CAND, known alightly maint your dance	
	-		R-2	17 43 50/5"	125.9	3.9		@5' - Silty SAND: brown, slightly moist, very dense	
	_			-	101.0				
	_		R-3	17 25 32	131.0	4.7		@7.5' - Silty SAND: dark brown, moist, dense	
1440-	- 10								
1440			R-4	23 50/5"	131.4	9.0	SC	@10' - Clayey SAND: dark brown, moist, very dense	
	_			-					
	_			-					
	-			-					
1435-	15 —		SPT-1	11 12 12		6.6		@15' - Clayey SAND: reddish brown, moist, dense	
				/ 12 -					
	_			-					
	_			-					
1430-	20 —		R-5	11	117.8	7.6	SM	@20' - Silty SAND: dark brown, moist, dense	
	_			11 16 23					
	_			-				Total DepthDrilled = 20'	
				_				Groundwater Not Encountered Backfilled with Cuttings on 6/24/2019	
1425-	25 —			-					
	_			-					
	_	r.		-					
	_			-					
	30 —			_					
	50					SUMMARY		ILY AT THE LOCATION SAMPLE TYPES: TEST TYPES:	
					OF TH SUBS	HIS BORING	G AND AT TH	E TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSIT	Y
					WITH	THE PASS	AGE OF TIM	E. THE DATA SPT STANDARD PENETRATION S&H SIEVE AND HYDRO TEST SAMPLE EI EXPANSION INDEX	
					CONE PROV	DITIONS EN	ICOUNTERE	D. THE DESCRIPTIONS E FIELD DESCRIPTIONS	
	- Ge	ote	chnic	aı, In	C AND		BASED ON QU	JANTITATIVE CO COLLAPSE/SWELL RV R-VALUE #200 % PASSING # 200	-
-									

	Geotechnical Boring Log Borehole HS-18 Date: 6/24/2019 Drilling Company: 2R												
Date:	6/24/	201						Drilling Company: 2R					
			Stone					Type of Rig: CME 75					
			er: 130					Drop: 30" Hole Diameter:	8"				
					~1450'			Drive Weight: 140 pounds					
Hole	Locat	ion:	See (Geote	chnical	Мар		Page 1	of 1				
			<u>г</u>		cf)			Logged By CNJ					
			qu		d)			Sampled By CNJ	+				
(ft	-	ő	Jur	n t	ity	%)	, mt	Checked By KAD	es				
ion	(Ħ)	ic l	e e	5	sue	ILe	S		of 1				
vat	th	hd	du	3	Ď	str	SS		e o				
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol	DESCRIPTION	Type of Test				
	0_	-1		-				@0' to T.D <u>Quaternary Very Old Fan Deposits</u>					
	-	Ē		- 10	105.5		0.14		CR				
	_	B-1	R-1	12 24 48	125.5	5.5	SM	@2.5' - Silty SAND: brown, dry, very dense	-#200 MD				
1445-	5 —		R-2	30	109.4	14.7	ML	@5' - Sandy SILT: brown, dry, hard	EI				
	_		112	30 32 32	100.4	1-1.1							
	-		R-3	- 10 18 19	106.9	20.0		@7.5' - Sandy SILT: gray brown mottled, slightly moist to moist, very stiff					
1440-	10 —		R-4	15	126.3	8.8	SM	@10' - Silty SAND: dark brown, moist, dense					
	-			15 17 28		0.0	•						
	-			-									
				_									
1435-	15 —		R-5	10	131.6	7.9	CL	@15' - Sandy CLAY: red brown, slightly moist, hard					
	_		к-э	10 25 39	131.0	7.9	GL	@15 - Sandy CLAT. Ted brown, slightly molst, flard					
	-			-									
	-			-									
	-			-									
1430-	20		SPT-1	3 4 7		8.0	SC	@20' - Clayey SAND: red brown, slightly moist, medium dense					
	-			-				Total Depth Drilled = 20'					
	-			-				Groundwater Not Encountered					
	-			-				Backfilled with Cuttings on 6/24/2019					
1425-	25 —			-									
	-			_									
	_			_									
	30 —			-									
	Ge	ote	Chnic	C cal, Ir	OF TI SUBS LOCA WITH PRES CONI PROV	HIS BORING SURFACE C TIONS AND I THE PASS SENTED IS A DITIONS EN ADTIONS EN	AND AT THI ONDITIONS I MAY CHAN AGE OF TIME A SIMPLIFICA ICOUNTEREE QUALITATIVE ASED ON QU	LY AT THE LOCATION SAMPLE TYPES: TEST TYPES: LY AT THE LOCATION B BULK SAMPLE DS DIRECT SHEAR MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSIT GE AT THIS LOCATION R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSIT SEE AT THIS LOCATION G GRAB SAMPLE SAMPLE SEVE ANALYSIS E. THE DATA SPT STANDARD PENETRATION S&H SIEVE ANALYSIS D. THE DESCRIPTIONS E CI CORROSION E FIELD DESCRIPTIONS GROUNDWATER TABLE AL ATTERBERG LIMIC JANTITATIVE GROUNDWATER TABLE CO COLLAPSE/SWELL	OMETER X TS				

Last Edited: 8/1/2019

	Geotechnical Boring Log Borehole HS-19											
	6/24/		9					Drilling Company: 2R				
			Stone					Type of Rig: CME 75				
			er: 130					Drop: 30" Hole Diameter:	8"			
					~1466'			Drive Weight: 140 pounds				
Hole	Locat	ion	: See (Geote	chnical	Мар	1	Page 1 e	of 1			
			٦.		cf)			Logged By CNJ				
			hde		d)			Sampled By CNJ	цт			
(H	-	Log	Jur	Int	ity	%)	jų į	Checked By KAD	es			
ion	(Ħ	<u>0</u>	e e	Count	sue	ıre	Ś		of]			
vat	pth	hde	du	S S	Dry Density (pcf)	istu	USCS Symbol		Type of Test			
Elevation (ft)	Depth (ft)	Graphic	Sample Number	Blow (Dry	Moisture (%)	NS	DESCRIPTION	Typ			
1465-	0_			-				@0' to 15' - Quaternary Very Old Fan Deposits (Qvof)				
	-		R-1	- 27 50/5"	125.8	4.1	sc	@2.5' - Clayey SAND: red brown, slightly moist, very				
	-			-				dense				
1460-	5 —		R-2	27 43 50/5"	124.8	3.8		@5' - Clayey SAND: red brown, slightly moist, very				
1400	_			-				dense				
	-		R-3	13 23 50/5"	131.9	3.5		@7.5' - Clayey SAND: reddish brown, slightly moist, very dense				
1455-	10 —		R-4	11 21 50/5"	131.4	9.0		@10' - Clayey SAND: red brown, slightly moist, very dense				
	-			-								
	_			-				@15' to T.D <u>Cretaceous Lakeview Mountain</u> Tonalite (KImt)				
	15 —		SPT-1	27 50/5"		6.2	SP	@15' - Tonalite excavates to SAND: light brown, dry,				
1450-	-			X 50/5"				very dense				
	-			-								
	20 —		R-5	50/5"	119.1	3.1		@20' - Tonalite, excavates to SAND: light brown, dry, very dense, slightly disturbed sample				
1445-	_		1.5	-	119.1	5.1						
	-			-				Total Depth Drilled = 20'				
	-			-				Groundwater Not Encountered				
	<u> </u>			-				Backfilled with Cuttings on 6/24/2019				
1440	25 —											
1440-												
	_			_								
	_			-								
	30 —			-								
	THIS SUMMARY APPLIES ONLY AT THE LOCATION SAMPLE TYPES: TEST TYPES: OF THIS BORING AND AT THE TIME OF DRILLING. B BULK SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY LOCATIONS AND MAY CHANGE AT THIS LOCATION GRAB SAMPLE SA SIEVE ANALYSIS WITH THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL STANDARD PENETRATION SAH SIEVE ANALYSIS PROVIDED ARE QUALITATIVE FIELD DESCRIPTIONS AND ARE NOT BASED ON QUANTITATIVE GROUNDWATER TABLE AL ATTERBERG LIMITS AND ARE NOT BASED ON QUANTITATIVE ENGINEERING ANALYSIS. GROUNDWATER TABLE AL ATTERBERG LIMITS VV R/V R/V R/V R/V R/V R/V											

	Geotechnical Boring Log Borehole HS-20											
Date:	6/27/	201						Drilling Company: 2R				
			Stone					Type of Rig: CME 75				
			er: 130					Drop: 30" Hole Diameter:	8"			
					~1439'			Drive Weight: 140 pounds				
Hole	Locat	ion:	See (Geote	chnical	Мар		Page 1	of 1			
			5		(J			Logged By KAD				
) dc		bc	~	ō	Sampled By KAD				
(ff		Log	nn	l t	ity	%)	dm'	Checked By KAD	esi			
lo	(ff	ic L	e e	Count	sua	อ	Sy		of T			
vat	th	hd	ldr	≥	Ď	stu	SC		e			
Elevation (ft)	Depth (ft)	Graphic I	Sample Number	Blow	Dry Density (pcf)	Moisture (%)	USCS Symbol	DESCRIPTION	Type of Test			
	0			_				@0' to T.D Quaternary Very Old Fan Deposits	CR			
				_				(Qvof)	-#200			
	_		R-1	8 11 15	117.7	3.1	SM	@2.5' - Silty SAND: brown to reddish brown, dry,	MD EI			
1435-	_			15				medium dense	DS			
	5 —		R-2	9	118.6	4.6		@5' - Silty SAND: reddish brown, slightly moist, medium				
	-			9 15 18				dense				
			R-3	- 15	129.5	9.6		@7.5' - Silty SAND: brown to gray brown, slightly moist,				
1430-	_			15 21 25				dense				
	10 —		R-4	15	125.7	9.0		@10' - Silty SAND: reddish brown, slightly moist, dense				
	-			15 24 36								
	-			-								
1.105	-			-								
1425-	15											
			SPT-1	4 4 13		4.6		@15' - Silty SAND: reddish brown, slightly moist, medium dense				
	_			-								
	-			-								
1420-	-			-								
	20 —		R-5	34 50/5"	126.8	5.5		@20' - Silty SAND: reddish brown, slightly moist, very dense				
	-							Total Depth Drilled = 20'				
]		[_				Groundwater Not Encountered				
1415-	4			-				Backfilled with Cuttings on 6/27/2019				
_	25 —			-								
	-			-								
	-			-								
1440	-			-								
1410-	30			_								
	00					SUMMARY		ILY AT THE LOCATION SAMPLE TYPES: TEST TYPES:				
					OF TI SUBS	HIS BORING	G AND AT TH	E TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSIT	Y			
					WITH	THE PASS	AGE OF TIM	GE AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS SPT STANDARD PENETRATION S&H SIEVE AND HYDRE TEST SAMPLE EI EXPANSION INDEX				
					CONI	DITIONS EN	ICOUNTEREI	ATION OF THE ACTUAL CN CONSOLIDATION D. THE DESCRIPTIONS CR CORROSION E FIELD DESCRIPTIONS CR CORROSION AL ATTERBERG LIMIT	rs			
	Ge	ote	chnic	aı, Ir	AND	ARE NOT B	ASED ON QU	JANTITATIVE – CO COLLAPSE/SWELL RV R-VALUE	-			
ENGINEERING ANALYSIS. RV R-VALUE #200 % PASSING # 200 SIEVE												

Last Edited: 8/5/2019

Date:			9					ng Log Borehole HS-21 Drilling Company: 2R			
			Stone					Type of Rig: CME 75			
			er: 130					Drop: 30" Hole Diameter: 8"			
					~1451' chnical			Drive Weight: 140 pounds			
	LOCA					мар		Page 1 (
			er		cf)		_	Logged By KAD			
£		D	<u> </u>		d) y	(%)	q	Sampled By KAD	st		
L	ft)		ך צ	no	sit	e (°	Symbol	Checked By KAD	 		
atic	th (i	hic	ble	Ŭ	Der	tur	S S		of		
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	nscs		Type of Test		
ш		U	S	8		Ν		DESCRIPTION	- i		
1450-	0_			-				@0' to 20' - <u>Quaternary Very Old Fan Deposits (Qvof)</u>			
	-	-	R-1	- 11 13 14	111.5	3.7	SM	@2.5' - Silty SAND: Reddish brown, dry, medium dense; trace rootlets			
1445-	5 —	-	R-2	22 30 50	131.0	5.2		@5' - Silty SAND: reddish brown, slightly moist, very dense			
	-	-	R-3	- 27 43 50	132.8	10.0	SP-SC	@7.5' - SAND with Clay: reddish brown, slightly moist, very dense			
1440-	10 — -	-	R-4	26 36 22	127.9	6.7	SP	@10' - SAND: reddish brown to dark reddish brown, slightly moist, dense			
1435–	- - 15 — - -	-	SPT-1	- - 20 21 - 18 -		6.5		 @15' - SAND: reddish brown to brown, slightly moist, dense @20' to T.D Cretaceous Lakeview Mountain 			
1430-	- 20 — -		R-5	- 30 50/3"	130.0	8.3	SP	Tonalite (KImt) @20' - SAND: grayish yellow, dry, very dense; yellowish weathering @22' - Refusal			
1425-	- - 25 —	-		-				Total Depth Drilled = 22' Groundwater Not Encountered Backfilled with Cuttings on 6/27/2019			
	- - - 30 —			-							
			G		OF TI SUBS LOCA WITH PRES CONI PROV	HIS BORIN SURFACE (ATIONS AN I THE PASS SENTED IS DITIONS EI /IDED ARE	G AND AT THI CONDITIONS I D MAY CHANG SAGE OF TIME A SIMPLIFICA NCOUNTEREE QUALITATIVE BASED ON QU	ATION OF THE ACTUAL CN CONSOLIDATION D. THE DESCRIPTIONS CR CORROSION E FIELD DESCRIPTIONS CR CORROSION E FIELD DESCRIPTIONS	OMETEI		

Geotechnical Boring Log Borehole HS-22											
Date:	6/27/	201						Drilling Company: 2R			
			Stone					Type of Rig: CME 75			
			er: 130					Drop: 30" Hole Diameter:	: 8"		
					~1442'			Drive Weight: 140 pounds			
Hole	Locat	ion:	See (Geoteo	chnical	Мар		Page 1	of 2		
			5		(J)			Logged By KAD			
			9qL		od)	~	0	Sampled By KAD			
(ff)		og.	n	nt	ity	%)	dm	Checked By KAD	est		
no	(Ħ)	ic L	2 0		sus	ē	Sy	-	of T		
vat	th	hd	du	≥	Ď	stu	SC		e e		
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol	DESCRIPTION	Type of Test		
	0			-				@0' to T.D Quaternary Very Old Fan Deposits			
1440-	_			-				(Qvof)			
	_		R-1	13 20 24	99.8	5.7	SM	@2.5' - Silty SAND: brown to reddish brown, dry, dense; trace rootlets			
	5 —		R-2	42 50/5"	126.9	4.8		@5' - Silty SAND: reddish brown, slightly moist, very dense			
1435-	_		R-3	- 7 6	118.8	1.1	SP-SM		-#200		
	_			6 6				loose	СО		
	10		R-4	40 50/4"	124.2	6.5	SM	@10' - Silty SAND: dark reddish brown, slightly moist, very dense			
1430-	_			-							
	_		-	-							
	15 —		SPT-1	10 15		7.2		@15' - Silty SAND: reddish brown, slightly moist,			
	-			15 19				medium dense			
1425-	-			-							
	20 —			15	100.0						
			R-5	15 50/6"	126.9	5.7	SP-SM	@20' - SAND with SILT: reddish brown, slightly moist, very dense			
1420-	_			-							
	-			-							
	-			-							
	25 —		SPT-2	17 21 32		8.4	SP	@25' - SAND: reddish brown, slightly moist, very dense			
1115	-			1 32							
1415-											
	_			_							
	30 —			-							
	30 Image: Solution of the sector of the										

Last Edited: 8/5/2019

	Geotechnical Boring Log Borehole HS-22											
	6/27/		9					Drilling Company: 2R				
-			Stone					Type of Rig: CME 75				
			er: 130					Drop: 30" Hole Diameter:	8"			
					~1442'			Drive Weight: 140 pounds				
Hole	Locat	ion:	: See (Geote	chnical	Мар	1	Page 2	of 2			
			ل ا ا		cf)			Logged By KAD				
		-	- and		d)		0	Sampled By KAD	÷			
l (ft		Š	n Z	lut	sity	%)	Ē	Checked By KAD	Les			
tior	LT (T	<u>i</u>	<u>e</u>	Ō	ens	rre	S.		of			
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol		Type of Test			
Ele	De	Ü	Sa	Be	D	Mo	N N	DESCRIPTION	Tyl			
	30		R-6	50/6"	125.9	7.6	SP-SM	@30' - SAND with Silt: dark reddish brown, slightly moist				
	-			-				to moist, very dense				
1410-	-			-								
	-			-								
	35 —											
	55		SPT-3	28 50/6"		6.1	SM	@35' - Silty SAND: reddish brown, slightly moist, very dense				
1405-	_			_								
1.00	_			_								
	_			-								
	40 —		R-7	25 50/4"		6.5		@40' -Silty SAND: reddish brown, moist, very dense				
	-			50/4"		0.0						
1400-	-			-								
	-			-								
	-			-								
	45 —		SPT-4	18 26 27		4.6	SP	@45' - SAND: reddish brown, slightly moist, very dense				
1205	-			7 27								
1395-												
	50 —			- 20	100.4	<u>с</u> г		@50' - SAND: gray brown, slightly moist, very dense				
	-		R-8	20 50/5"	129.4	6.5		Tatal Doubh Drillad - 50				
1390-	_			-				Total Depth Drilled = 50' Groundwater Not Encountered				
	-			-				Backfilled with Cuttings on 6/27/2019				
	-			-								
	55 —			-								
	-			-								
1385-	-			-								
	-			-								
	60 1											
	60 —			-		010000000000000000000000000000000000000						
					OF TI SUBS	HIS BORING	G AND AT THI CONDITIONS I	ILY AT THE LOCATION SAMPLE TYPES: TEST TYPES: E TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) D MAXIMUM DENSIT GE AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS	Y			
					WITH	THE PASS	AGE OF TIME	E. THE DATA SPT STANDARD PENETRATION S&H SIEVE AND HYDRO E. THE DATA TEST SAMPLE EI EXPANSION INDEX VITION OF THE ACTUAL CN CONSOLIDATION				
					CONI PROV	DITIONS EN /IDED ARE	COUNTERED	D. THE DESCRIPTIONS CR CORROSION E FIELD DESCRIPTIONS CR CORROSION AL ATTERBERG LIMIT				
	Ge	oce	chnic	a, ir		ARE NOT B NEERING A	ASED ON QU ANALYSIS.	RV R-VALUE				
	#200 % PASSING # 200 SIEVE											

Geotechnical Boring Log Borehole HS-23											
Date:	6/27/	201						Drilling Company: 2R			
			Stone					Type of Rig: CME 75			
			er: 130					Drop: 30" Hole Diameter:	8"		
					~1438'			Drive Weight: 140 pounds			
Hole	Locat	ion:	: See (Geote	chnical	Мар		Page 1	of 1		
			5		cf)			Logged By KAD			
			qu		d)			Sampled By KAD	т.		
(ft		Log	du	nt	ity	%)	jų k	Checked By KAD	es		
ion	(Ħ)	<u>0</u>	e e	5	sue	e e) S		of 1		
vat	oth	hd	du	≥	Ő	istu	S		e e		
Elevation (ft)	Depth (ft)	Graphic	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol	DESCRIPTION	Type of Test		
	0_			-				@0' to T.D <u>Quaternary Very Old Fan Deposits</u> (Qvof)			
	-		R-1	- 15	122.0	4.4	SP	@2.5' - SAND: brown, dry, dense; trace rootlets			
1435–				15 24 25	122.0	7.7					
	5 —		R-2	27 50/6"	131.7	5.3	SM	@5' - Silty SAND: gray brown, dry, very dense			
	_			50/6"							
1430-			R-3	- 40 50/6"	124.4	5.2		@7.5' - Silty SAND: brown to yellowish brown, slightly			
	-			-				moist, very dense			
	10		R-4	25 50/6"	132.7	9.0	SC-SM	@10' - Silty Clayey SAND: dark brown, moist, very dense	AL CN		
	_			-							
1425-	-			-							
	15 —			-							
			SPT-1	$ \begin{array}{c} 9 \\ 6 \\ 11 \end{array} $		8.0	SM	@15' - Silty SAND: reddish brown, slightly moist, medium dense			
	_			-							
1420-	_			-							
	_			-				@20' - Silty SAND: reddish brown, yellowish brown,			
	20 —		R-5	35 50/5"	124.2	9.3		slightly moist, very dense			
				30/3				Total Depth Drilled = 20'			
1415-								Groundwater Not Encountered			
1413-				_				Backfilled with Cuttings on 6/27/2019			
	25 —			-							
	_			-							
	-			-							
1410-	-			-							
	30			_							
	50				тые	SUMMAD					
	THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTERED. THE DESCRIPTIONS ROVIDED ARE QUALITATIVE FIELD DESCRIPTIONS AND ARE NOT BASED ON QUANTITATIVE ENGINEERING ANALYSIS. SAMPLE TYPES: B DS DIRECT SHEAR MAXIMUM DENSITY SAMPLE B BULK SAMPLE SAMPLE DS DIRECT SHEAR MAXIMUM DENSITY SIEVE ANALYSIS CATIONS SAMPLE TYPES: UCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTERED. THE DESCRIPTIONS PROVIDED ARE QUALITATIVE FIELD DESCRIPTIONS AND ARE NOT BASED ON QUANTITATIVE ENGINEERING ANALYSIS. SAMPLE TYPES: B DS DIRECT SHEAR MAXIMUM DENSITY SIEVE ANALYSIS										

			(Geot	echn	ical	Bori	ng Log Borehole HS-24	
Date:	6/27/	201						Drilling Company: 2R	
Proje	ct Na	me:	Stone	ridge				Type of Rig: CME 75	
-			er: 130					Drop: 30" Hole Diameter:	: 8"
					~1540'			Drive Weight: 140 pounds	
Hole	Locat	tion:	See (Geote	chnical	Мар		Page 1	of 1
			5		(J			Logged By KAD	
			Sample Number		Density (pcf)	_	ō	Sampled By KAD	
(ft)		Log	un	f	It	(%)	d m	Checked By KAD	est
uo	(ft)	СГ	∠ ພ	Count	sua	ē	Sy		μ
Elevation (ft)	Depth (ft)	Graphic I	d		De	Moisture (%)	USCS Symbol		Type of Test
<u>e</u>)ep	- Jra	an San	Blow	Dry	loi)S(DESCRIPTION	Γ_d
			0)			2		DESCRIPTION	
	0_			-				@0' to 10' - Quaternary Very Old Fan Deposits (Qvof)	CR -#200
	_			-	110.0				MD
	_		R-1	4 5 6	116.2	4.6	SP-SC	@2.5' - SAND with Clay: dark gray brown, slightly moist, loose	EI
1535-	5 —								-#200
1555-	5_		R-2	4 7 13	128.2	8.1	SC	@5' - Clayey SAND: dark gray brown, slightly moist, medium dense	-#200 CO
	-			-	100 -			@7.5' - Clayey SAND: gray brown, slightly moist, very	
	_		R-3	20 30 42	136.5	5.5		dense	
4500	10							@10' to T.D <u>Cretaceous Lakeview Mountain</u> Tonalite (Klmt)	
1530-	10 —		R-4	15 35 50/5"	104.2	12.6	SP	@10' - SAND: dark gray with reddish weathering,	DS
				- 50/5"				slightly moist, very dense	
	_			_					
	_			_					
1525-	15 —		SPT-1	50/4"		1.7		@15' - Same as Above (R-4); medium to coarse grained	
	_			-				Total Depth Drilled = 15'	
	_			-				Groundwater Not Encountered	
	_			-				Backfilled with Cuttings on 6/27/2019	
	_	2	-	-					
1520-	20 —			-					
	_			-					
	_			-					
1515-	25 —		[_					
1010	20 -			_					
	_			-					
	_			-					
	-			-					
	30 —			-					
			·I					LY AT THE LOCATION SAMPLE TYPES: TEST TYPES: E TIME OF DRILLING, B BULK SAMPLE DS DIRECT SHEAR	·
					SUBS	SURFACE C	CONDITIONS N	VAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSIT G GRAB SAMPLE SA SIEVE ANALYSIS	
			C		WITH	THE PASS	SAGE OF TIME		х
			chnic		CONE PROV	/IDED ARE	QUALITATIVE	D. THE DESCRIPTIONS CR CORROSION E FIELD DESCRIPTIONS CR GROUNDWATER TABLE AL ATTERBERG LIMI	тѕ
	96		Grinic	ar, in		ARE NOT E NEERING A	BASED ON QU ANALYSIS.	ANTITATIVE CO COLLAPSE/SWEL RV R-VALUE #200 % PASSING # 200	

			(Geot	echn	ical	Bori	ng Log Borehole HS-25					
Date:	6/27/	201						Drilling Company: 2R					
Proje	ct Na	me:	Stone	eridge				Type of Rig: CME 75					
Proje	ct Nu	mbe	er: 130)92-01				Drop: 30" Hole Diameter:	8"				
					~1525'	MSL		Drive Weight: 140 pounds					
					chnical			Page 1	of 1				
								Logged By KAD					
			Sample Number		Density (pcf)			Sampled By KAD					
(t)		g	E	L L	V (I	(%	q		st				
) L	(f	LC	ž	unc	Isit		N N	Checked By KAD	Te				
Elevation (ft)	Depth (ft)	Graphic Log		Blow Count)er	Moisture (%)	JSCS Symbol		Type of Test				
eva	ept	ap	<u> </u>	N	Σ Γ	<u>ois</u>	Ö		/pe				
Ē		Ū	S	Ē	Dry	ž	Š	DESCRIPTION	T				
	0_			-				@0' to 10' - <u>Quaternary Very Old Fan Deposits (Qvof)</u>					
	-		R-1	- 18 42 48	131.7	3.6	SM	@2.5' - Silty SAND: yellowish brown, dry, very dense; few rootlets					
1520-	5 —		R-2	23 50/5"	122.2	3.3	SP-SM	@5' - SAND with Silt: light gray brown, dry to slightly moist, very dense					
	-		R-3	- 20 50/6"	125.5	4.2	SM	@7.5' - Silty SAND with Silt: yellowish brown, dry to slightly moist, very dense					
1515-	10		R-4	50/5"	104.2	12.6	SP	@10' to T.D <u>Cretaceous Lakeview Mountain</u> <u>Tonalite (KImt)</u> @10' - SAND: gray, dry, very dense					
	-			-									
1510-	15 —		SPT-1	- 22 33 50/5"		6.1		@15' - Same as Above R-4; Coarse grained, less weathered					
	_			-				Total Depth Drilled = 15'					
	_			-				Groundwater Not Encountered Backfilled with Cuttings on 6/27/2019					
1505-	20 —			-									
	-			-									
	-			-									
	-												
1500-	25 —												
1000				_									
	_			-									
	_			-									
	-			-									
	30 —			-									
	Ge		Chnic		OF TI SUBS LOCA WITH PRES CONI PROV	HIS BORING SURFACE (ATIONS AND I THE PASS SENTED IS DITIONS EN /IDED ARE	G AND AT THE CONDITIONS M D MAY CHANG GAGE OF TIME A SIMPLIFICA NCOUNTEREE QUALITATIVE BASED ON QU	TION OF THE ACTUAL TEST SAMPLE CN CONSULDATION D. THE DESCRIPTIONS CR CORROSION E FIELD DESCRIPTIONS CR GROUNDWATER TABLE AL ATTERBERG LIMIT	OMETER X TS				

Last Edited: 8/6/2019

					Geo	otecł	nnica	al Bo	oring Log Borehole I-1	
	6/24/								Drilling Company: 2R	
			Stone						Type of Rig: CME 75	
			er: 130						Drop: 30" Hole Diameter:	8"
			-			-1428'			Drive Weight: 140 pounds	
Hole	Locat	tion:	See	Ge	eoteo	chnical	Мар		Page 1 o	of 1
			SL			(j			Logged By CNJ	
			ub€			d)			Sampled By CNJ	t
(Ħ		-og	Iun		Int	ity	%)	цр Д	Checked By KAD	es
ion	(ft)	ic l	e e		Sol	sus	ย	Sy		of T
vat	oth	hqi	ldu		S S	Ď	stu	SC		e c
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number		Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol	DESCRIPTION	Type of Test
ш	0)	•••	H	ш —		~		@0' to T.D Quaternary Very Old Fan Deposits	•
	U _			$\left \cdot \right $				SM	(Qvof)	
	_			$\left \cdot \right $				•	@0' - Generally Silty SAND: brown, dry	
1425-	_			$\left \right $						
				FI						
	5 —			Γl						
1420-										
1420-			SPT-1	5	1		38.9	CL	@8.5' - CLAY: very light brown, slightly moist, medium	
	10 —			Й	1 2 2				stiff; trace scattered gravel	
	_			L					Total Depth = 10'	
	_			L					Groundwater Not Encountered	
1415-	_								Backfilled with Cuttings Subsequent to Infiltration Testing	
	_			$\left \cdot \right $					looting	
	15 —			$\left \cdot \right $						
	_			$\left \cdot \right $						
	_			Η						
1410-	_			$\left \right $						
	-			ΓI						
	20 —									
1405-										
1400	_			LI						
	25 —			LI						
	_			L						
	_			μ						
1400-	_			$\left \right $						
	_			$\left \cdot \right $						
	30 —			$\left \cdot \right $						
			G			OF T SUBS LOCA WITH PRES CONI PROV	HIS BORING SURFACE C ATIONS ANE I THE PASS SENTED IS A DITIONS EN ADITIONS EN	AND AT TH ONDITIONS I MAY CHAN AGE OF TIME SIMPLIFICA COUNTEREE QUALITATIVI ASED ON QU	LY AT THE LOCATION E TIME OF DRILLING. MAY DIFFER AT OTHER E AT THIS LOCATION THE DATA THE DATA THE DATA THE DATA THE DATA THE DESCRIPTIONS JANTITATIVE LY AT THE LOCATION SAMPLE TYPES: B BULK SAMPLE GRAB SAMPLE GRAB SAMPLE GRAB SAMPLE SA SEVE ANALYSIS SEVE ANALYSIS SEVE ANALYSIS SEVE ANALYSIS SAMPLE SAMPLE SAMPLE SA SEVE ANALYSIS SAMPLE SAMPLE SAMPLE SA SEVE ANALYSIS SAMPLE SA SEVE ANALYSIS SA SEVE ANALYSIS SA SEVE ANALYSIS SAMPLE SA SEVE ANALYSIS SAMPLE SA SEVE ANALYSIS SA SEVE ANALYSIS SA SA SEVE ANALYSIS SA SA SA SA SA SA SA SA SA SA SA SA SA	

Last Edited: 8/6/2019

				Ge	otecl	nnic	al Bo	oring Log Borehole I-2	
	6/24/							Drilling Company: 2R	
			Stone					Type of Rig: CME 75	
			er: 130					Drop: 30" Hole Diameter: 8	8"
					~1429'			Drive Weight: 140 pounds	6.4
Hole	Locat	ion:	See (Geote	chnica	Мар		Page 1 of	t 1
			5		(j.			Logged By CNJ	
			qu		d			Sampled By CNJ	t
(ft		- Bo	lun	l t	ity	%)	mt	Checked By KAD	es
ion	(ff	ic L	e e		Sus	ନ	Sy		of T
vat	oth	hd	ldu	≥	ð	stu	SC		e c
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol	DESCRIPTION	Type of Test
	0	$\overline{}$		⊢ ш				@0' to T.D Quaternary Very Old Fan Deposits	
	° -			-			SP-SM		
	-			-				@0' - SAND with Silt: brown, dry, loose	
	-			-					
1425-	-			-					
	5 —			-				Total Dopth = 5'	
	-			-				Total Depth = 5' Groundwater Not Encountered	
	-			-				Backfilled with Cuttings Subsequent to Infiltration	
1420-	-			-				Testing	
1420-	10 —								
				_					
	_			_					
1415-	_			_					
	15 —			-					
	_			-					
	-			-					
	-			-					
1410-	-			-					
	20 —			-					
	-			-					
	-			-					
4 4 9 5	-			-					
1405-	25			-					
	25 —								
	_			_					
1400-	_			_					
	30 —			-					
								LY AT THE LOCATION SAMPLE TYPES: TEST TYPES:	
					OF T	HIS BORING	G AND AT THE ONDITIONS N	E TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY	
			C			I THE PASS	AGE OF TIME	E. THE DATA SPT STANDARD PENETRATION S&H SIEVE AND HYDROME TEST SAMPLE EI EXPANSION INDEX	ETER
					CON	DITIONS EN	ICOUNTERED	0. THE ACTUAL CN CONSOLIDATION 0. THE DESCRIPTIONS CR CORROSION E FIELD DESCRIPTIONS CR CORROSION AL ATTERBERG LIMITS	
	Ge	ote	chnic	al, Ir	IC- AND		ASED ON QU	IANTITATIVE CO COLLAPSE/SWELL RV R-VALUE	
								-#200 % PASSING # 200 SIE	EVE

Last Edited: 8/6/2019

Project Na	ame:	Richland - Stoneridge	Logged By: KAD	Trench N	lo: TP-1			
Project Nı	ımbe	r : 13092-01	Date : 3/31/2016	Engineering Properties:				G
Equipmen	t: Ba	ckhoe - John Deere 310SK	Location: See Geotechnical Map				Beotechnie	cal, Ind
Geologic Attitudes	Unit	SOIL DESCRIPTION:		GEOLOGIC UNIT	USCS	SAMPLE No	MOISTURE (%)	DRY DENSIT (PCF)
		Quaternary Very Old Fan Dep	osits	Qvof	SP	B-1 4'-5'		
	A	@0'-1.8' SAND; brown, slightly from agricultural use, roots +	y moist, friable, upper 6" disturbed rootlets to ~4".					
	в	@1.8'-T.D. Silty SAND; brown density, decomposed granitic	to orange brown, moist, increased cs, coarse to fine grained.		SM			
GRAPHICA	AL RE	PRESENTATION BELOW:	Elevation : 1507 ' MSL Surfa	ace Slope:	-5 deg.		Trend: E	W
-+ + + +					+ + + + + +			
	+					Ground	0epth: 7.5' dwater: None led: 3/31/201	
						scale :	1 in = 5 ft	

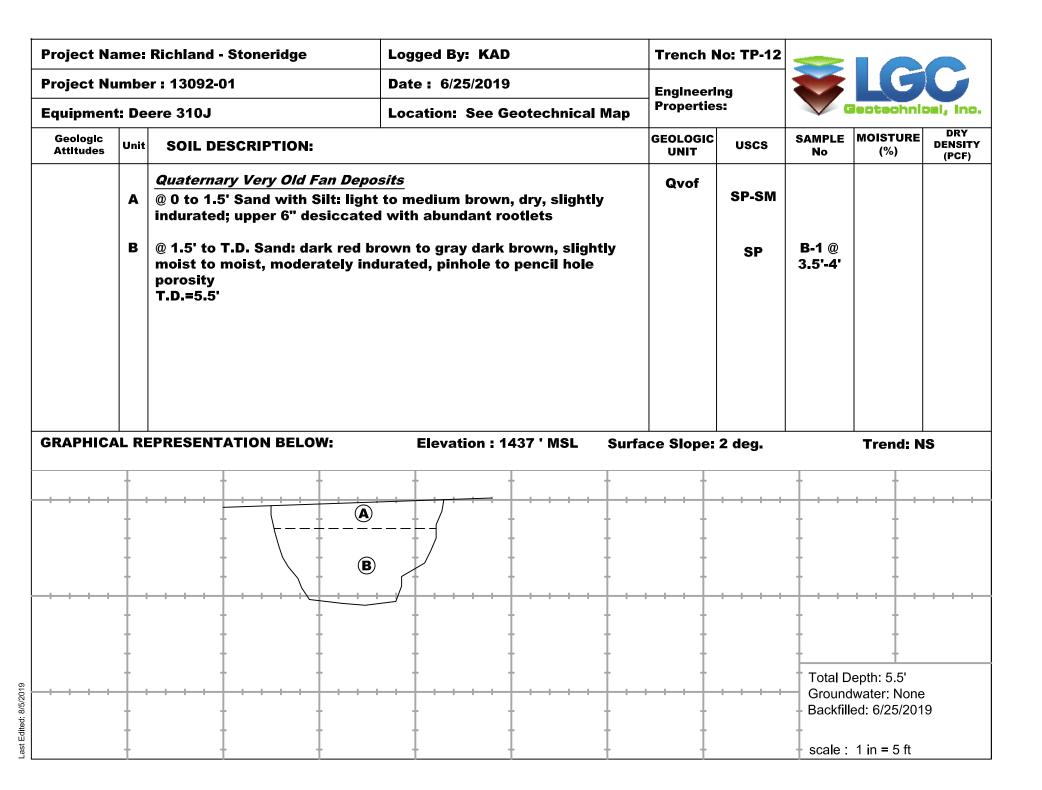
Project Na	ame:	Richland - Stoneridge	Logged By: KAD	Trench N	o: TP-2			
Project Nı	ımbe	r : 13092-01	Date : 3/31/2016	Engineerin	ng			G
Equipmen	t: Ba	ckhoe - John Deere 310SK	Location: See Geotechnical Map	Properties		Geotechnical, li		
Geologic Attitudes	Unit	SOIL DESCRIPTION:		GEOLOGIC UNIT	USCS	SAMPLE No	MOISTURE (%)	DRY DENSIT (PCF)
		Quaternary Very Old Fan Dep	osits	Qvof	SP			
	A		slightly moist, fine grained sand, cultural use, rootlets to approx.					
	В	dense, some caliche, very de	ND; brown to orange brown, moist, ecomposed granitics, coarse to fine l areas of increased fines, moderate nore sand with depth.		SM-SP			
GRAPHIC#		PRESENTATION BELOW:	Elevation : 1512 ' MSL Surfa	ace Slope: -	-5 deg.		Trend: E	W
				+ + + +				
	+			+ + + +		Ground	epth: 9' dwater: None ed: 3/31/201	
	-	+ +	+ + +	-		+		

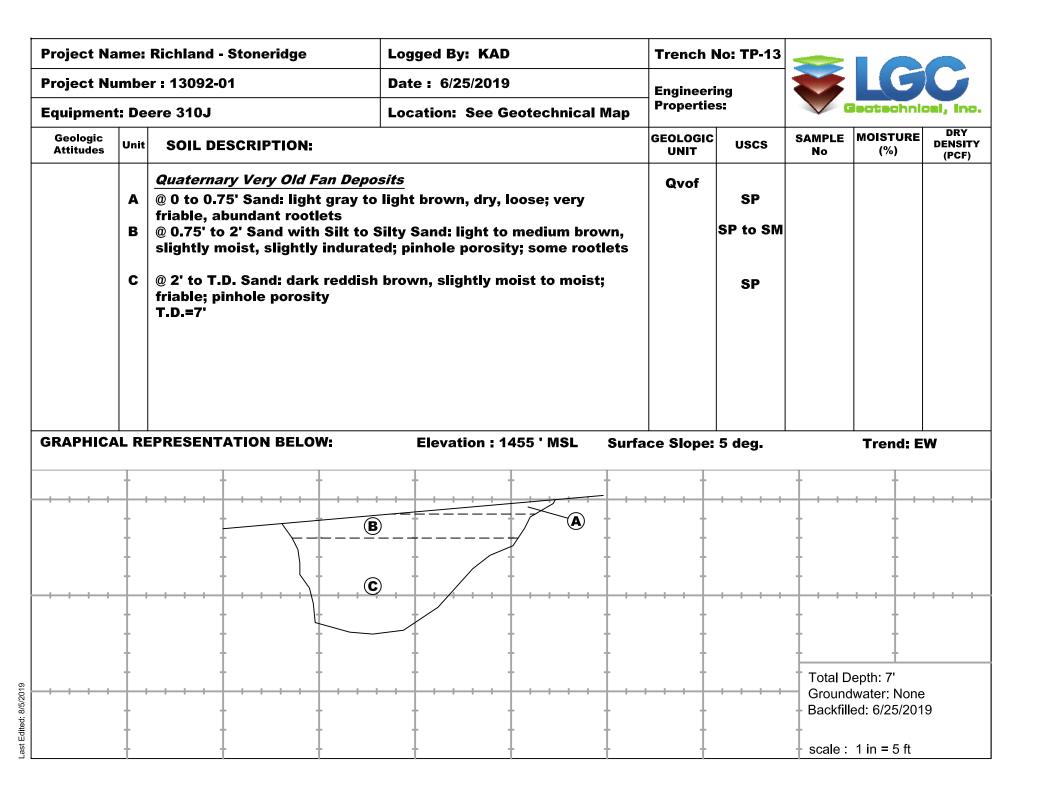
Project Na	ame:	Richland - Stoneridge	Logged By: KAD	Trench N	No: TP-3			
Project Nı	ımbe	r : 13092-01	Date : 3/31/2016	Engineeri			LG	G
Equipmen	t: Ba	ckhoe - John Deere 310SK	Location: See Geotechnical Map	Properties:			Beotechnie	cal, Ind
Geologic Attitudes	Unit	SOIL DESCRIPTION:		GEOLOGIC UNIT	USCS	SAMPLE No	MOISTURE (%)	DRY DENSIT (PCF)
		Quaternary Very Old Fan Dep	oosits					
	A		ghtly moist, fine grained sand, upper e use, rootlets to approz 5"-6".	Qvof	SM	B-1 2'-3'		
	В	0.8'-2' Decomposed Granitics brown to gray, moist. Cretaceous Lakeview Mounta	s - Clayey SAND to Silty SAND; red ain Tonalite		SC-SM			
	C		ow brown to gray, slightly moist, ed, decrease in weathering with	Klmt				
GRAPHICA	AL RE	EPRESENTATION BELOW:	Elevation : 1518 ' MSL Surfa	ace Slope:	-5 deg.		Trend: E	W
				-				
			©					
					+ + +		-+ -+ -+	
						Ground	Depth: 7' dwater: None led: 3/31/201	
	_					scale :	1 in = 5 ft	

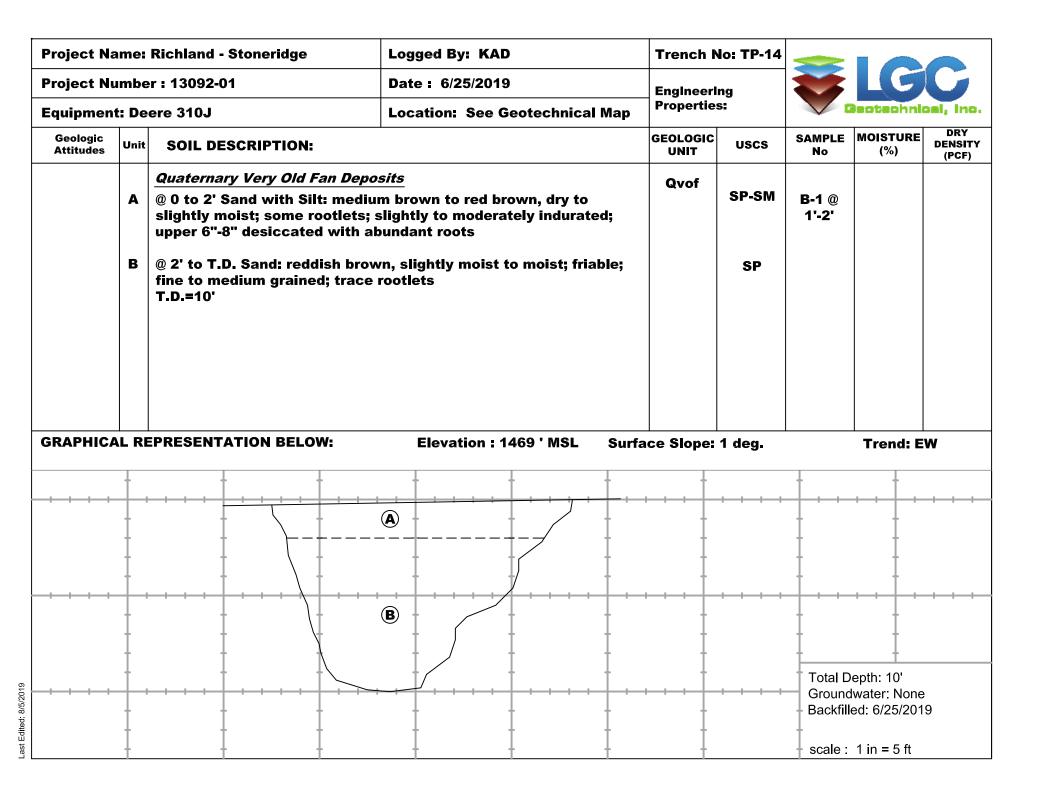
Project Na	ame:	Richland - Stoneridge	Logged By: KAD	Trench N	lo: TP-4			
Project Nu	ımbe	r : 13092-01	Date : 3/31/2016	Engineerii	ng			G
Equipmen	t: Ba	ckhoe - John Deere 310SK	Location: See Geotechnical Map	Properties	5:		eotechnical, Ir	
Geologic Attitudes	Unit	SOIL DESCRIPTION:		GEOLOGIC UNIT	USCS	SAMPLE No	MOISTURE (%)	DRY DENSIT (PCF)
		Quaternary Very Old Fan Dep	osits					,
	A	@0'-2' Clayey SAND; brown to 6", fine sand with some large	o gray brown, moist, rootlets upper er coarse grains.	Qvof	SC	B-1 0'-2'		
	В	@2'-3' Silty SAND; brown to g	ray brown, moist, dense.		SM			
	C	@3'-4.1' SAND; brown, moist, Cretaceous Lakeview Mounta	friable, fine to medium grained. ain Tonalite		SP			
	D	@4.1'-T.D. Granitic bedrock; o moderately weathered, coars	brange to gray, slightly moist, se grained.	Klmt				
GRAPHICA		PRESENTATION BELOW:	Elevation : 1558 ' MSL Surfa	ace Slope:	-5 deg.		Trend: E	W
-+ + + +					+ + +			
					+ + +	Ground)epth: 7.5' Iwater: None ed: 3/31/201	
	-			-		scale :	1 in = 5 ft	

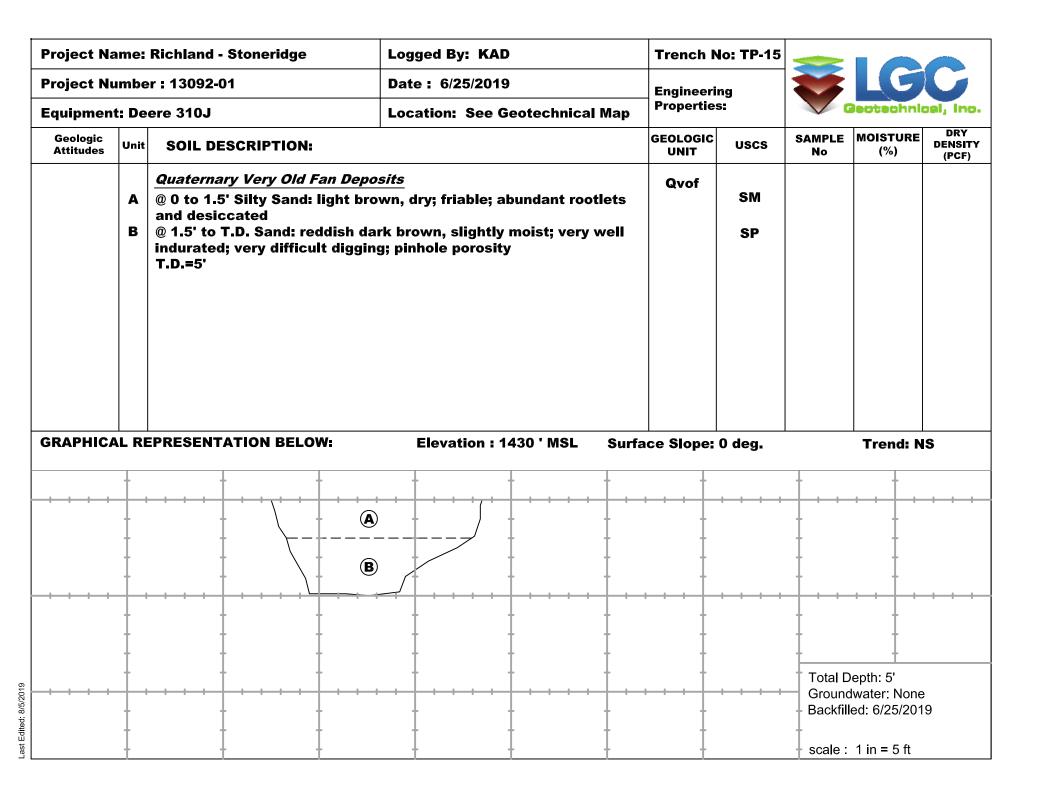
Project Na	ame:	Richland - Stoneridge	Logged By: KAD	Trench N	o: TP-5			
Project Nı	ımbe	r : 13092-01	Date : 3/31/2016	Engineerii	ıg			
Equipmen	t: Ba	ckhoe - John Deere 310SK	Location: See Geotechnical Map	Properties			cal, Inc	
Geologic Attitudes	Unit	SOIL DESCRIPTION:		GEOLOGIC UNIT	USCS	SAMPLE No	MOISTURE (%)	DRY DENSIT (PCF)
		Quaternary Very Old Fan Dep	posits					
	Α		SAND; brown to gray brown, moist, tural use, abundant rootlets to	Qvof	SC			
	В		vith some coarse grained sand.		SP			
	C		an ronalite ay to yellow brown, slightly moist,	Klmt				
GRAPHIC/	AL RE	moderately weathered.	Elevation : 1543 ' MSL Surfa	ace Slope: -	-5 deg.		Trend: E	W
				-		-		
					 			
				+ + + +		Ground	Depth: 10' dwater: None led: 3/31/201	
	T	T T	T T T	T		T	1 in = 5 ft	

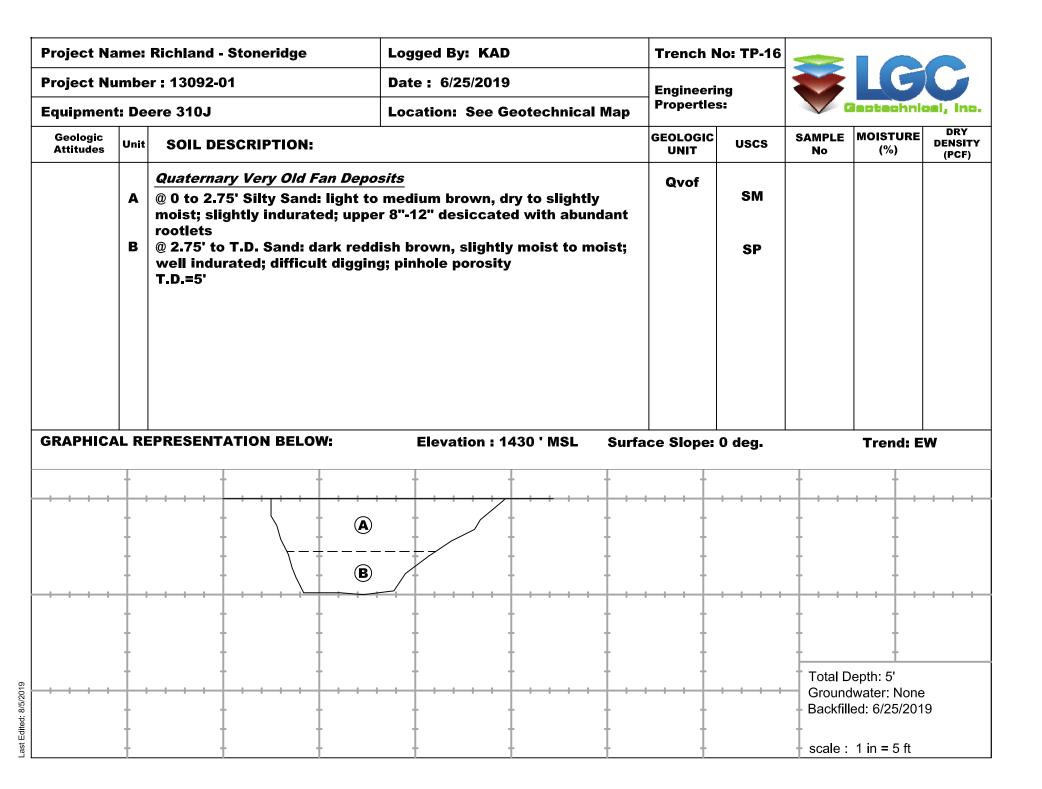
Project Na	ame:	Richland - Stoneridge	Logged By: KAD	Trench N	lo: TP-6			
Project Nı	ımbe	r : 13092-01	Date : 3/31/2016	Engineeri	ng		LG	G
Equipmen	t: Ba	ckhoe - John Deere 310SK	Location: See Geotechnical Map	Properties			Geotechnical, In	
Geologic Attitudes	Unit	SOIL DESCRIPTION:		GEOLOGIC UNIT	USCS	SAMPLE No	MOISTURE (%)	DRY DENSIT (PCF)
		Quaternary Very Old Fan Dep	osits					
	A	disturbed by agricultural use	rown to brown, moist, upper 1.5' , abundant rootlets to 1', and with some coarse grains.	Qvof	SC	B-1 2'-3'		
	В	@3.3'-T.D. Silty SAND; brown sand.	to gray brown, moist, fine grained		SM			
GRAPHIC <i>I</i>	AL RE	EPRESENTATION BELOW:	Elevation : 1450 ' MSL Surfa	ace Slope:	0 deg.	+	Trend: E	W
			A					
	+ + + + + + + + + + + + + + + + + + + +			+ + + +	+ + +	Ground	Pepth: 9.5' Iwater: None ed: 3/31/201	
						-	1 in = 5 ft	~

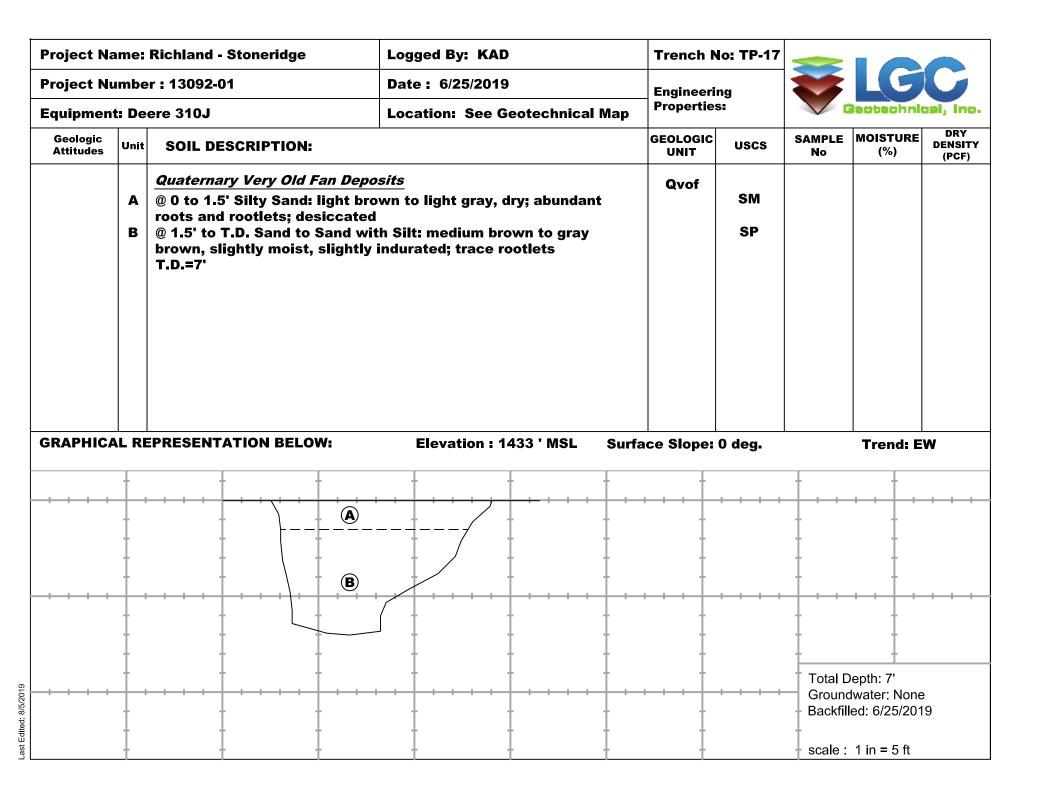

Project Na	ame:	Richland - Stoneridge	Logged By: KAD	Trench N	lo: TP-7			
Project Nu	ımbe	r : 13092-01	Date : 3/31/2016	Engineeri	ng		LC	
Equipmen	t: Ba	ckhoe - John Deere 310SK	Location: See Geotechnical Map	Properties	5:		eotechni	cal, Inc.
Geologic Attitudes	Unit	SOIL DESCRIPTION:		GEOLOGIC UNIT	USCS	SAMPLE No	MOISTURE (%)	DRY DENSITY (PCF)
	A		ddish brown, moist, loose, very disturbed by agricultural use with lium grained. in Tonalite	Qvof Klmt	SP			
GRAPHICA			Elevation : 1485 ' MSL Surfa	ace Slope:	-3 deg.		Trend: E	
				+ + + + + + + + + + + + + + + + + + + +	+ + + +	Grounc Backfill	epth: 9.5' lwater: None ed: 3/31/201 1 in = 5 ft	

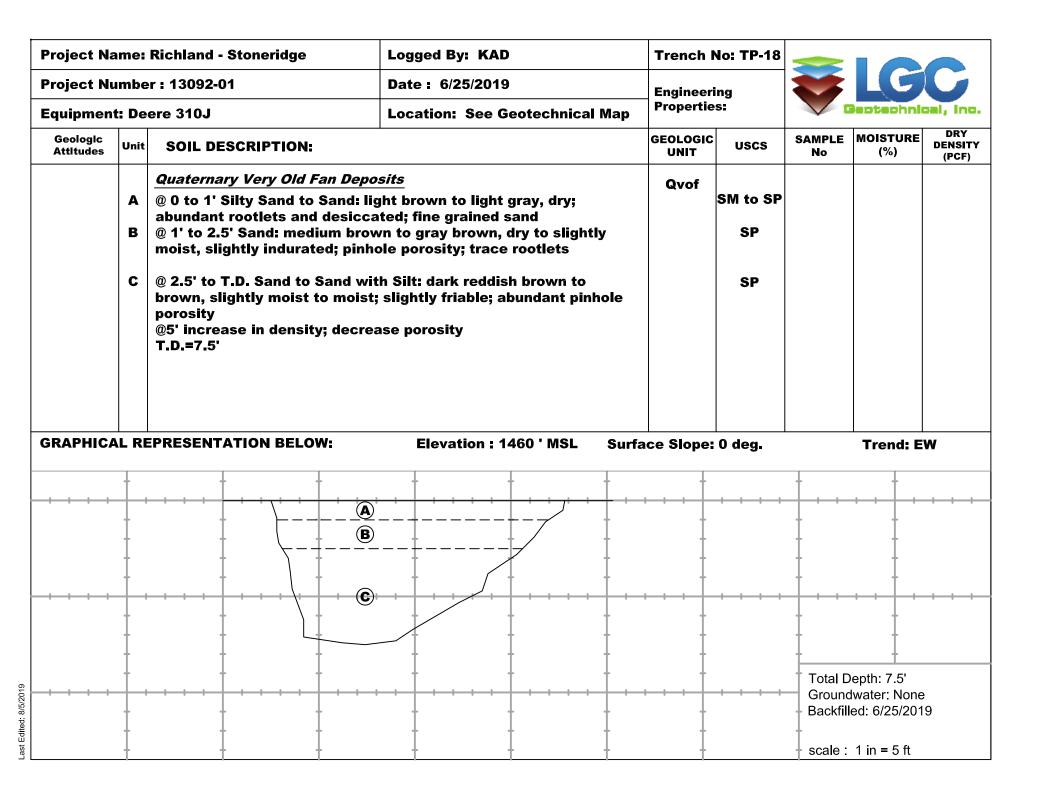

Project Na	ame:	Richland - Stoneridge	Logged By: KAD	Trench N	lo: TP-8			
Project Nu	ımbe	r : 13092-01	Date : 3/31/2016	Engineeri		Geotechnical, In		
Equipmen	t: Ba	ckhoe - John Deere 310SK	Location: See Geotechnical Map	Properties				
Geologic Attitudes	Unit	SOIL DESCRIPTION:	•	GEOLOGIC UNIT	USCS	SAMPLE No	MOISTURE (%)	DRY DENSIT (PCF)
		Quaternary Very Old Fan Dep	osits					()
	A		brown to reddish brown, moist, with some coarser grains, upper 9" , rootlets to approx 6".	Qvof	SP-SC			
	В		prown, moist, dense, fine grained /, moderately hard to excavate.		SM			
GRAPHICA		EPRESENTATION BELOW:	Elevation : 1484 ' MSL Surfa	ace Slope:	-5 deg.		Trend: E	W
-+ + + +								
				+ + + +		Ground	Depth: 8' dwater: None	
				-			led: 3/31/201 1 in = 5 ft	6

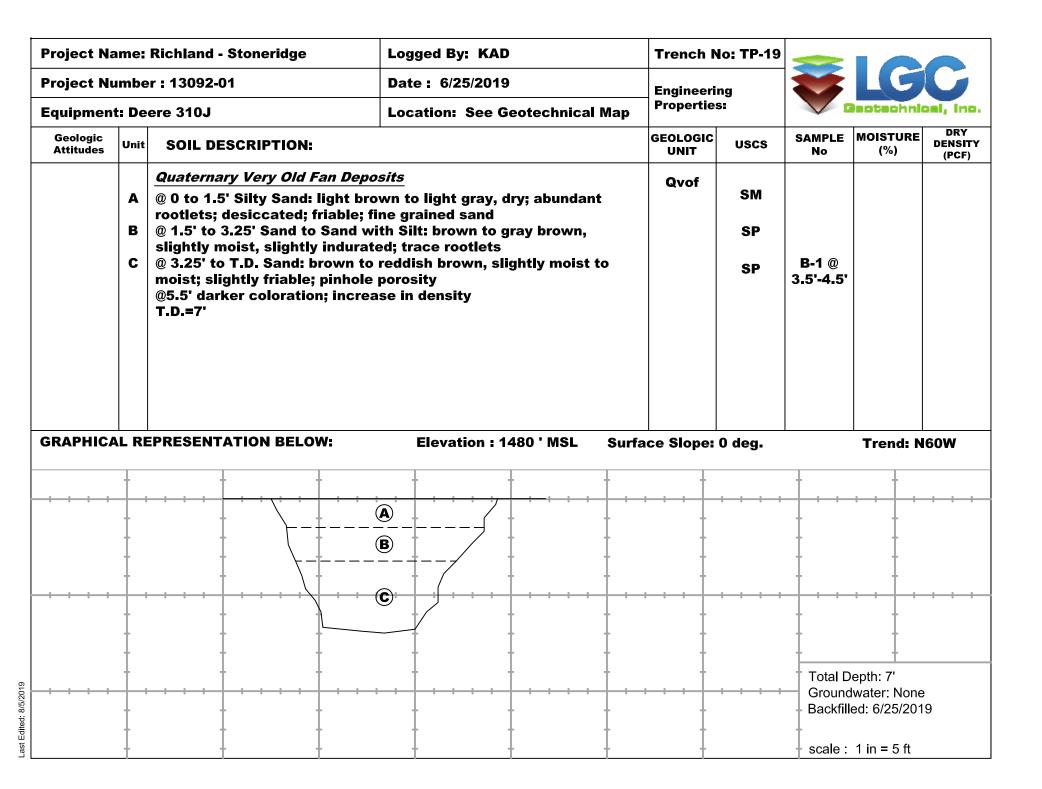

	ame:	Richland - Stoneridge	Logged By: KAD	Trench N	No: TP-9			
Project Nı	umbe	er : 13092-01	Date : 3/31/2016	Engineeri	ing			G
Equipmen	t: Ba	ckhoe - John Deere 310SK	Location: See Geotechnical Map	Propertie	S:		cal, Inc	
Geologic Attitudes	Unit	SOIL DESCRIPTION:		GEOLOGIC UNIT	USCS	SAMPLE No	MOISTURE (%)	DRY DENSIT (PCF)
		Quaternary Very Old Fan Dep	osits					,
	A	@0'-3' Clayey SAND to SAND with abundant rootlets.	with CLAY; brown to dark brown, 1' disturbed by agricultural use	Qvof	SC	B-1 3'-4'		
	В	@3'-T.D. SAND to Silty SAND; predominately fine sand.	reddish brown, moist, dense,		SP-SM			
GRAPHIC/	AL RE	EPRESENTATION BELOW:	Elevation : 1454 ' MSL Surf	face Slope:	0 deg.		Trend: E	W
GRAPHIC <i>I</i>	AL RE	EPRESENTATION BELOW:	Elevation : 1454 ' MSL Surf	face Slope:	0 deg.	-	Trend: E	W
GRAPHIC/				face Slope:	0 deg.		Trend: E	W
GRAPHIC/			Elevation : 1454 ' MSL Surf	face Slope:	0 deg.		Trend: E	W
GRAPHIC/				face Slope:	0 deg.		Trend: E	W
GRAPHIC/				face Slope:	0 deg.		Trend: E	W
GRAPHIC				face Slope:	0 deg.		Trend: E	• •
GRAPHIC				Face Slope:	0 deg.	Ground	Trend: E	

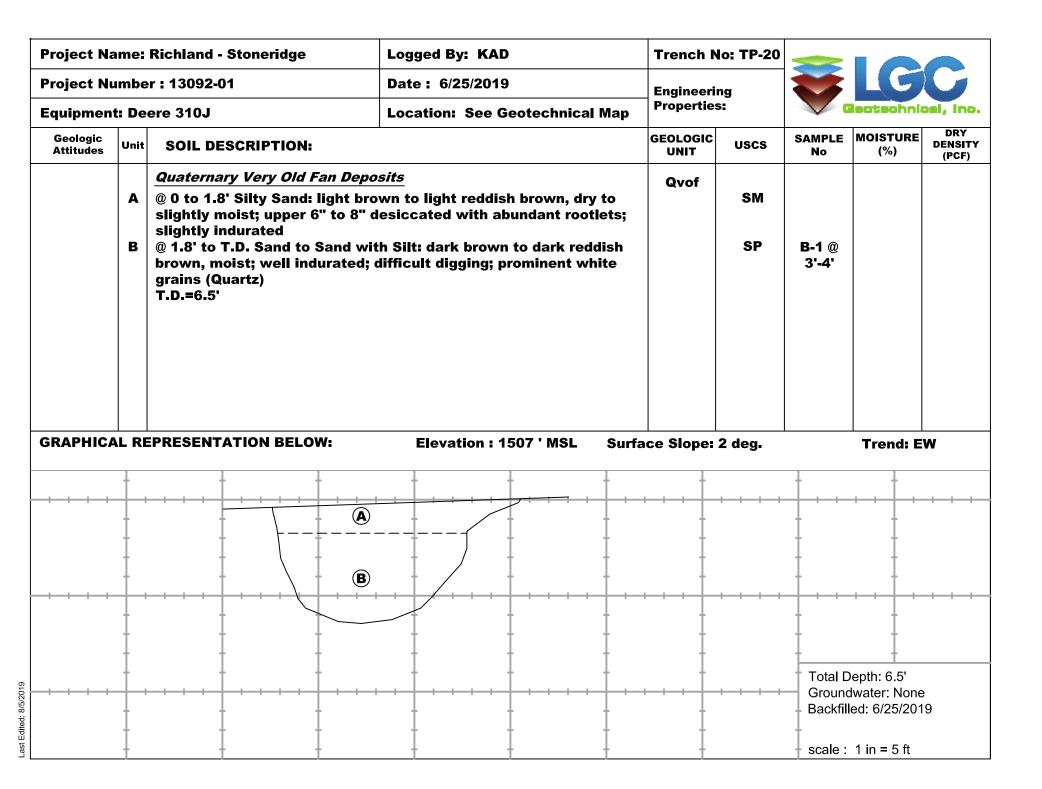

Project Na	ame:	Richland - Stoneridge	Logged By: KAD	Trench N	lo: TP-10			
Project Nu	ımbe	r : 13092-01	Date : 3/31/2016	Engineeri	ng		LC	G
Equipmen	t: Ba	ckhoe - John Deere 310SK	Location: See Geotechnical Map	Properties:			cal, Ind	
Geologic Attitudes	Unit	SOIL DESCRIPTION:		GEOLOGIC UNIT	USCS	SAMPLE No	MOISTURE (%)	DRY DENSIT (PCF)
		Quaternary Very Old Fan Dep	osits					
	A		0 with CLAY; dark reddish brown, 10" disturbed by agricultural use, "	Qvof	SC			
	В	@4.3'-T.D. SAND to Silty SAND sand. @6' becomes harder to); brown, moist, dense, fine grained excavate.		SP-SM			
GRAPHICA	AL RE	PRESENTATION BELOW:	Elevation : 1481 ' MSL Surfa	ace Slope:	-3 deg.		Trend: E	W
						_		
	-		A					
			B	-				_ _
				-	1 1 1 1	Ground	0epth: 9' dwater: None led: 3/31/201	

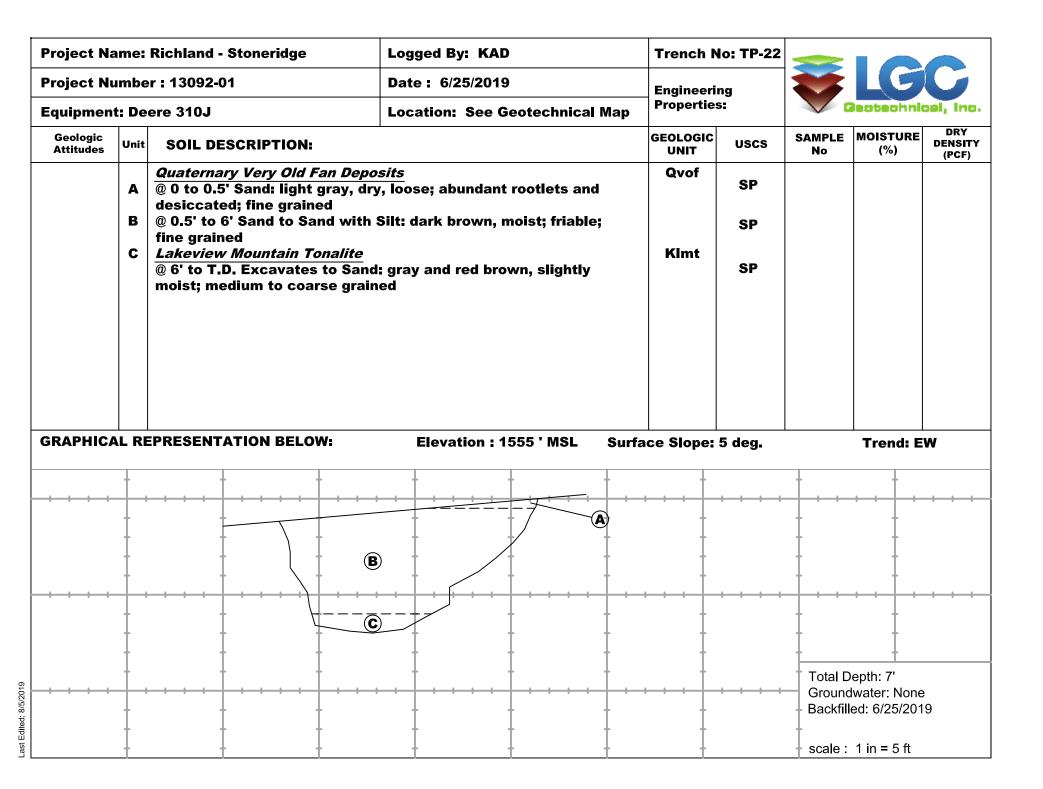

Project Na	ame:	Richland - Stoneridge	Logged By: KAD	Trench N	lo: TP-11			
Project Nu	umbe	r : 13092-01	Date : 6/25/2019	Engineeri	ng		LC	5
Equipmen	t: De	ere 310J	Location: See Geotechnical Map	Properties:		Geotechnical, Inc.		
Geologic Attitudes	Unit	SOIL DESCRIPTION:		GEOLOGIC UNIT	USCS	SAMPLE No	MOISTURE (%)	DRY DENSIT (PCF)
		Quaternary Very Old Fan De	posits	Qvof				
	A B C	slightly indurated; upper 4"- rootlets @ 2.5' to 8' Sand: medium br trace rootlets	ht brown to brown, slightly moist, 6" dry and desiccated with abundant own, slightly moist to moist, friable, h, slightly moist to moist; extremely		SP-SM SP	B-1 @ 4'-5'		
			Elevation : 1444 ' MSL Surf	ace Slope:	2 aeg.		Trend: N	
					• • • •	Ground	Depth: 9' dwater: None led: 6/25/201	
	†	† †	† † †	+		+	1 in = 5 ft	

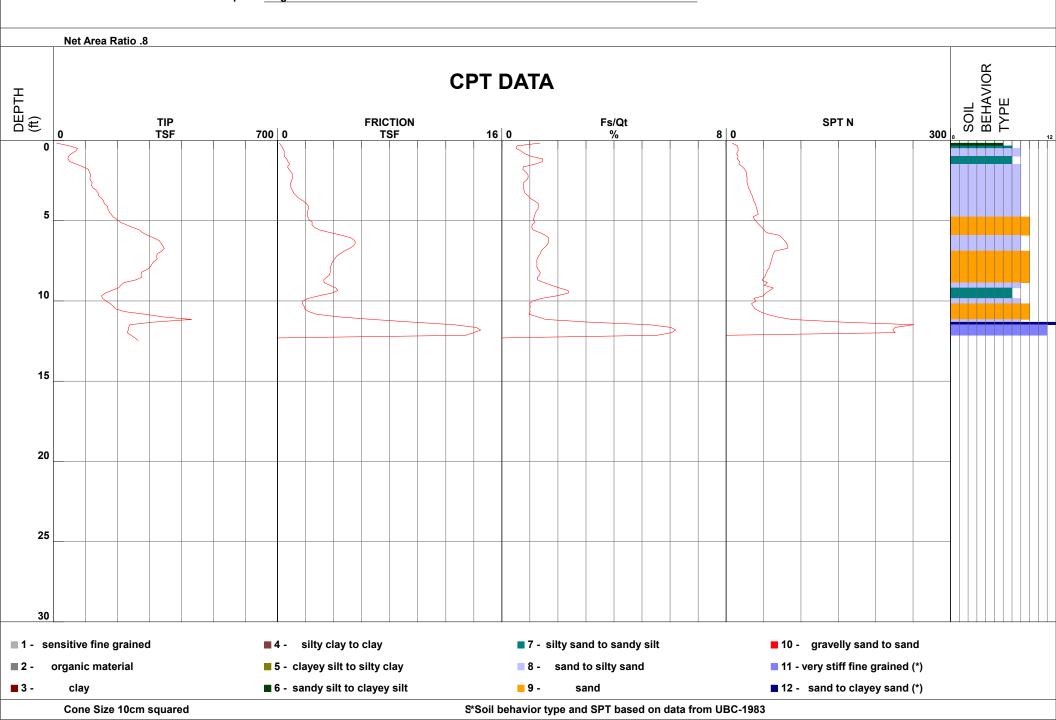


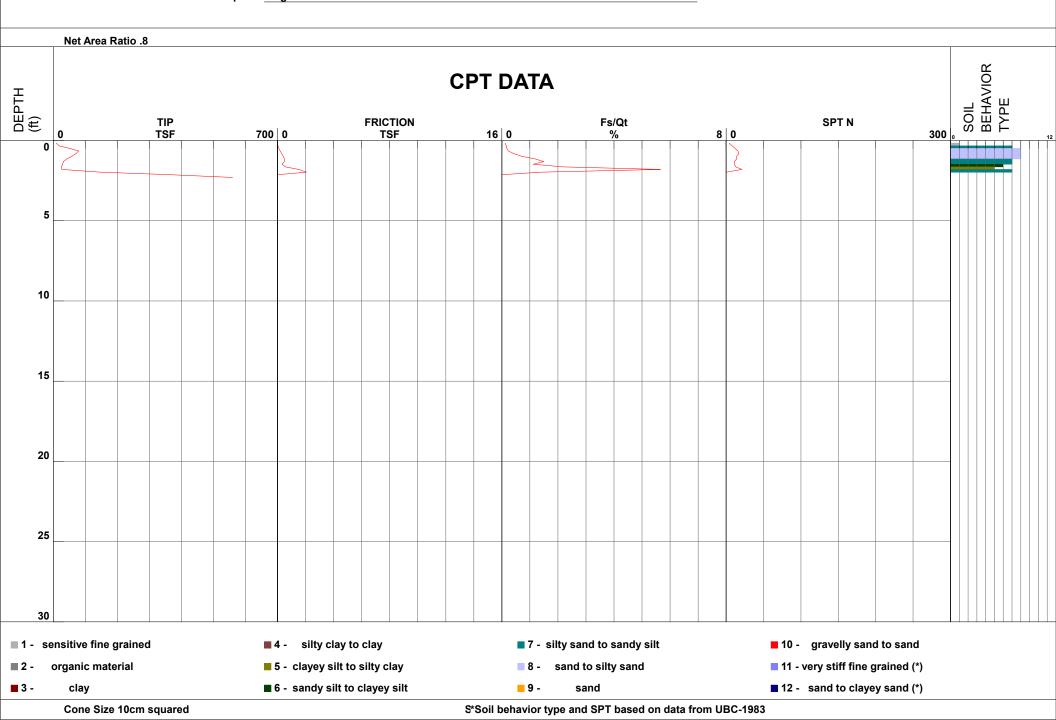


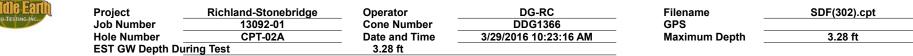


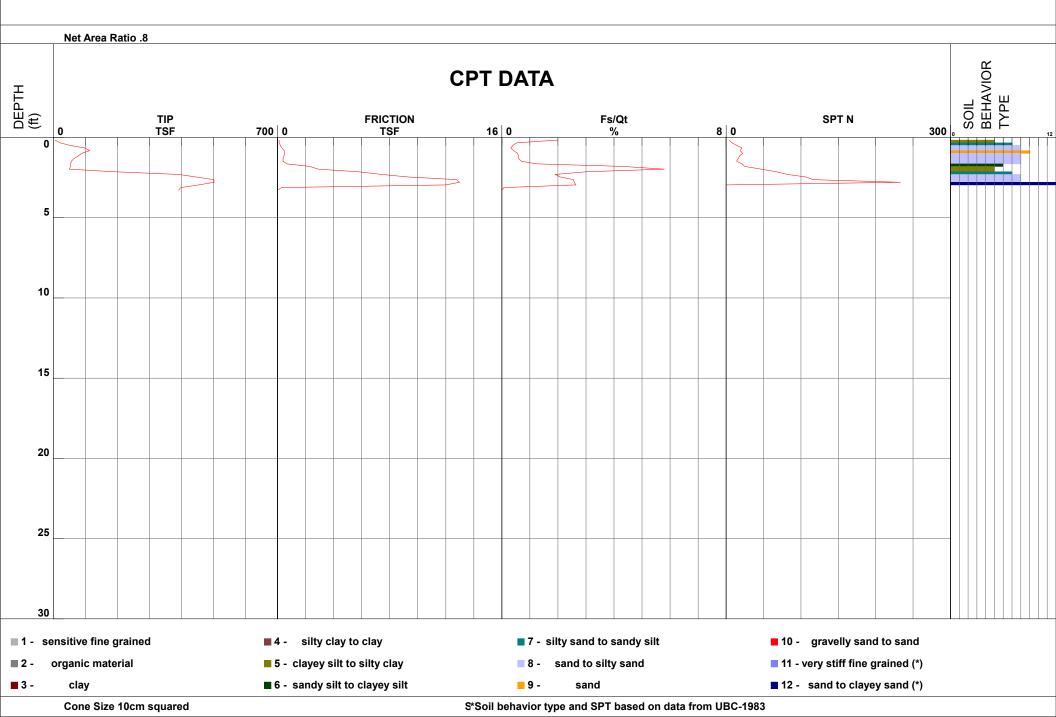


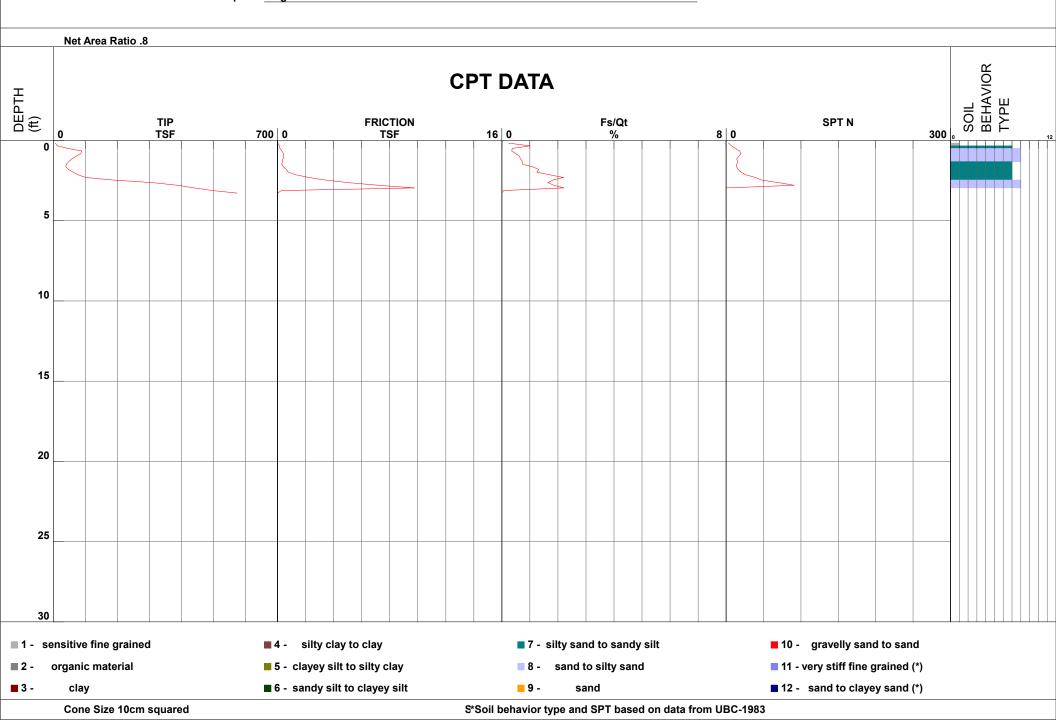


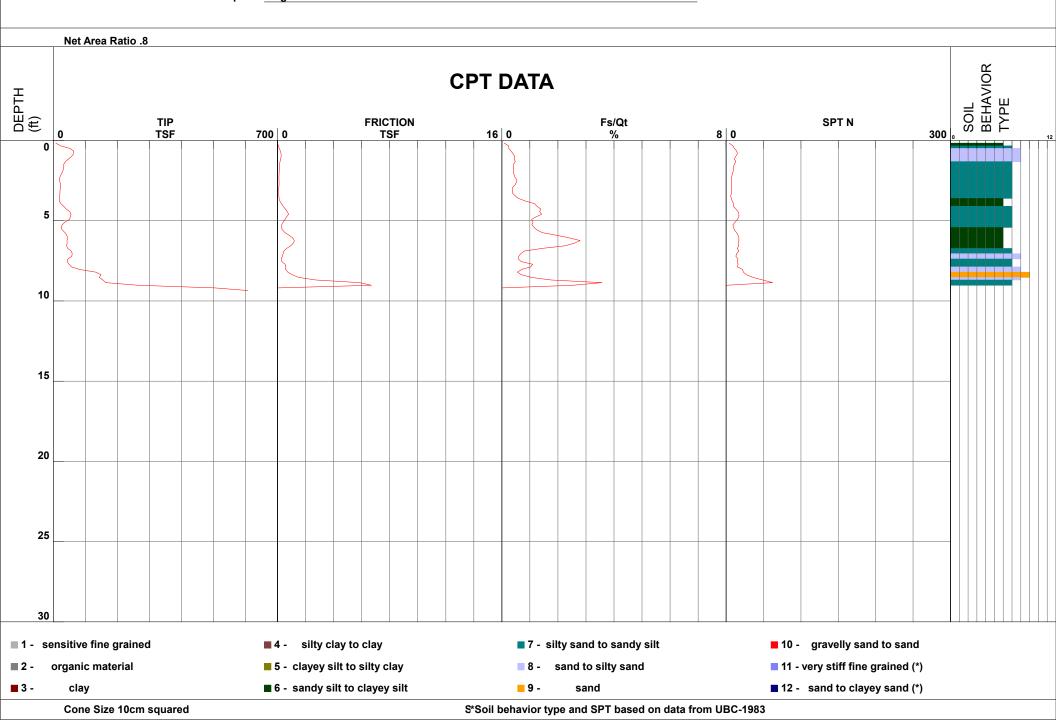


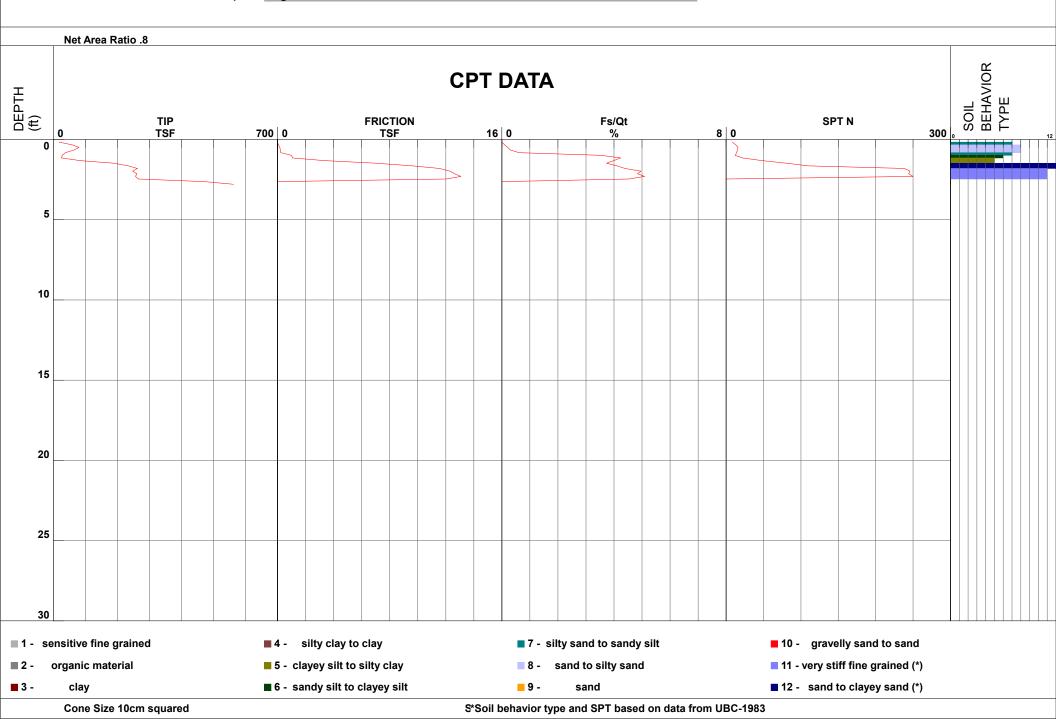

Project Na	ame:	Richland - Stoneridge	Logged By: KAD	Trench N	o: TP-21			
Project Nı	umbe	r : 13092-01	Date : 6/25/2019	Engineerir	ng			C.
Equipmen	t: De	ere 310J	Location: See Geotechnical Ma	ap Properties	5	Geotechnical, Inc.		
Geologic Attitudes	Unit	SOIL DESCRIPTION:	i	GEOLOGIC UNIT	USCS	SAMPLE No	MOISTURE (%)	DRY DENSIT (PCF)
		Quaternary Very Old Fan De	posits	Qvof				
	A B C	desiccated; fine grained @ 0.6' to 4.5' Sand: dark bro friable; fine to medium grain Lakeview Mountain Tonalite	e Sand: gray and dark brown, slightly	Kimt	SP SP SP	B-1 @ 2'-3' B-2 @ 5'-6'		
GRAPHICA			Elevation : 1527 ' MSL S	Surface Slope: 2	2 deg.		Trend: N	50E
	1	\downarrow \setminus \downarrow		-		+	+	
					· · · · · ·	Ground	Pepth: 6.5' Jwater: None ed: 6/25/201	

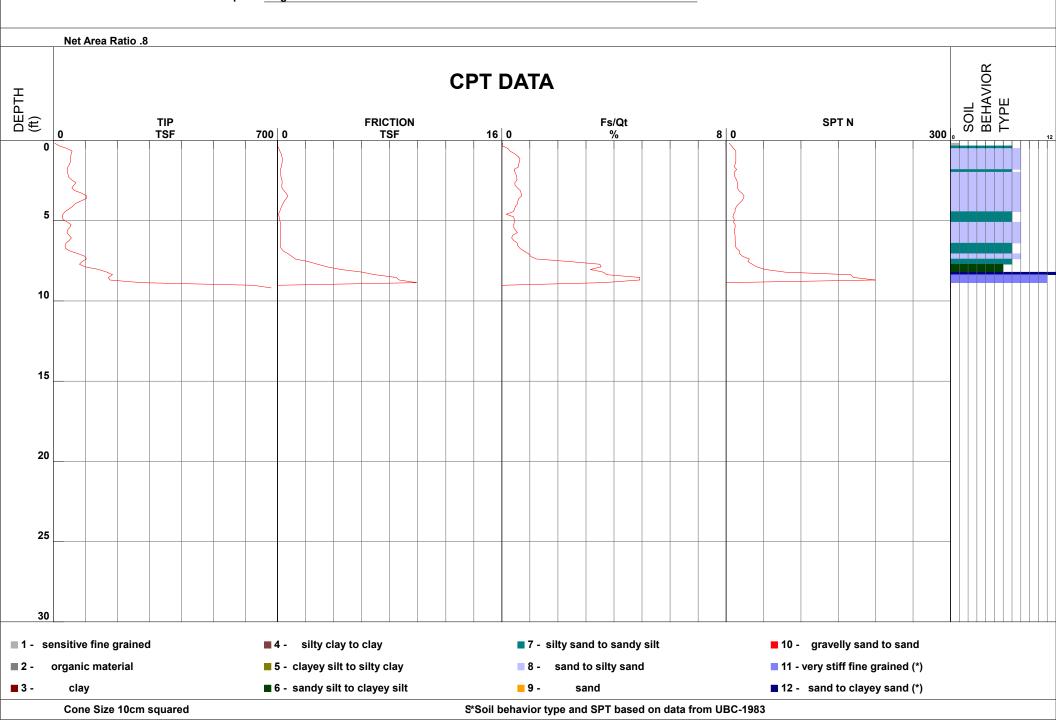


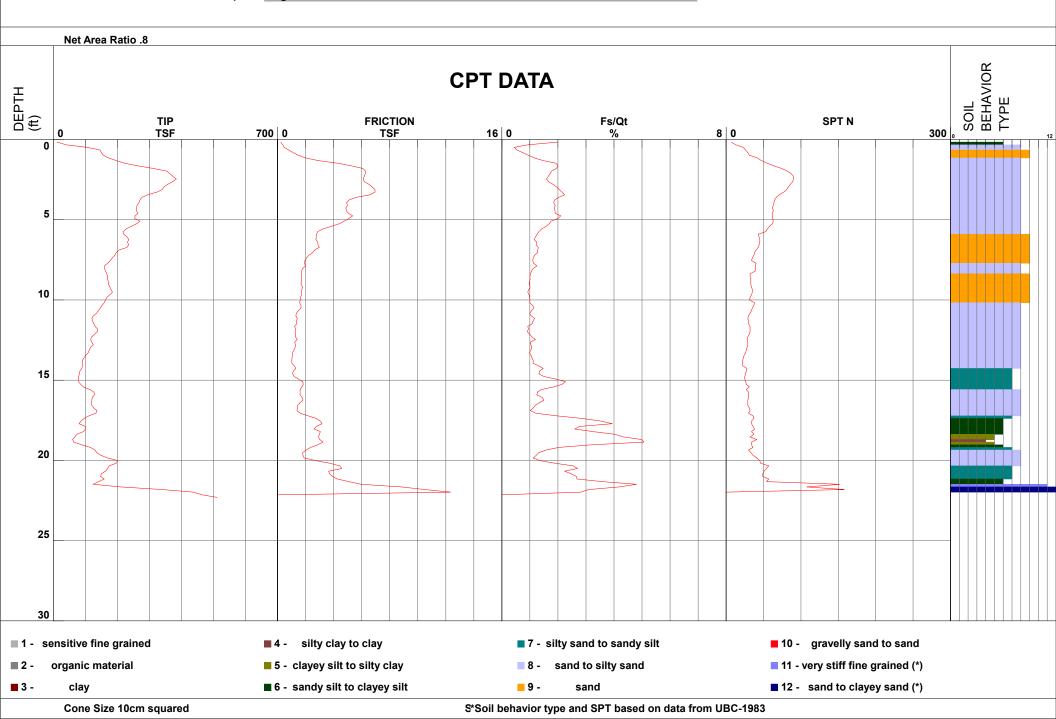

die Earth	Project	Richland-Stonebridge	Operator	DG-RC	Filename	SDF(300).cpt
TESTING INC.	Job Number	13092-01	Cone Number	DDG1366	GPS	
	Hole Number	CPT-01	Date and Time	3/29/2016 9:42:05 AM	Maximum Depth	12.47 ft
	EST GW Depth Du	irina Test	12.47 ft		· <u> </u>	

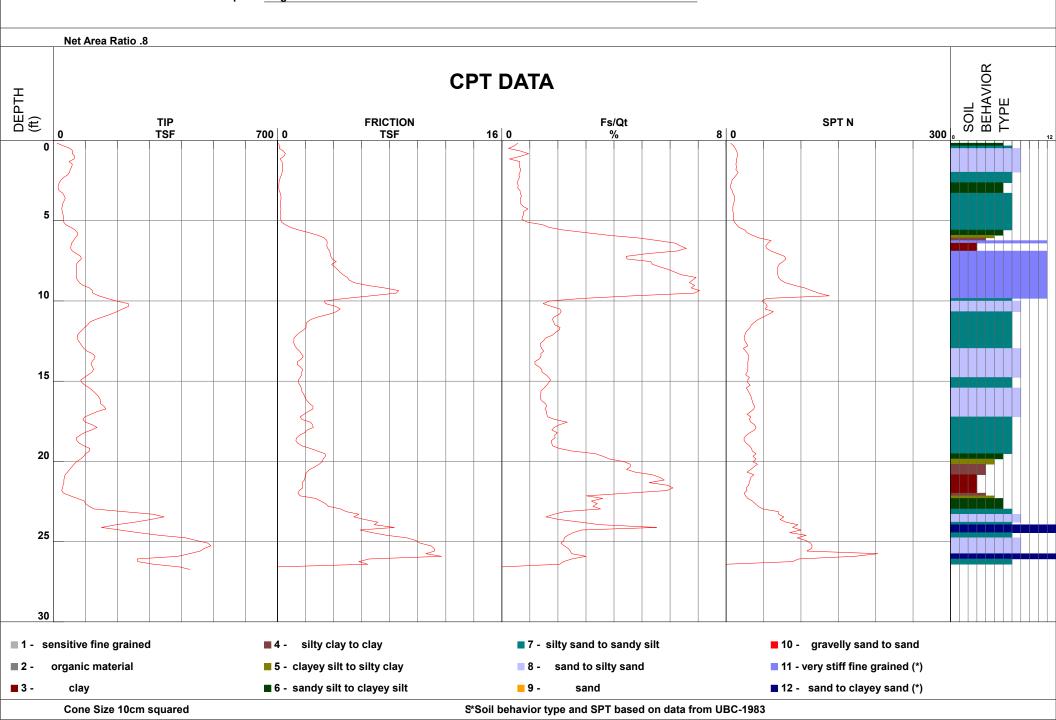

die Earth	Project	Richland-Stonebridge	Operator	DG-RC	Filename	SDF(301).cpt
TESTING INC.	Job Number	13092-01	Cone Number	DDG1366	GPS	
	Hole Number	CPT-02	Date and Time	3/29/2016 10:15:30 AM	Maximum Depth	2.30 ft
	EST GW Depth Du	ırina Test	2.30 ft			

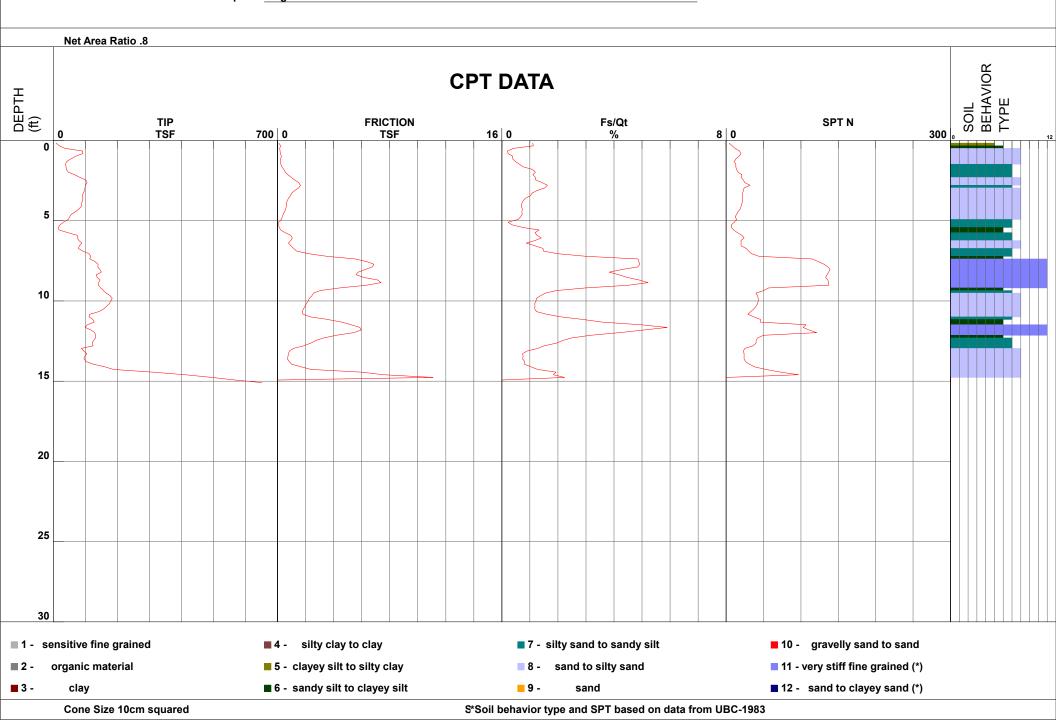



iddle Earth	Project	Richland-Stonebridge	Operator	DG-RC	Filename	SDF(303).cpt
GED TESTING INC.	Job Number	13092-01	Cone Number	DDG1366	GPS	
	Hole Number	CPT-03	Date and Time	3/29/2016 10:38:10 AM	Maximum Depth	3.28 ft
	EST GW Depth During Test		3.28 ft			

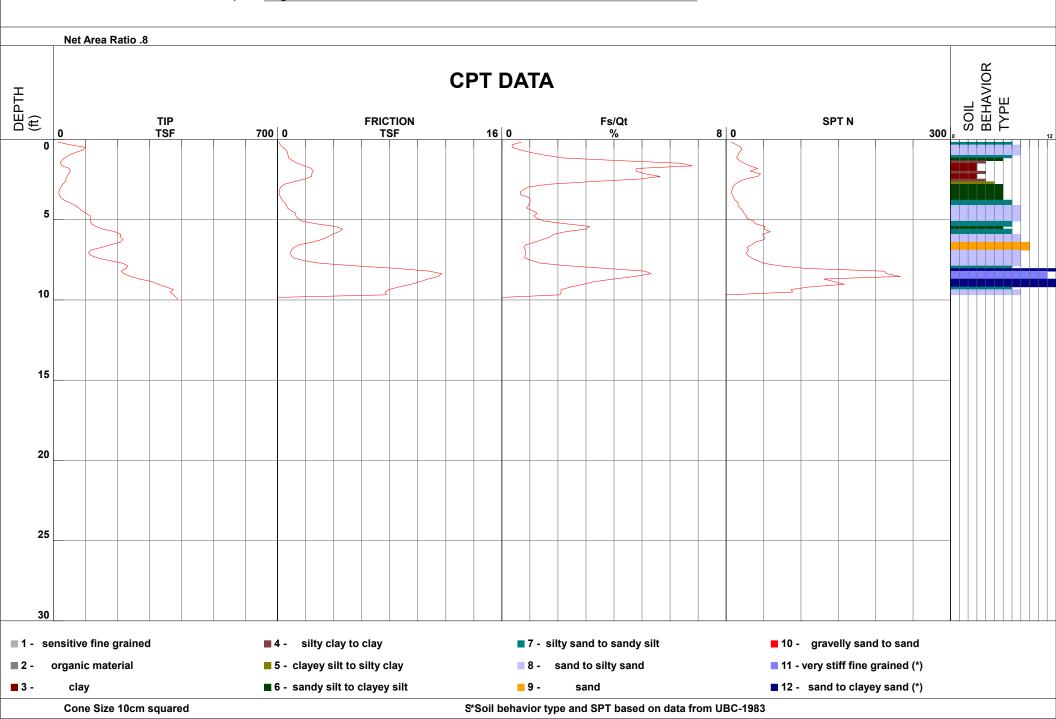

iddle Earth	Project	Richland-Stonebridge	Operator	DG-RC	Filename	SDF(304).cpt
GED TESTING INC.	Job Number	13092-01	Cone Number	DDG1366	GPS	
	Hole Number	CPT-04	Date and Time	3/29/2016 10:54:59 AM	Maximum Depth	9.35 ft
	EST GW Depth Du	rina Test	9.35 ft			


le Earth	Project	Richland-Stonebridge	Operator	DG-RC	Filename	SDF(305).cpt
ESTING INC.	Job Number	13092-01	Cone Number	DDG1366	GPS	
	Hole Number	CPT-05	Date and Time	3/29/2016 11:10:58 AM	Maximum Depth	2.79 ft
	EST GW Depth Dur	ing Test	2.79 ft			

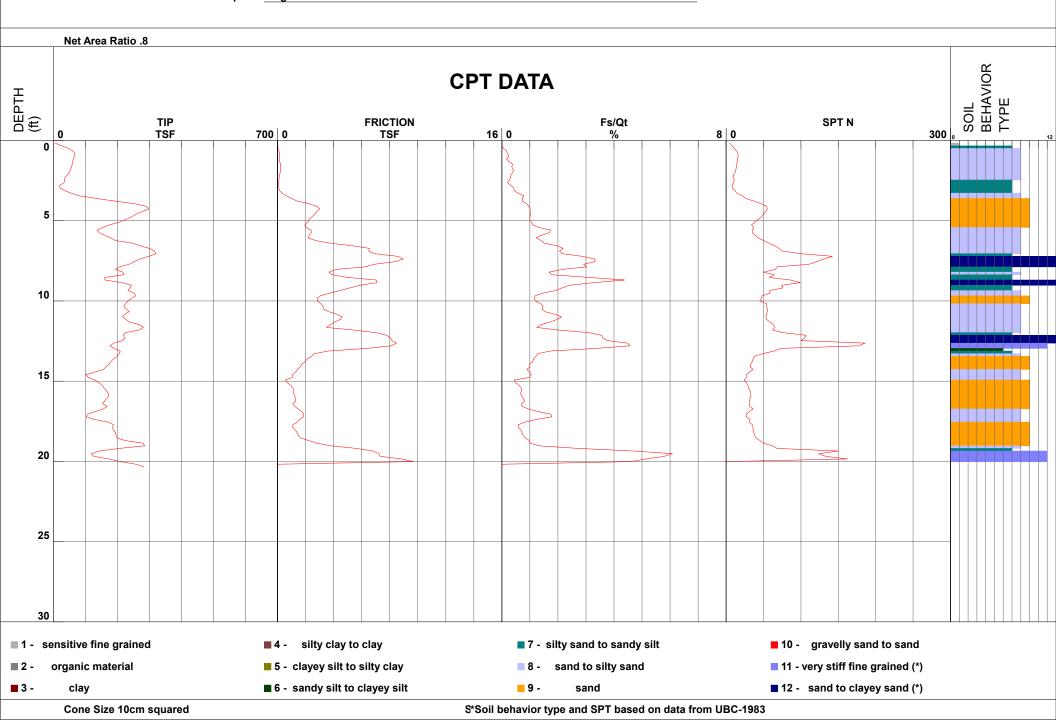

Idle Earth	Project	Richland-Stonebridge	Operator	DG-RC	Filename	SDF(306).cpt
O TESTING INC.	Job Number	13092-01	Cone Number	DDG1366	GPS	
	Hole Number	CPT-06	Date and Time	3/29/2016 11:25:18 AM	Maximum Depth	9.19 ft
	EST GW Depth Du	rina Test	9.19 ft			


iddle Earth	Project	Richland-Stonebridge	Operator	DG-RC	Filename	SDF(307).cpt
GED TESTING INC.	Job Number	13092-01	Cone Number	DDG1366	GPS	
	Hole Number	CPT-07	Date and Time	3/29/2016 11:46:18 AM	Maximum Depth	22.31 ft
	EST GW Depth During Test		22.31 ft			

iddle Earth	Project	Richland-Stonebridge	Operator	DG-RC	Filename	SDF(308).cpt
GED TESTING INC.	Job Number	13092-01	Cone Number	DDG1366	GPS	
	Hole Number	CPT-08	Date and Time	3/29/2016 12:17:43 PM	Maximum Depth	26.74 ft
	EST GW Depth During Test		26.74 ft			



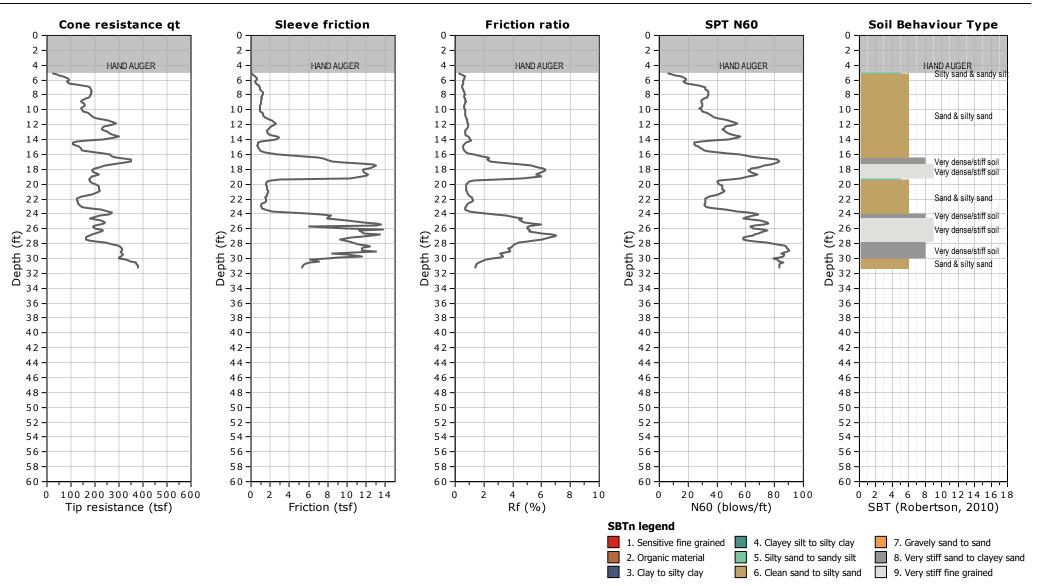
iddle Earth	Project	Richland-Stonebridge	Operator	DG-RC	Filename	SDF(309).cpt
GED TESTING INC.	Job Number	13092-01	Cone Number	DDG1366	GPS	
	Hole Number	CPT-09	Date and Time	3/29/2016 12:49:30 PM	Maximum Depth	15.09 ft
	EST GW Depth During Test		15.09 ft			


LGC Geotechnical Inc

ile Earth	Project	Richland-Stonebridge	Operator	DG-RC	Filename	SDF(310).cpt
TESTING INC.	Job Number	13092-01	Cone Number	DDG1366	GPS	
	Hole Number	CPT-10	Date and Time	3/29/2016 1:10:41 PM	Maximum Depth	10.01 ft
	EST GW Depth Du	ring Test	10.01 ft			

LGC Geotechnical Inc

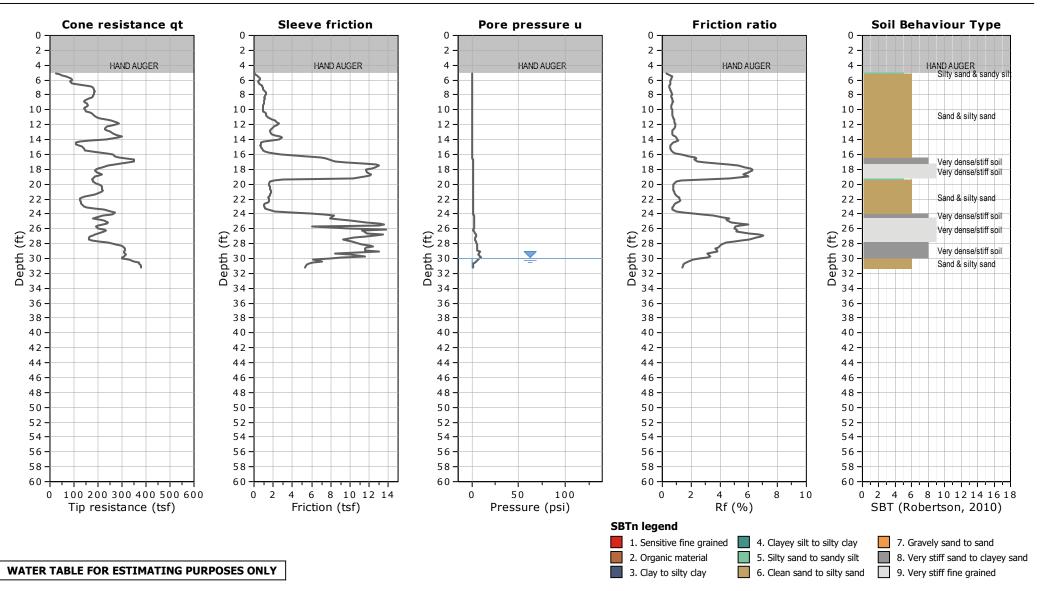
die Earth	Project	Richland-Stonebridge	Operator	DG-RC	Filename	SDF(311).cpt
TESTING INC.	Job Number	13092-01	Cone Number	DDG1366	GPS	
	Hole Number	CPT-11	Date and Time	3/29/2016 1:52:16 PM	Maximum Depth	20.34 ft
	EST GW Depth Du	rina Test	20.34 ft			



FIELD REP: BRANDON

Total depth: 31.17 ft, Date: 6/25/2019

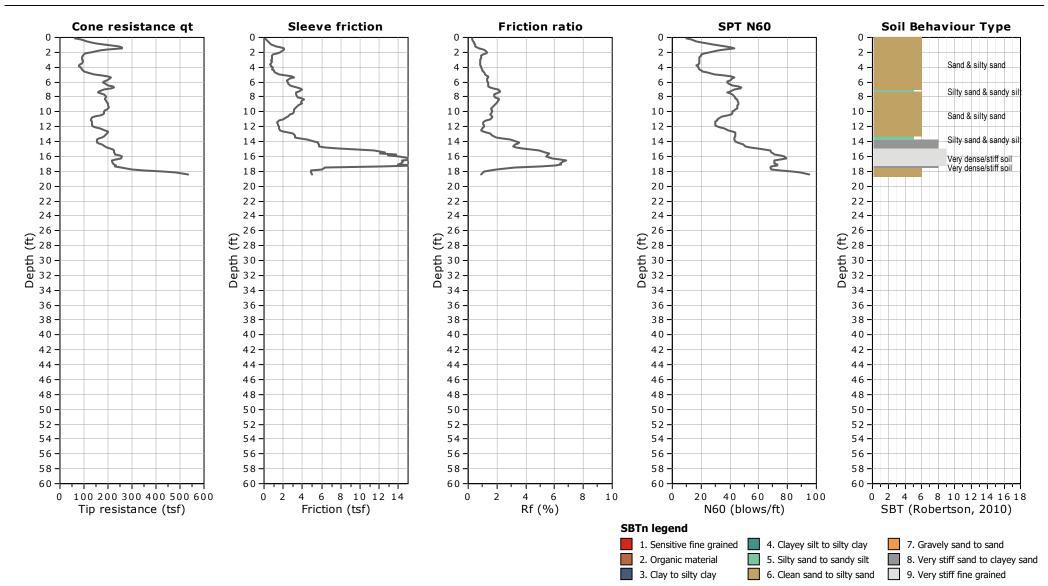
CLIENT: LGC GEOTECHNICAL INC.


CPeT-IT v.19.0.1.19 - CPTU data presentation & interpretation software - Report created on: 6/27/2019, 7:59:06 AM Project file: C:\Users\Frank Stolfi\OneDrive - Gregg Drilling\SH-2019\190576SH\REPORT\190576.cpt

Field Rep: BRANDON

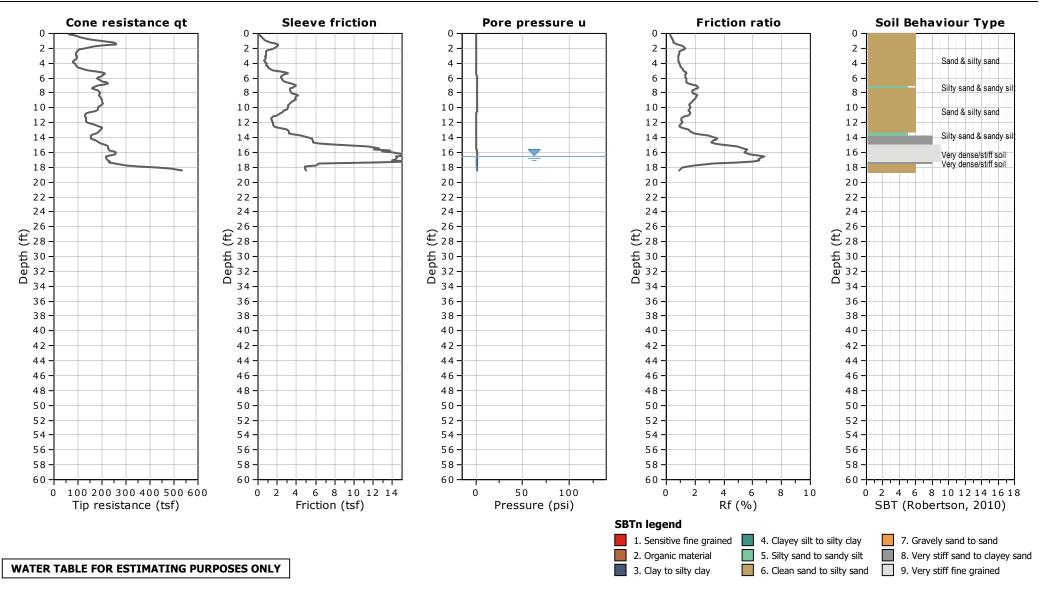
Total depth: 31.17 ft, Date: 6/25/2019

CLIENT: LGC GEOTECHNICAL INC.



CPeT-IT v.19.0.1.19 - CPTU data presentation & interpretation software - Report created on: 6/27/2019, 7:59:06 AM Project file: C:\Users\Frank Stolfi\OneDrive - Gregg Drilling\SH-2019\190576SH\REPORT\190576.cpt

FIELD REP: BRANDON


Total depth: 18.37 ft, Date: 6/25/2019

CLIENT: LGC GEOTECHNICAL INC.

Field Rep: BRANDON Total depth: 18.37 ft, Date: 6/25/2019


CPeT-IT v.19.0.1.19 - CPTU data presentation & interpretation software - Report created on: 6/27/2019, 7:59:08 AM Project file: C:\Users\Frank Stolfi\OneDrive - Gregg Drilling\SH-2019\190576SH\REPORT\190576.cpt

£ 28

CLIENT: LGC GEOTECHNICAL INC.

SITE: STONERIDGE - RAMONA EXPRESSWAY, PERRIS, CA

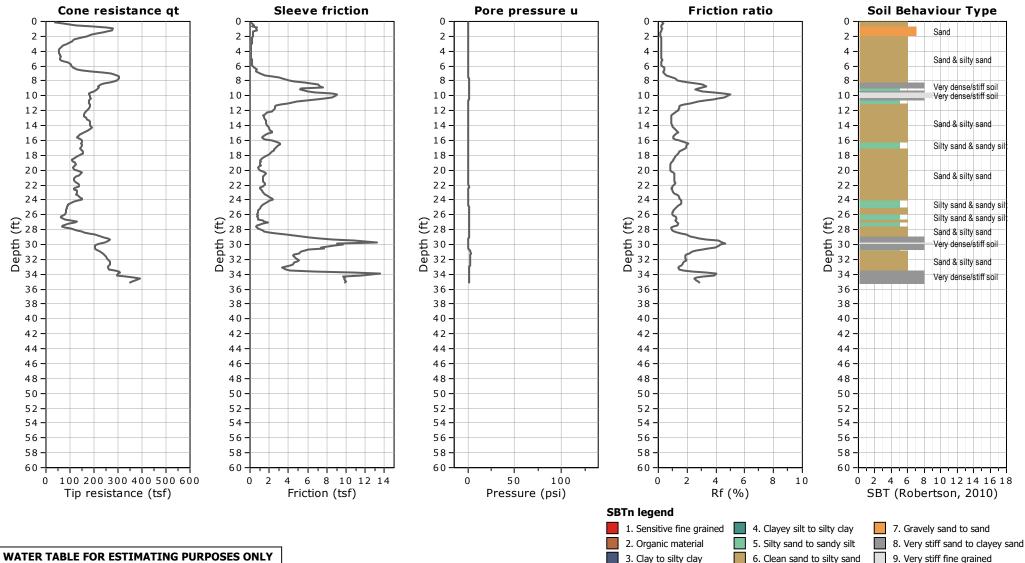
Cone resistance gt Sleeve friction

£ 26 28

06 Depth 00 Depth > 40-44-48-48. 52. 52. 54. 58. 60-60 -60-0 100 200 300 400 500 600 4 6 8 10 12 14 20 40 60 80 100 0 2 4 6 8 10 12 14 16 18 Friction (tsf) Rf (%) N60 (blows/ft) SBT (Robertson, 2010) Tip resistance (tsf) SBTn legend 1. Sensitive fine grained 4. Clayey silt to silty clay 7. Gravely sand to sand 2. Organic material 5. Silty sand to sandy silt 8. Very stiff sand to clayey sand 9. Very stiff fine grained 3. Clay to silty clay 6. Clean sand to silty sand CPeT-IT v.19.0.1.19 - CPTU data presentation & interpretation software - Report created on: 6/27/2019, 7:59:08 AM Project file: C:\Users\Frank Stolfi\OneDrive - Gregg Drilling\SH-2019\190576SH\REPORT\190576.cpt

FIELD REP: BRANDON

Total depth: 35.10 ft, Date: 6/25/2019

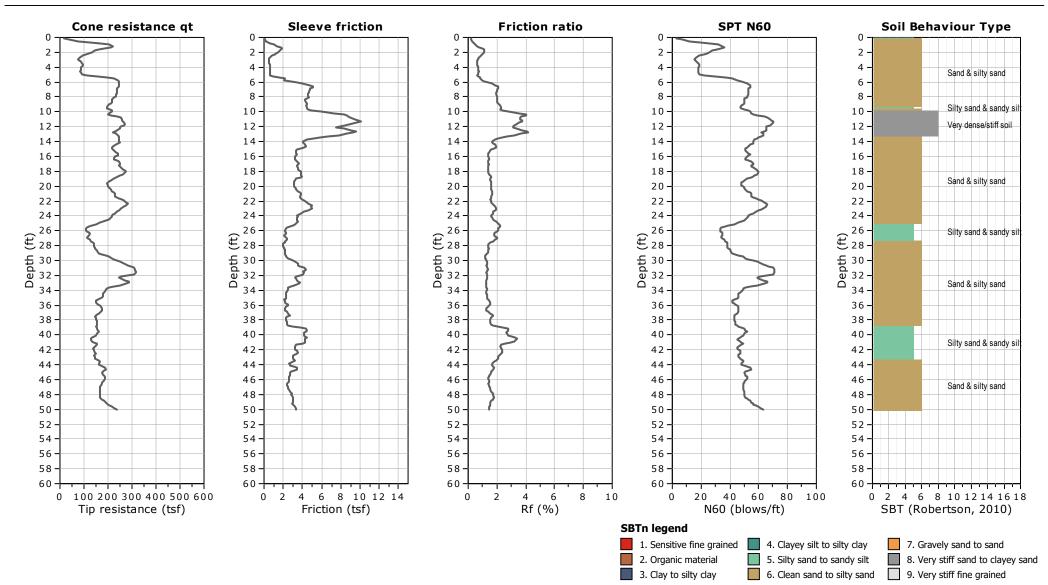


Field Rep: BRANDON

Total depth: 35.10 ft, Date: 6/25/2019

CLIENT: LGC GEOTECHNICAL INC.

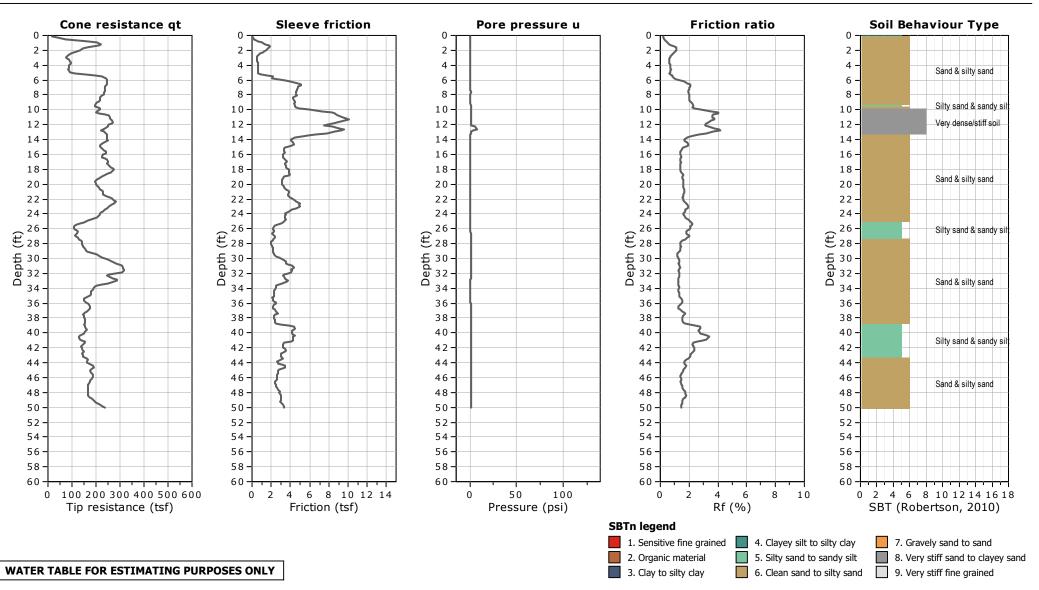
SITE: STONERIDGE - RAMONA EXPRESSWAY, PERRIS, CA


CPeT-IT v.19.0.1.19 - CPTU data presentation & interpretation software - Report created on: 6/27/2019, 7:59:08 AM Project file: C:\Users\Frank Stolfi\OneDrive - Gregg Drilling\SH-2019\190576SH\REPORT\190576.cpt

14

FIELD REP: BRANDON

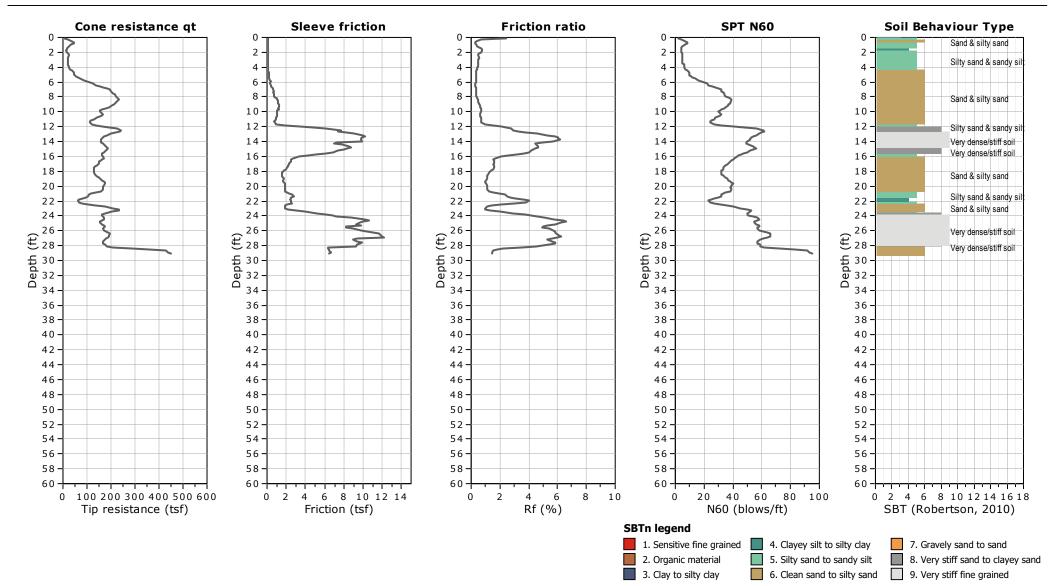
Total depth: 50.03 ft, Date: 6/25/2019



Field Rep: BRANDON

Total depth: 50.03 ft, Date: 6/25/2019

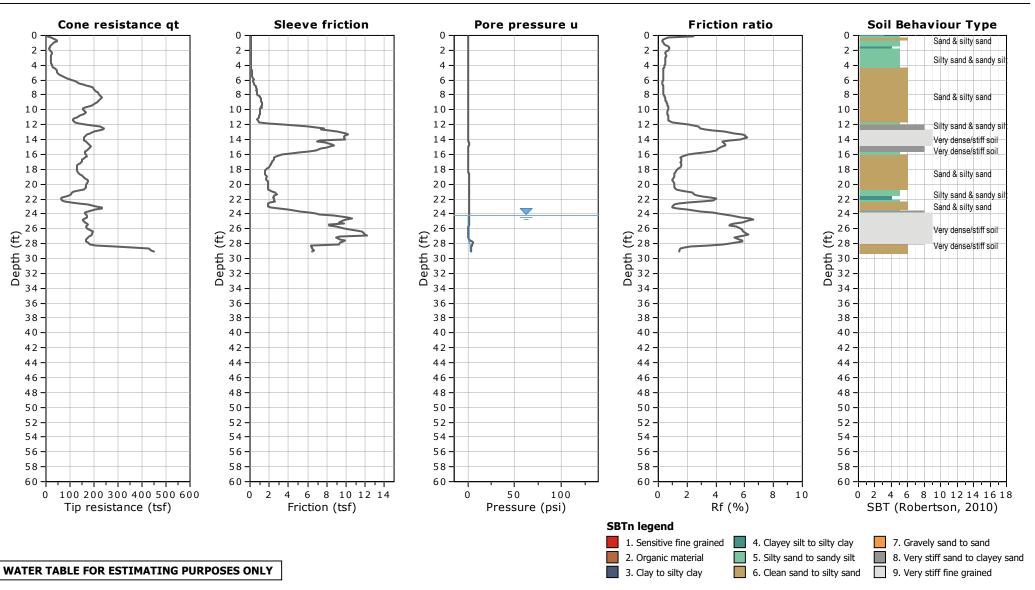
CLIENT: LGC GEOTECHNICAL INC.



CPeT-IT v.19.0.1.19 - CPTU data presentation & interpretation software - Report created on: 6/27/2019, 7:59:08 AM Project file: C:\Users\Frank Stolfi\OneDrive - Gregg Drilling\SH-2019\190576SH\REPORT\190576.cpt

FIELD REP: BRANDON

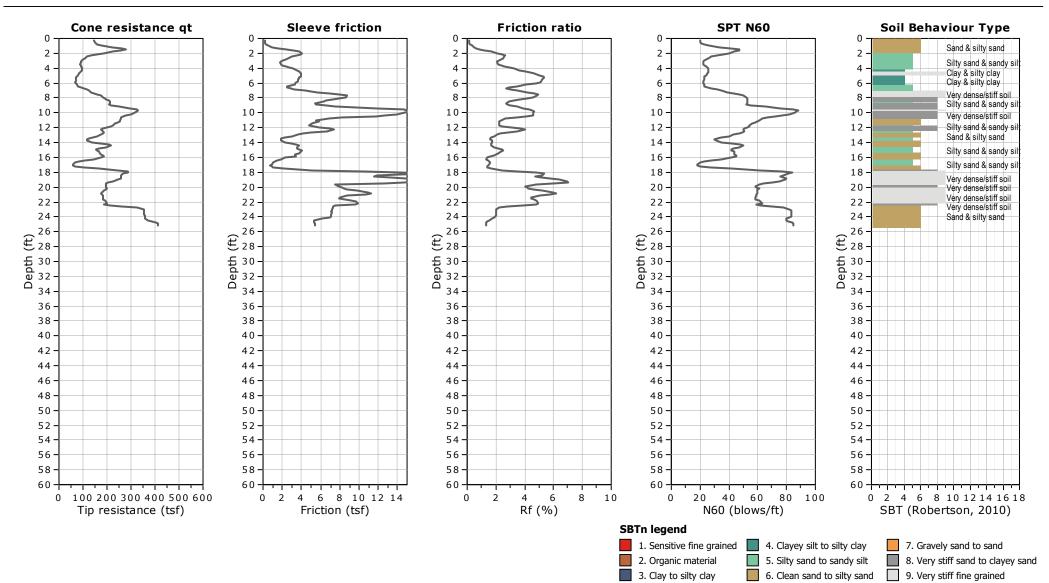
Total depth: 29.04 ft, Date: 6/25/2019



Field Rep: BRANDON

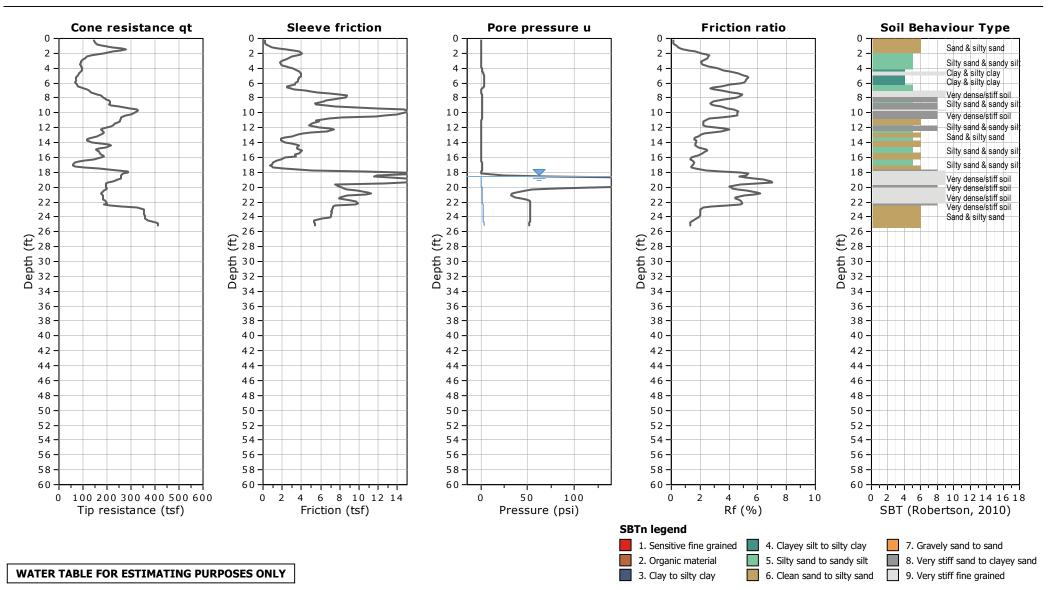
Total depth: 29.04 ft, Date: 6/25/2019

CLIENT: LGC GEOTECHNICAL INC.



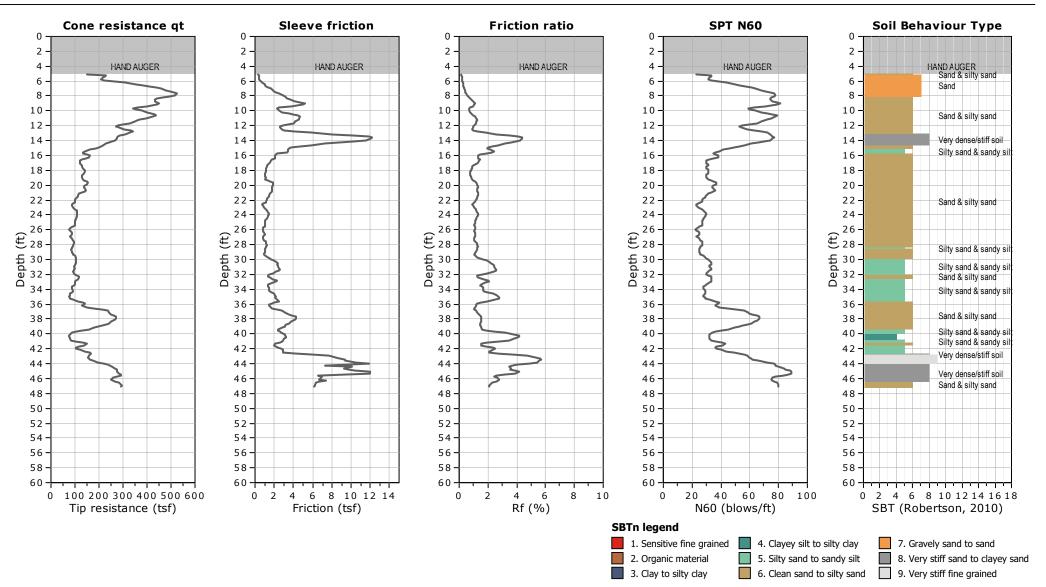
CPeT-IT v.19.0.1.19 - CPTU data presentation & interpretation software - Report created on: 6/27/2019, 7:59:09 AM Project file: C:\Users\Frank Stolfi\OneDrive - Gregg Drilling\SH-2019\190576SH\REPORT\190576.cpt

FIELD REP: BRANDON


Total depth: 25.10 ft, Date: 6/25/2019

Field Rep: BRANDON

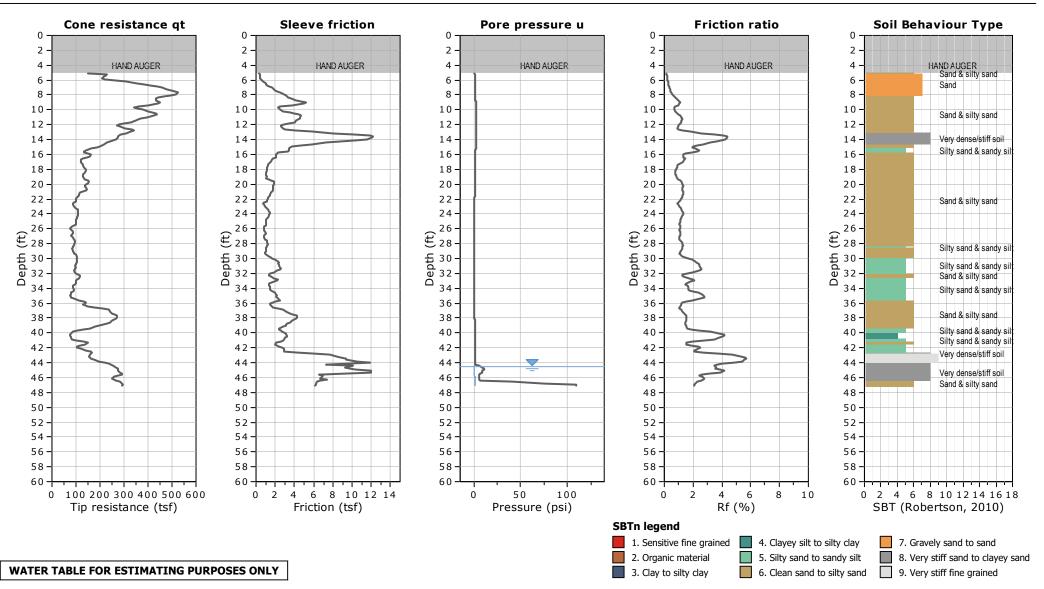
Total depth: 25.10 ft, Date: 6/25/2019



FIELD REP: BRANDON

Total depth: 47.08 ft, Date: 6/25/2019

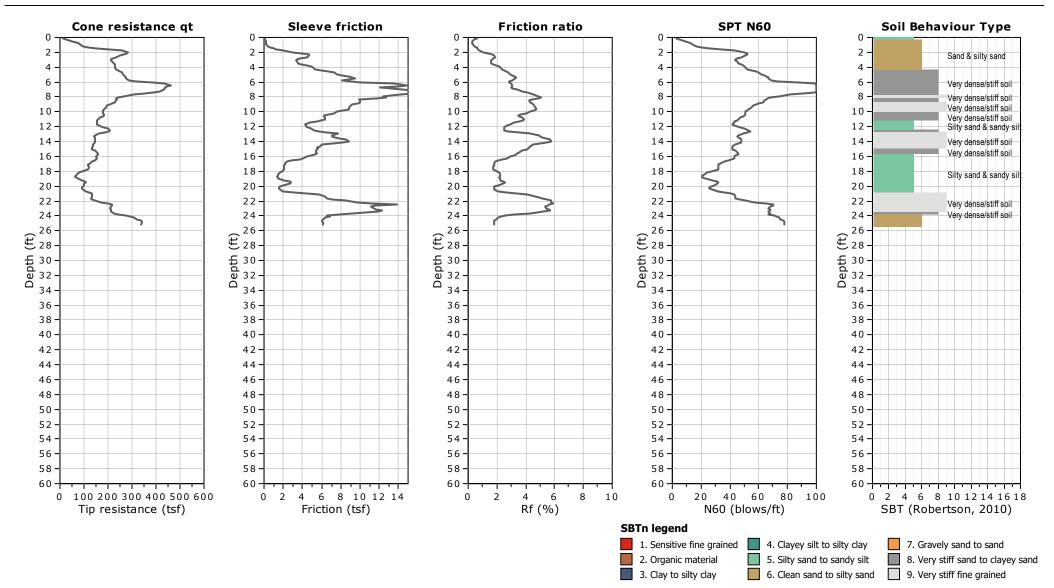
CLIENT: LGC GEOTECHNICAL INC.


CPeT-IT v.19.0.1.19 - CPTU data presentation & interpretation software - Report created on: 6/27/2019, 7:59:09 AM Project file: C:\Users\Frank Stolfi\OneDrive - Gregg Drilling\SH-2019\190576SH\REPORT\190576.cpt

Field Rep: BRANDON

Total depth: 47.08 ft, Date: 6/25/2019

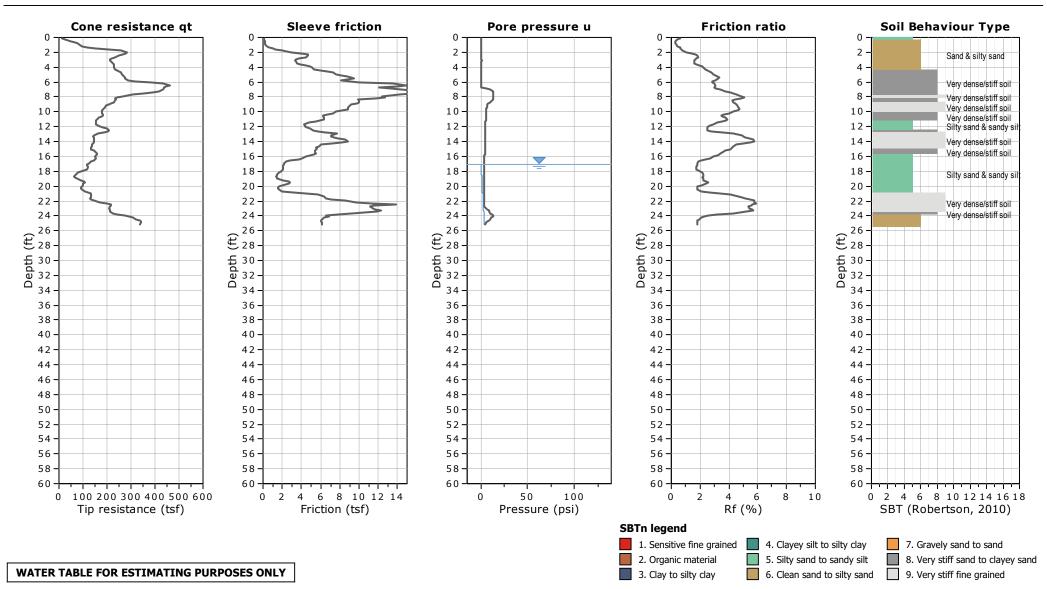
CLIENT: LGC GEOTECHNICAL INC.



CPeT-IT v.19.0.1.19 - CPTU data presentation & interpretation software - Report created on: 6/27/2019, 7:59:09 AM Project file: C:\Users\Frank Stolfi\OneDrive - Gregg Drilling\SH-2019\190576SH\REPORT\190576.cpt

FIELD REP: BRANDON

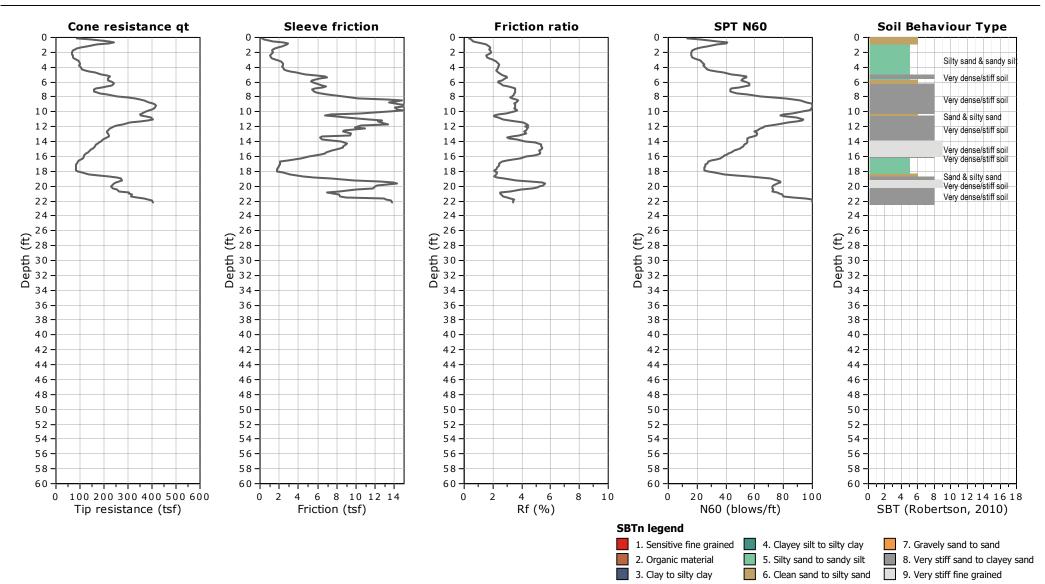
Total depth: 25.10 ft, Date: 6/25/2019



CPeT-IT v.19.0.1.19 - CPTU data presentation & interpretation software - Report created on: 6/27/2019, 7:59:10 AM Project file: C:\Users\Frank Stolfi\OneDrive - Gregg Drilling\SH-2019\190576SH\REPORT\190576.cpt

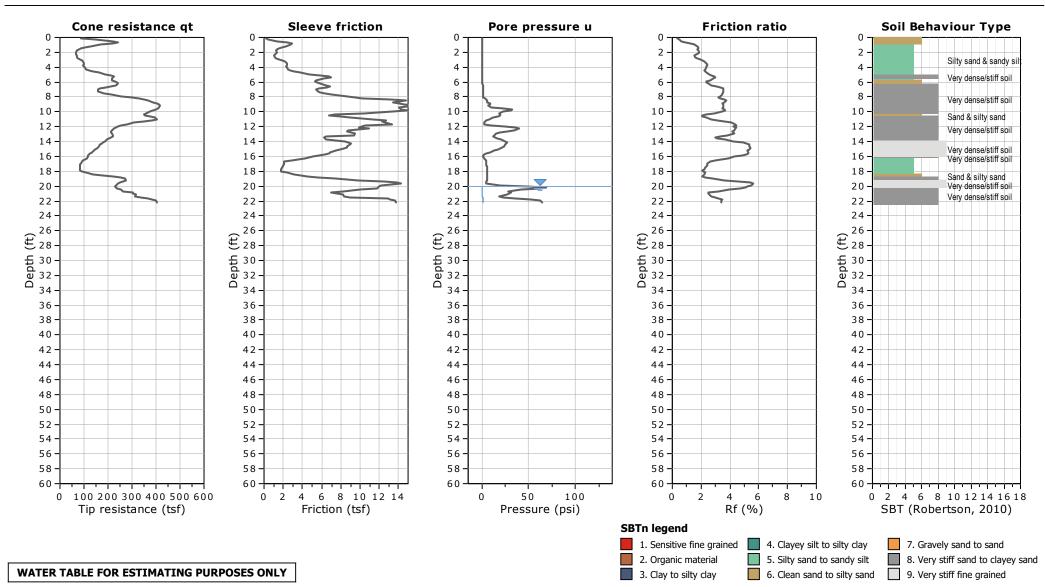
Field Rep: BRANDON

Total depth: 25.10 ft, Date: 6/25/2019



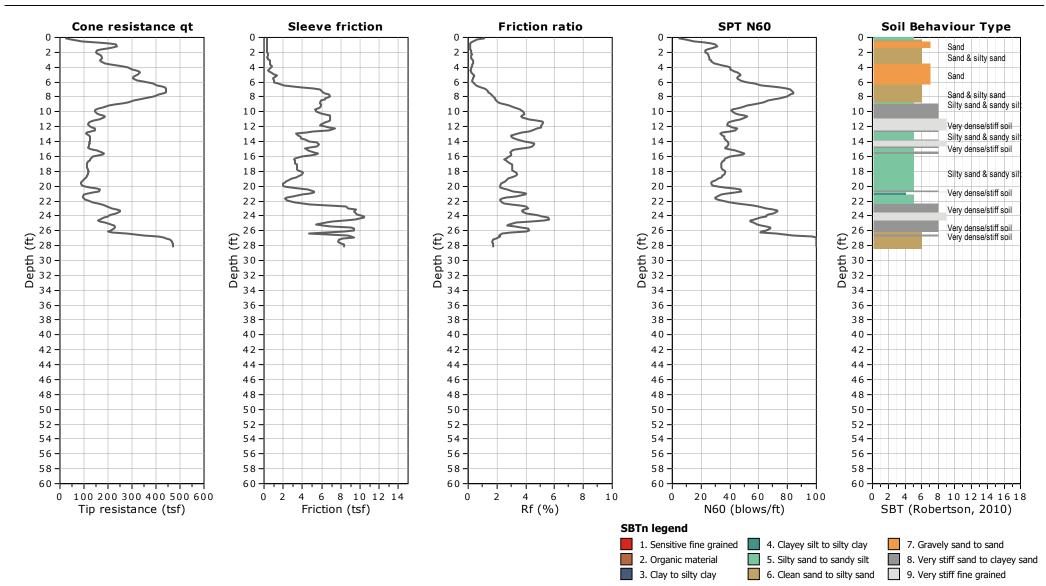
CPeT-IT v.19.0.1.19 - CPTU data presentation & interpretation software - Report created on: 6/27/2019, 7:59:10 AM Project file: C:\Users\Frank Stolfi\OneDrive - Gregg Drilling\SH-2019\190576SH\REPORT\190576.cpt

FIELD REP: BRANDON


Total depth: 22.15 ft, Date: 6/25/2019

Field Rep: BRANDON

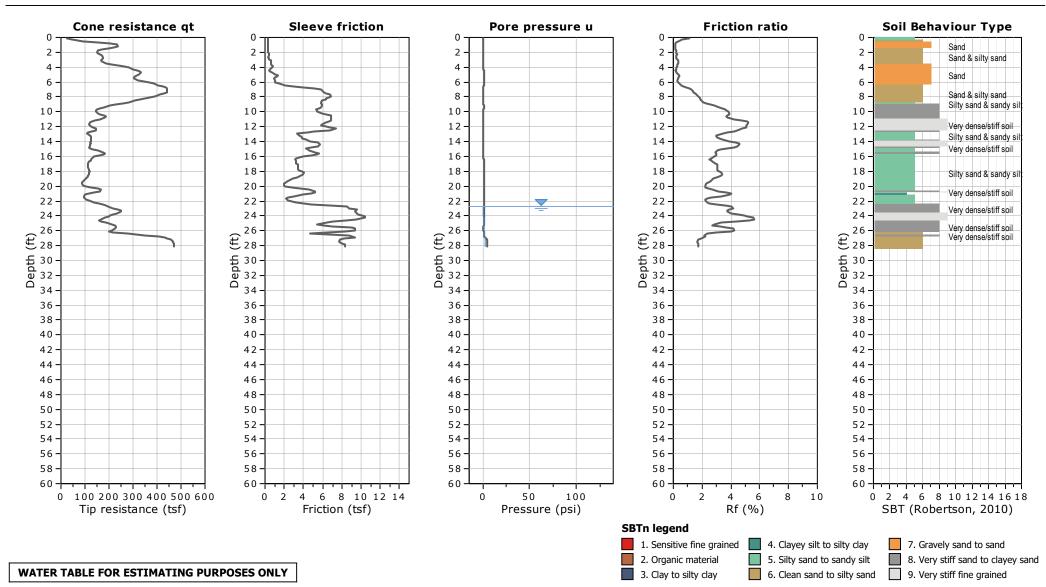
Total depth: 22.15 ft, Date: 6/25/2019



CPeT-IT v.19.0.1.19 - CPTU data presentation & interpretation software - Report created on: 6/27/2019, 7:59:10 AM Project file: C:\Users\Frank Stolfi\OneDrive - Gregg Drilling\SH-2019\190576SH\REPORT\190576.cpt

FIELD REP: BRANDON

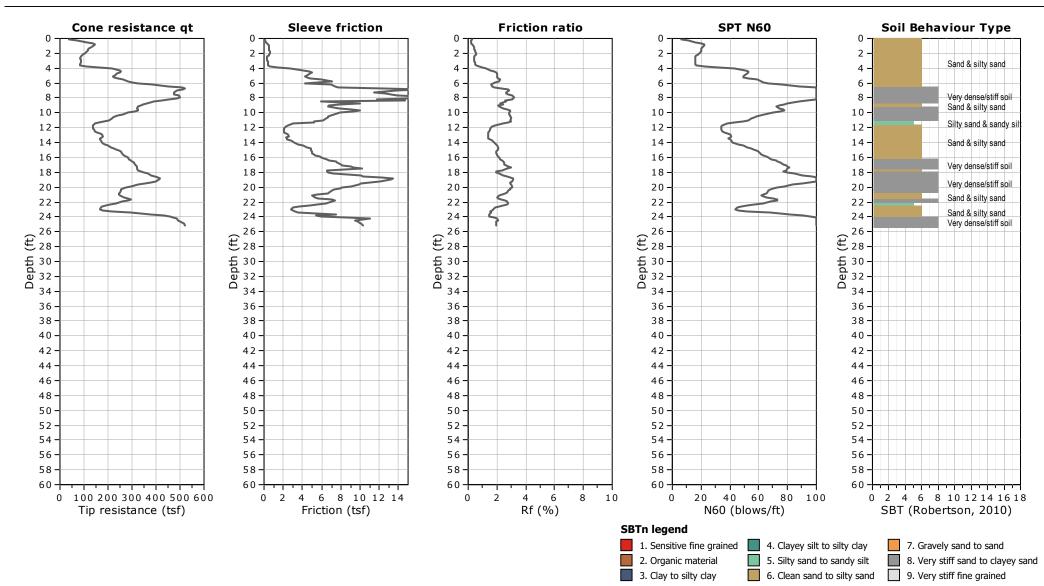
Total depth: 28.05 ft, Date: 6/26/2019



CPeT-IT v.19.0.1.19 - CPTU data presentation & interpretation software - Report created on: 6/27/2019, 7:59:06 AM Project file: C:\Users\Frank Stolfi\OneDrive - Gregg Drilling\SH-2019\190576SH\REPORT\190576.cpt

Field Rep: BRANDON

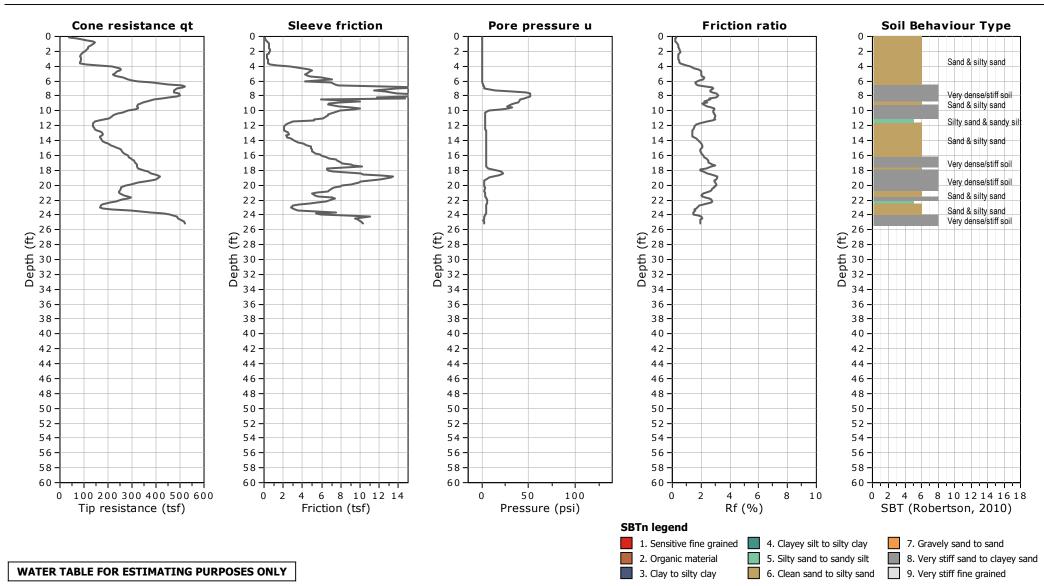
Total depth: 28.05 ft, Date: 6/26/2019



CPeT-IT v.19.0.1.19 - CPTU data presentation & interpretation software - Report created on: 6/27/2019, 7:59:06 AM Project file: C:\Users\Frank Stolfi\OneDrive - Gregg Drilling\SH-2019\190576SH\REPORT\190576.cpt

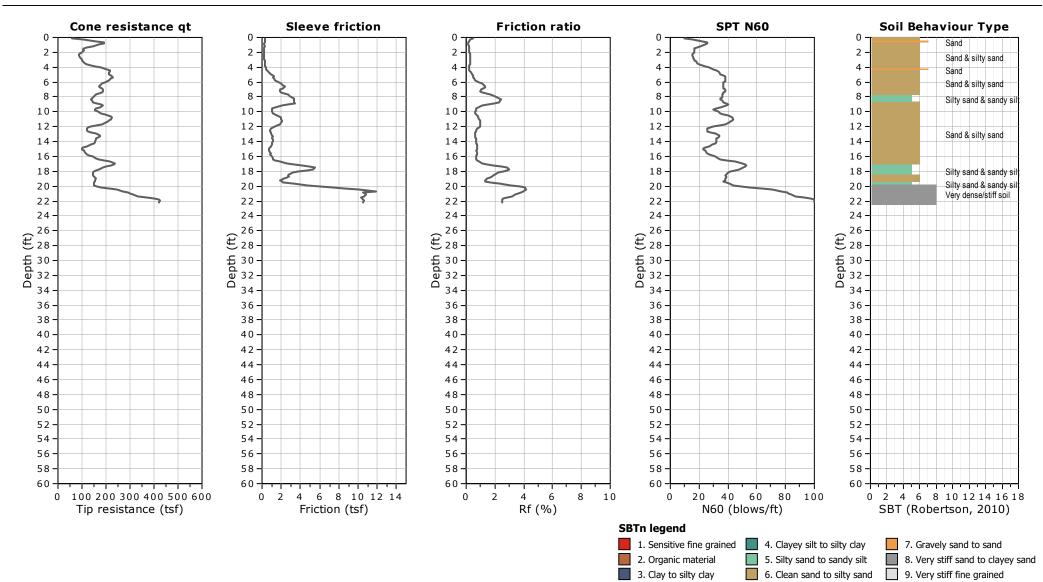
FIELD REP: BRANDON

Total depth: 25.10 ft, Date: 6/26/2019



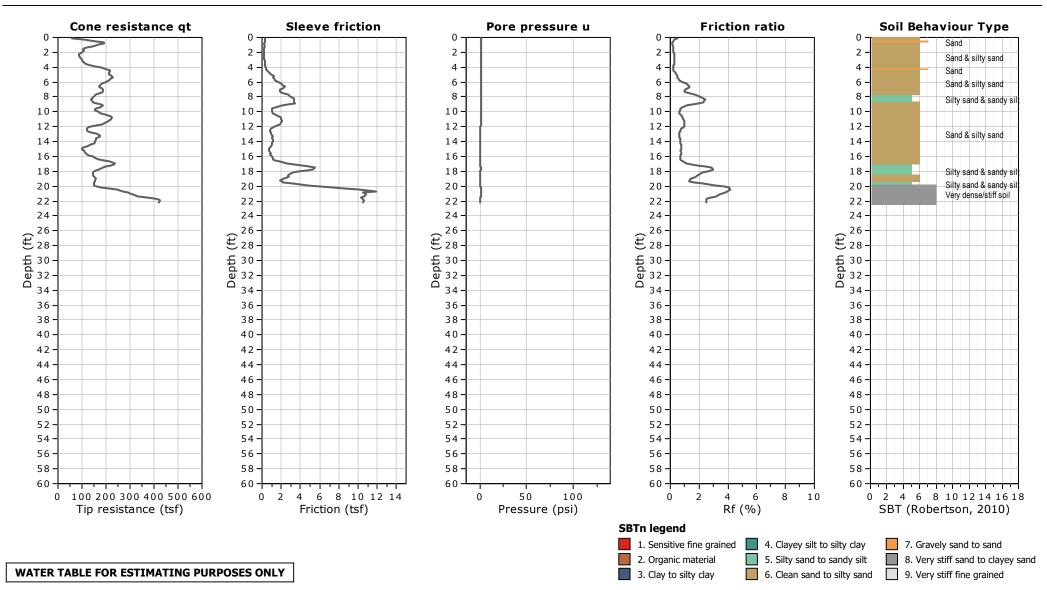
CPeT-IT v.19.0.1.19 - CPTU data presentation & interpretation software - Report created on: 6/27/2019, 7:59:06 AM Project file: C:\Users\Frank Stolfi\OneDrive - Gregg Drilling\SH-2019\190576SH\REPORT\190576.cpt

Total depth: 25.10 ft, Date: 6/26/2019



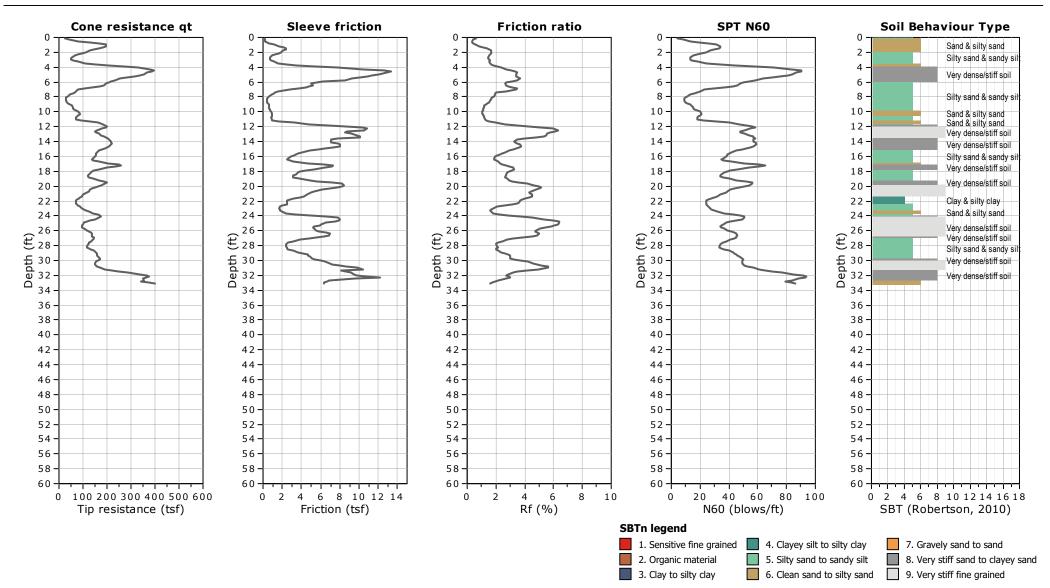
CPeT-IT v.19.0.1.19 - CPTU data presentation & interpretation software - Report created on: 6/27/2019, 7:59:06 AM Project file: C:\Users\Frank Stolfi\OneDrive - Gregg Drilling\SH-2019\190576SH\REPORT\190576.cpt

FIELD REP: BRANDON


Total depth: 22.15 ft, Date: 6/26/2019

Field Rep: BRANDON

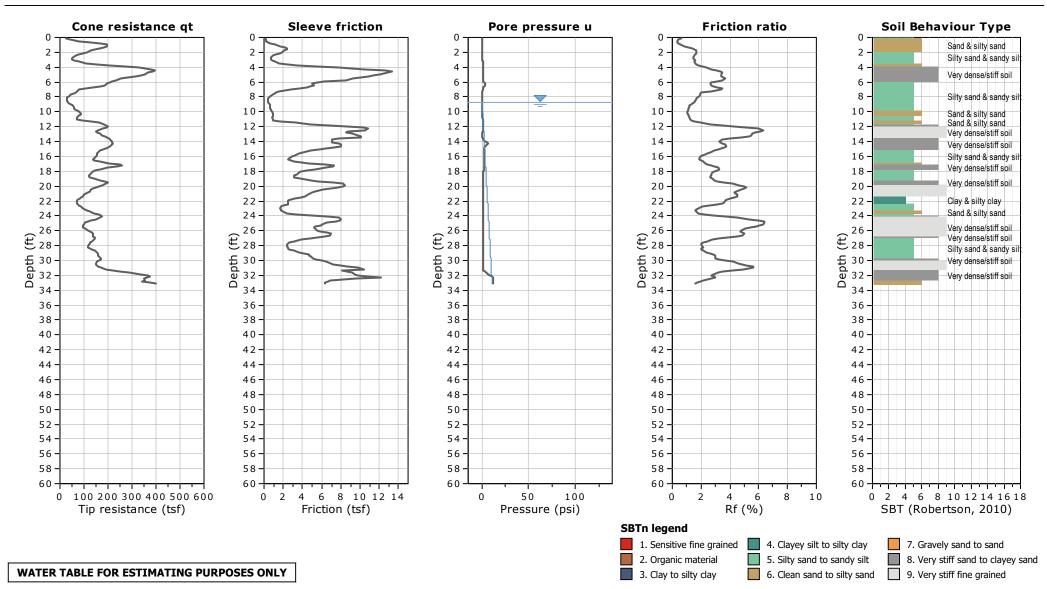
Total depth: 22.15 ft, Date: 6/26/2019



CPeT-IT v.19.0.1.19 - CPTU data presentation & interpretation software - Report created on: 6/27/2019, 7:59:07 AM Project file: C:\Users\Frank Stolfi\OneDrive - Gregg Drilling\SH-2019\190576SH\REPORT\190576.cpt

FIELD REP: BRANDON

Total depth: 33.14 ft, Date: 6/26/2019



CPeT-IT v.19.0.1.19 - CPTU data presentation & interpretation software - Report created on: 6/27/2019, 7:59:07 AM Project file: C:\Users\Frank Stolfi\OneDrive - Gregg Drilling\SH-2019\190576SH\REPORT\190576.cpt

Field Rep: BRANDON

Total depth: 33.14 ft, Date: 6/26/2019

CPeT-IT v.19.0.1.19 - CPTU data presentation & interpretation software - Report created on: 6/27/2019, 7:59:07 AM Project file: C:\Users\Frank Stolfi\OneDrive - Gregg Drilling\SH-2019\190576SH\REPORT\190576.cpt

Appendix C Laboratory Test Results

APPENDIX C

Laboratory Testing Procedures and Test Results

The laboratory testing program was formulated towards providing data relating to the relevant engineering properties of the soils with respect to residential construction. Samples considered representative of site conditions were tested in general accordance with American Society for Testing and Materials (ASTM) procedure and/or California Test Methods (CTM), where applicable. The following summary is a brief outline of the test type and a table summarizing the test results.

<u>Moisture and Density Determination Tests</u>: Moisture content (ASTM D2216) and dry density determinations (ASTM D2937) were performed on relatively undisturbed samples obtained from the test borings and/or trenches. The results of these tests are presented in the boring and/or trench logs. Where applicable, only moisture content was determined from undisturbed or disturbed samples.

<u>Grain Size Distribution</u>: Representative samples were dried, weighed, and soaked in water until individual soil particles were separated (per ASTM D421) and then washed on a No. 200 sieve. The portion retained on the No. 200 sieve was dried and then sieved on a U.S. Standard brass sieve set in accordance with ASTM D422 (CTM 202). Where an appreciable number of fines were encountered (greater than 20 percent passing the No. 200 sieve) a hydrometer analysis was done to determine the distribution of soil particles passing the No. 200 sieve.

Sample Location	Description	% Passing # 200 Sieve
HS-1 @ 2.5 ft	Brown Clayey Sand	22
HS-1 @ 7.5 ft	Brown Clayey Sand	33
HS-6 @ 2.5 ft	Brown Silty Sand	20
HS-6 @ 7.5 ft	Brown Silty Sand w/ Gravel, Decomposed Granite	21
HS-10 @ 7.5 ft	Dark Brown Silty Clayey Sand	24
TP-4 @ 0 to 2 ft	Reddish Brown Clayey Sand	38
HS-15 @ 10 ft	Light Olive Brown Sand with Silt	8
HS-18 @ 2 to 5 ft	Light Brown Sandy Silt	33
HS-20 @ 0 to 2.5 ft	Brown Silty Sand	18
HS-22 @ 7.5 ft	Light Olive Brown Sand with Silt	10
HS-24 @ 0 to 5 ft	Brown Sand	12
HS-24 @ 5 ft	Yellowish Brown Silty Clayey Sand	39

Laboratory Testing Procedures and Test Results

<u>Atterberg Limits</u>: The liquid and plastic limits ("Atterberg Limits") were determined in accordance with ASTM Test Method D4318 for engineering classification of fine-grained material and presented in the table below. Plots are included in this appendix.

Sample Location	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	USCS Soil Classification
TP-4 @ 0 to 2 ft	28	14	14	CL
HS-15 @ 7.5 ft	NP	NP	NP	NP
HS-23 @ 10 ft	20	16	4	CL-ML

<u>Maximum Density Tests</u>: The maximum dry density and optimum moisture content of typical materials were determined in accordance with ASTM D1557. The results of these tests are presented in the table below:

Sample Location	Sample Description	Maximum Dry Density (pcf)	Optimum Moisture Content (%)
HS-1 @ 0 to 3 ft	Yellowish Brown Silty Sand	135.0	7.5
HS-5 @ 0 to 4 ft	Dark Yellowish Brown Silty Clayey Sand	137.5	7.5
HS-9 & TP-4	Dark Yellowish Brown Silty Clayey Sand	134.5	8.5
TP-6 @ 2 to 3 ft	Dark Yellowish Brown Silty Clayey Sand	135.0	8.0
TP-9 @ 3 to 4 ft	Dark Yellowish Brown Silty, Clayey Sand	138.0	7.0
HS-18 @ 2 to 5 ft	Light Brown Sandy Silt	127.5	7.5
HS-20 @ 2 to 2.5 ft	Brown Silty Sand	135.0	7.0
HS-24 @ 0 to 5 ft	Brown Sand	128.5	7.5

Laboratory Testing Procedures and Test Results

<u>Expansion Index</u>: The expansion potential of selected samples was evaluated by the Expansion Index Test, Standard ASTM D4829. Specimens are molded under a given compactive energy to approximately the optimum moisture content and approximately 50 percent saturation or approximately 90 percent relative compaction. The prepared 1-inch-thick by 4-inch-diameter specimens are loaded to an equivalent 144 psf surcharge and are inundated with tap water until volumetric equilibrium is reached. The results of these tests are presented in the table below.

Sample Location	Expansion Index	Expansion Potential*
HS-4 @ 0 to 4 ft	33	Low
TP-1 @ 4 to 5 ft	0	Very Low
TP-4 @ 0 to 2 ft	21	Low
HS-18 @ 2 to 5 ft	6	Very Low
HS-20 @ 0 to 2.5 ft	1	Very Low
HS-24 @ 0 to 5 ft	0	Very Low

^{*} ASTM D4829

<u>Direct Shear</u>: Direct shear tests were performed on selected driven samples, which were soaked for a minimum of 24 hours prior to testing. The samples were tested under various normal loads using a motor-driven, strain-controlled, direct-shear testing apparatus (ASTM D3080). The plot is provided in this Appendix.

<u>Collapse/Swell Potential</u>: Collapse tests were performed per ASTM D4546. Samples (2.4 inches in diameter and 1 inch in height) were placed in a consolidometer and loaded to their approximate in-situ effective stress. The curves are presented in this Appendix.

<u>Consolidation</u>: Consolidation tests were performed per ASTM D2435. Samples (2.4 inches in diameter and 1 inch in height) were placed in a consolidometer and increasing loads were applied. The samples were allowed to consolidate under "double drainage" and total deformation for each loading step was recorded. The percent consolidation for each load step was recorded as the ratio of the amount of vertical compression to the original sample height. The consolidation pressure curves are provided in this Appendix.

Laboratory Testing Procedures and Test Results

Sample Location	Chloride Content, ppm
HS-1 @ 0 to 3 ft	81
HS-4 @ 0 to 4 ft	103
TP-1 @ 4 to 5 ft	51
HS-18 @ 2 to 5 ft	104
HS-20 @ 0 to 2.5 ft	41
HS-24 @ 0 to 5 ft	31

<u>Chloride Content</u>: Chloride content was tested in accordance with Caltrans Test Method (CTM) 422. The results are presented below.

<u>Minimum Resistivity and pH Tests</u>: Minimum resistivity and pH tests were performed in general accordance with CTM 643 and standard geochemical methods. The electrical resistivity of a soil is a measure of its resistance to the flow of electrical current. As a result of a decrease in resistivity, the potential for corrosion increases. The results are presented in the table below.

Sample Location	рН	Minimum Resistivity (ohms- cm)
HS-1 @ 0 to 3 ft	5.78	2,960
HS-4 @ 0 to 4 ft	7.88	1,146
TP-1 @ 4 to 5 ft	7.90	3,300
HS-18 @ 2 to 5 ft	7.67	1,450
HS-20 @ 0 to 2.5 ft	7.74	5,290
HS-24 @ 0 to 5 ft	7.71	15,000

Laboratory Testing Procedures and Test Results

<u>Soluble Sulfates</u>: The soluble sulfate contents of selected samples were determined by standard geochemical methods (CTM 417). The soluble sulfate content is used to determine the appropriate cement type and maximum water-cement ratios. The test results are presented in the table below.

Sample Location	Sulfate Content (ppm)
HS-1 @ 0 to 3 ft	29
HS-4 @ 0 to 4 ft	34
TP-1 @ 4 to 5 ft	42
HS-18 @ 2 to 5 ft	196
HS-20 @ 0 to 2.5 ft	148
HS-24 @ 0 to 5 ft	168

*Based on ACI 318, Table 19.3.1.1 (ACI 318R-14).

<u>R-Value</u>: The resistance R-value was determined by the ASTM D2844 for base, subbase, and basement soils. The samples were prepared and exudation pressure and R-value were determined. The graphically determined R-values at exudation pressure of 300 psi are reported in this appendix. These results were used for pavement design purposes. The R-value plots are presented in this appendix.

Sample Location	R-Value
HS-3 @ 0 to 3 ft	67
HS-9 @ 0 to 4 ft	43

PARTICLE-SIZE ANALYSIS OF SOILS

ASTM D 422

Project Name:	<u> Richland – Stoneridge</u>	Tested By:	A. Santos	Date:	04/20/16
Project No.:	<u>13092-01</u>	Data Input By:	J. Ward	Date:	04/27/16
Boring No.:	<u>TP-4</u>				

Sample No.: <u>B-1</u>

Depth (feet): 0-2

Soil Identification:

Reddish brown clayey sand (SC)

	% Gravel % Sand % Fines	N/A N/A 38	Soil Type SC	Moisture Content of Total Air-Dry Soil	Moisture Content of Air-Dry Soil Passing #10	After Hydrometer & Wet Sieve ret. in #200 Sieve
	70111103					III #200 Sieve
Specific Gravity (Assumed)	2.70	Wt.of Air-Dry	Soil + Cont.(g)	0.00	72.52	
Correction for Specific Gravity	0.99	Dry Wt. of Soil + Cont. (g)		0.00	72.50	135.87
Wt.of Air-Dry Soil + Cont. (g)	1133.00	Wt. of Contair	ner No (g)	1.00	57.25	75.31
Wt. of Container	108.80	Moisture Content (%)		0.00	0.13	
Dry Wt. of Soil (g)	1024.20	Wt. of Dry So	il (g)			60.56

Coarse Sieve						
U.S. Sieve	Cumulative Wt. Of Dry Soil Retained (g)	% Passing				
3"						
1½"						
3/4"						
3/8"						
No. 4						
No. 10	75.08	92.7				
Pan						

10:06

11:06

13:16

9:06

Sieve after Hydrometer & Wet Sieve							
U.S. Sieve Size	Cumulative Wt. Of Dry Soil Retained (g)	% Passing	% Total Sample				
No. 10	0.00	100.0	92.7				
No. 16							
No. 30							
No. 50							
No. 100							
No. 200	59.24	41.0	38.0				
Pan							

Hydrometer

23-Apr-16

Wt. of Air-Dry Soil (g)

60

120

250

1440

100.50

8.0

8.0

8.0

8.0

Wt. of Dry Soil (g)

30.5

28.5

27.0

23.0

100.37

Soil Particle

Diameter

(mm)

0.0291

0.0190

0.0112

0.0081

0.0058

0.0041

0.0029

0.0012

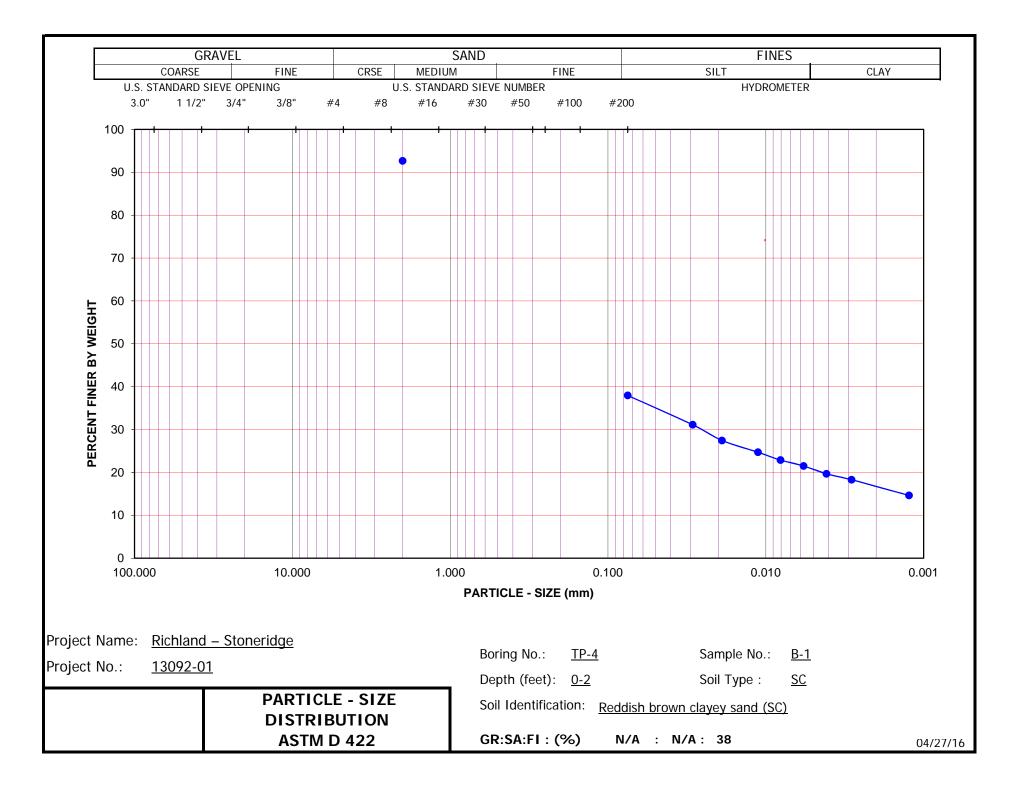
		Deflocculant 1	125 cc of 4% So	lution		
Date	Time	Elapsed Time (min)	Water Temperature (°C)	Composite Correction 152H	Actual Hydrometer Readings	% Total Sample (%)
22-Apr-16	9:06	0		7.0		
	9:08	2	21.9	7.0	41.0	31.1
	9:11	5	21.9	8.0	37.0	27.5
	9:21	15	21.9	8.0	34.0	24.7
	9:36	30	21.8	8.0	32.0	22.9

21.9

21.9

22.4

21.0

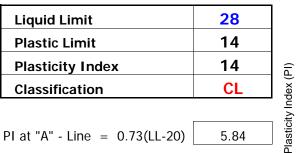

Hydrometer TP-4, B-1 @ 0-2

21.5

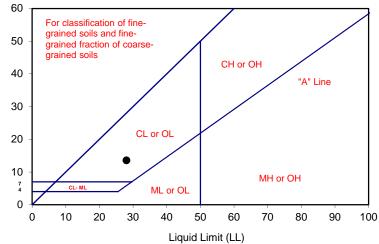
19.7

18.3

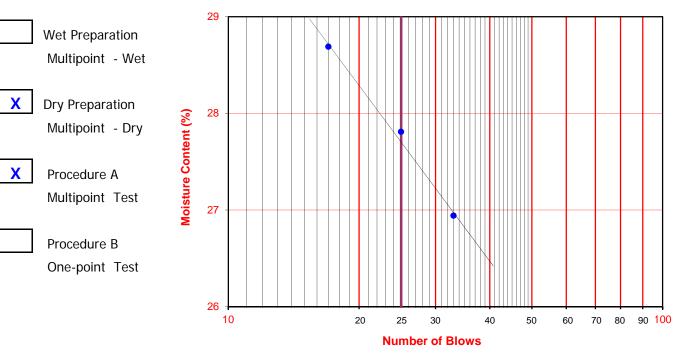
14.7


ATTERBERG LIMITS

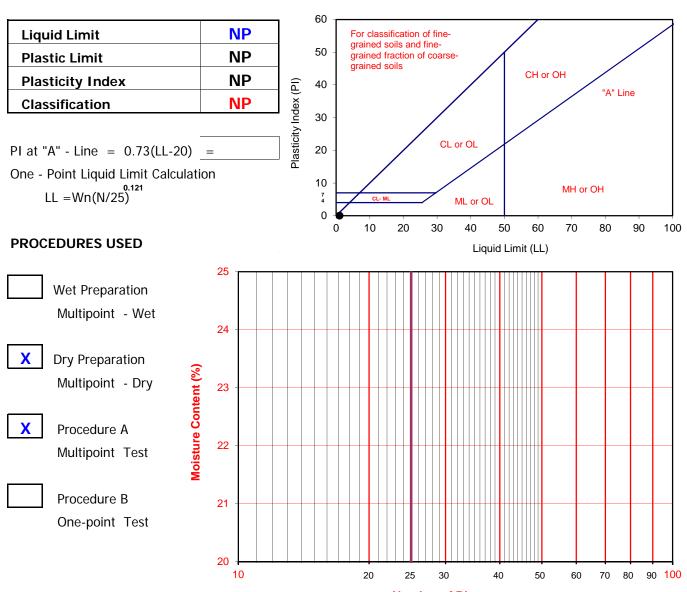
ASTM D 4318


Project Name:	Richland – Stoneridge	Tested By:	A. Santos	Date:	04/25/16
Project No. :	13092-01	Input By:	J. Ward	Date:	04/27/16
Boring No.:	TP-4	Checked By:	J. Ward		
Sample No.:	<u>B-1</u>	Depth (ft.)	0-2		

Soil Identification: Reddish brown clayey sand (SC)


TEST	PLAST	PLASTIC LIMIT		LIQUID LIMIT				
NO.	1	2	1	2	3	4		
Number of Blows [N]			33	25	17			
Wet Wt. of Soil + Cont. (g)	9.90	10.59	22.37	26.70	22.82			
Dry Wt. of Soil + Cont. (g)	8.80	9.39	17.86	21.13	17.98			
Wt. of Container (g)	1.06	1.18	1.12	1.10	1.11			
Moisture Content (%) [Wn]	14.21	14.62	26.94	27.81	28.69			

One - Point Liquid Limit Calculation LL = $Wn(N/25)^{0.121}$



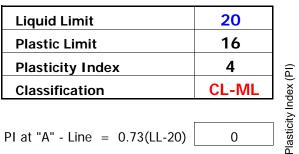
ATTERBERG LIMITS

ASTM D 4318

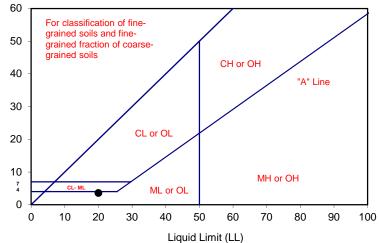
Project Name:	Stoneridge	Tested By:	A. Santos	Date:	07/23/19
Project No. :	13092-01	Input By:	G. Bathala	Date:	07/24/19
Boring No.:	HS-15	Checked By:	J. Ward		
Sample No.:	R-3	Depth (ft.)	7.5		
Soil Identification:	Olive brown silty sand (SM)				

TEST PLASTIC LIMIT LIQUID LIMIT NO. 2 1 1 2 3 4 Number of Blows [N] 5 Wet Wt. of Soil + Cont. (g) Cannot be rolled: Cannot get more than 5 blows: 18.85 Dry Wt. of Soil + Cont. (g) **NonPlastic** 15.58 NonPlastic Wt. of Container 1.05 (g) Moisture Content (%) [Wn] 22.51

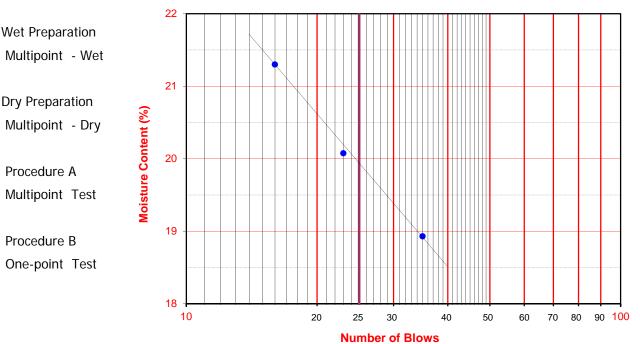
Number of Blows


ATTERBERG LIMITS

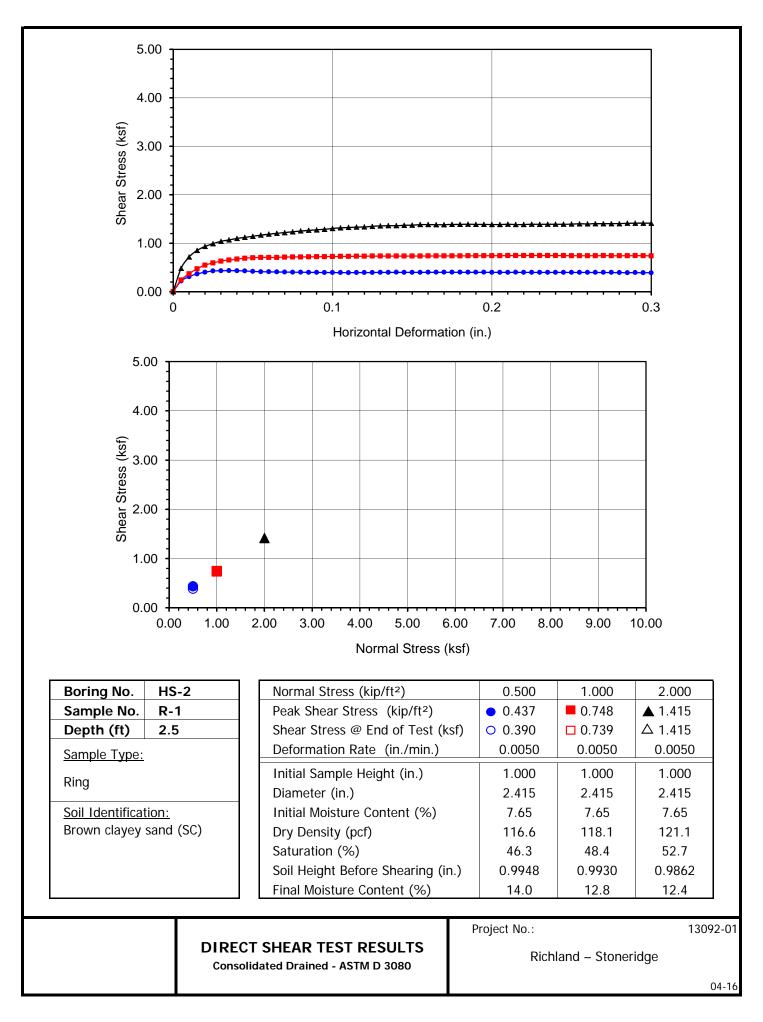
ASTM D 4318

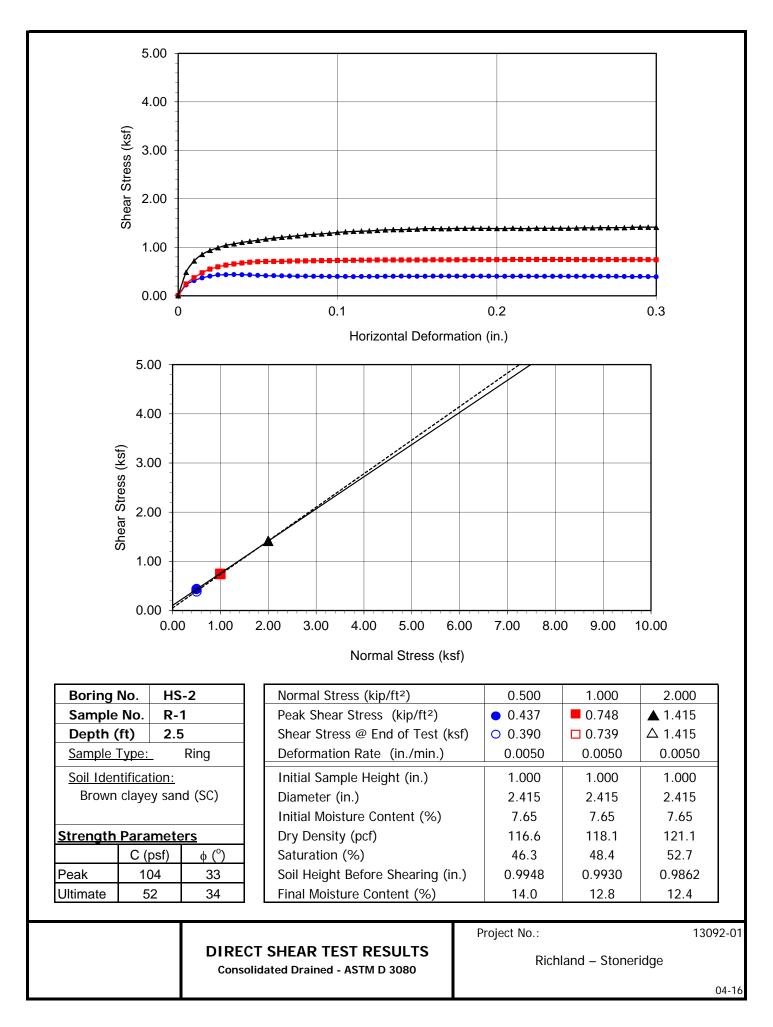

Project Name:	Stoneridge	Tested By:	R. Manning	Date:	07/18/19
Project No. :	13092-01	Input By:	G. Bathala	Date:	07/22/19
Boring No.:	HS-23	Checked By:	J. Ward		
Sample No.:	R-4	Depth (ft.)	10.0		

Soil Identification: Olive brown silty, clayey sand (SC-SM)


TEST	PLASTIC LIMIT		LIQUID LIMIT				
NO.	1	2	1	2	3	4	
Number of Blows [N]			35	23	16		
Wet Wt. of Soil + Cont. (g)	19.41	19.47	26.87	26.31	24.80		
Dry Wt. of Soil + Cont. (g)	18.24	18.29	24.75	24.15	22.80		
Wt. of Container (g)	11.11	11.11	13.55	13.39	13.41		
Moisture Content (%) [Wn]	16.41	16.43	18.93	20.07	21.30		

One - Point Liquid Limit Calculation $LL = Wn(N/25)^{0.121}$

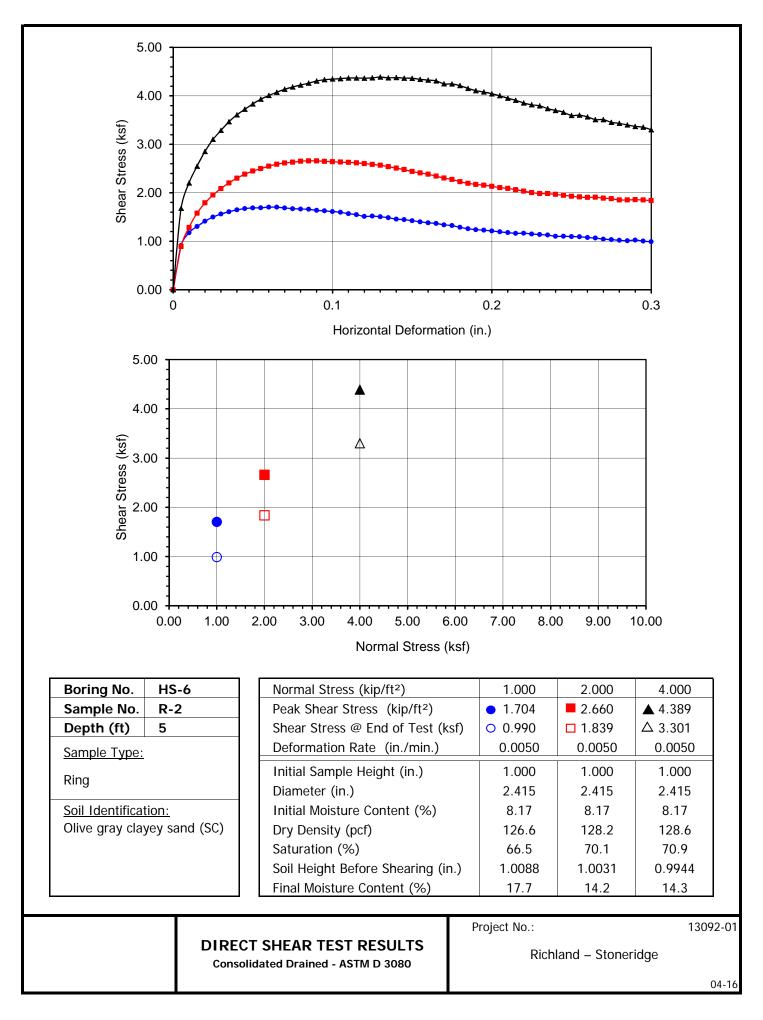

Multipoint - Wet X Dry Preparation Multipoint - Dry Χ Procedure A Multipoint Test

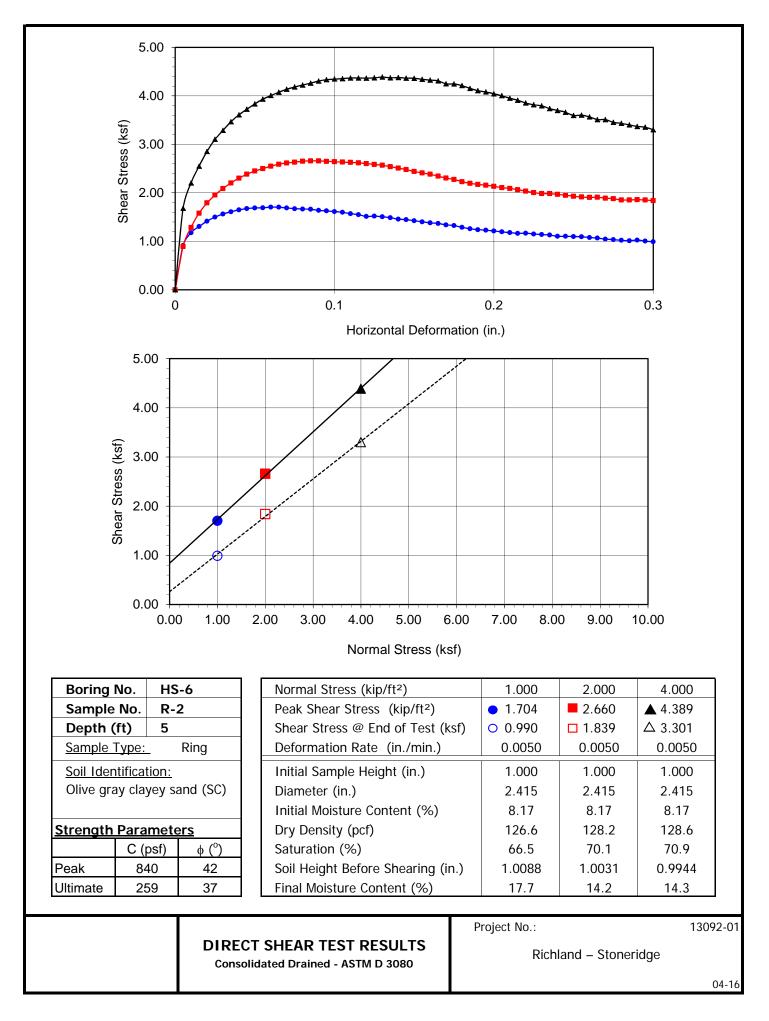

> Procedure B One-point Test

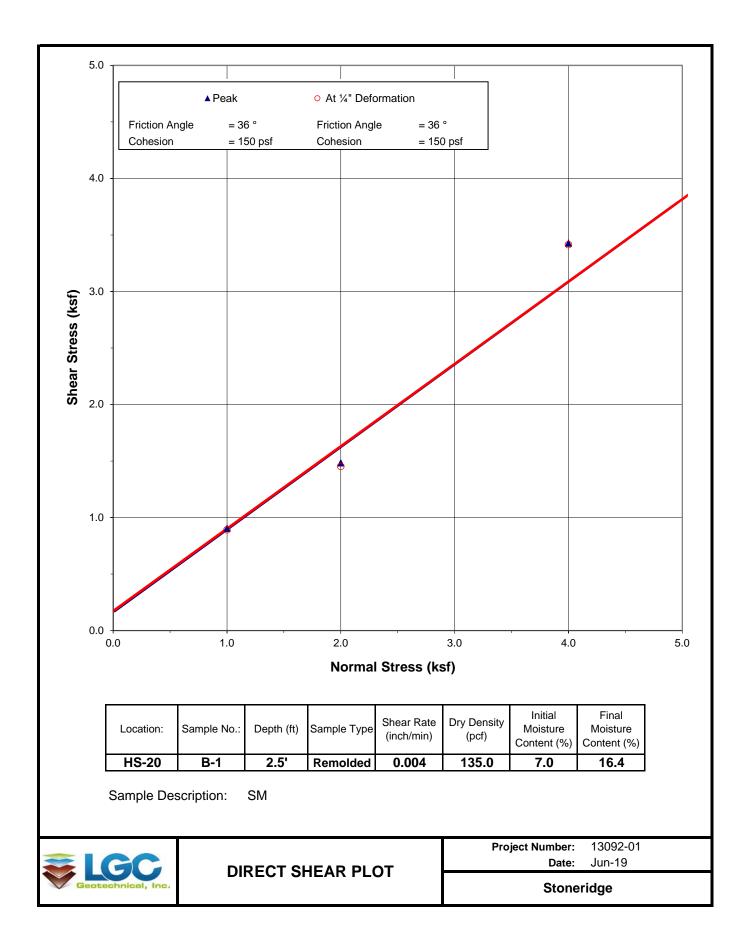
DIRECT SHEAR TEST

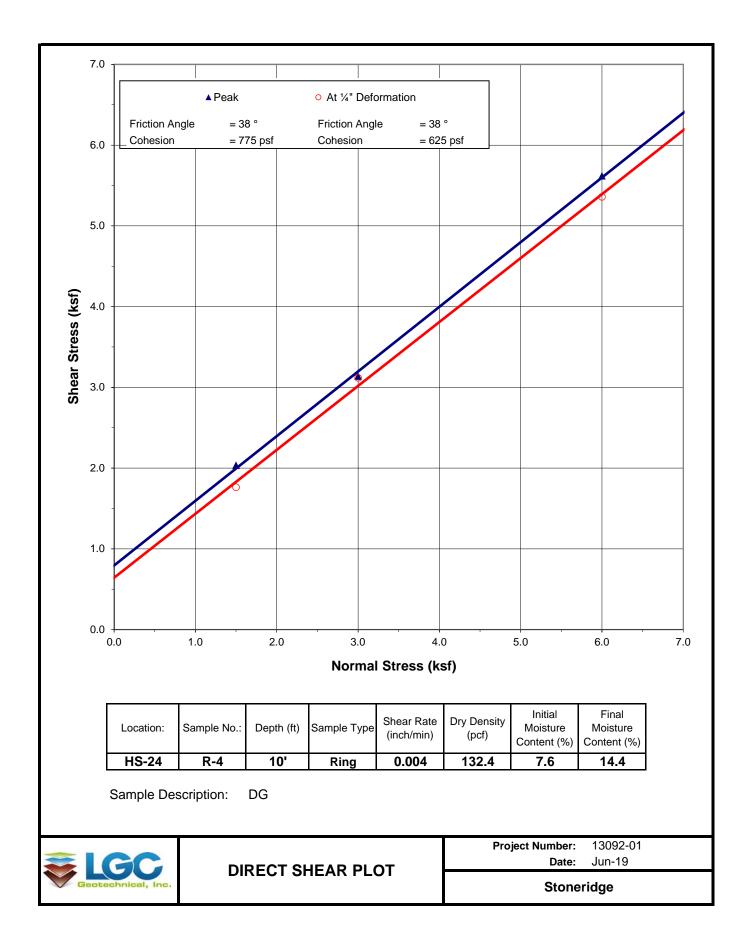
Consolidated Drained - ASTM D 3080

Project Name: Project No.: Boring No.: Sample No.: Soil Identificatio	Richland – Stoneridge13092-01HS-2R-1on:Brown clayey sand (SC)	Tested By: Checked By: Sample Type: Depth (ft.):	<u>G. Bathala</u> <u>J. Ward</u> <u>Ring</u> 2.5	Date: Date:	04/20/16 04/27/16
	Sample Diameter(in):	2.415	2.415	2.415	
	Sample Thickness(in.):	1.000	1.000	1.000	
	Weight of Sample + ring(gm):	196.20	198.05	202.46	
	Weight of Ring(gm):	45.31	45.16	45.73	
	Before Shearing				_
	Weight of Wet Sample+Cont.(gm):	202.91	202.91	202.91	
	Weight of Dry Sample+Cont.(gm):	193.08	193.08	193.08	
	Weight of Container(gm):	64.62	64.62	64.62	
	Vertical Rdg.(in): Initial	0.0000	0.2461	0.2583	
	Vertical Rdg.(in): Final	-0.0052	0.2531	0.2721	
	After Shearing				-
	Weight of Wet Sample+Cont.(gm):	221.23	233.99	218.56	
	Weight of Dry Sample+Cont.(gm):	202.23	216.08	200.81	
	Weight of Container(gm):	66.16	76.26	57.73	
	Specific Gravity (Assumed):	2.70	2.70	2.70	
	Water Density(pcf):	62.43	62.43	62.43	





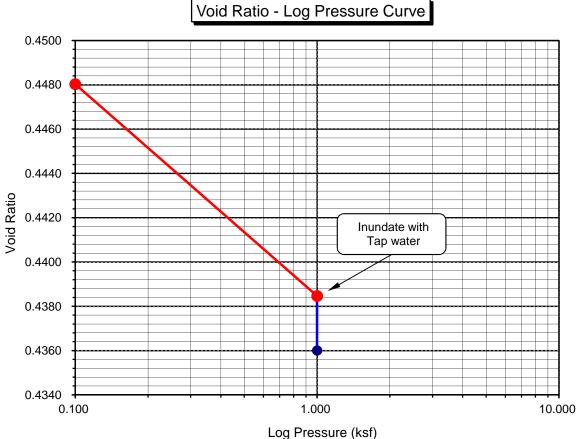

DIRECT SHEAR TEST


Consolidated Drained - ASTM D 3080

Project Name: Project No.: Boring No.: Sample No.: Soil Identificati	<u>13092-01</u> <u>HS-6</u> <u>R-2</u>	Tested By: Checked By: Sample Type: Depth (ft.):	<u>G. Bathala</u> <u>J. Ward</u> <u>Ring</u> <u>5.0</u>	Date: Date:	04/20/16 04/27/16
	Sample Diameter(in):	2.415	2.415	2.415	1
	Sample Thickness(in.):	1.000	1.000	1.000	
	Weight of Sample + ring(gm):	209.75	212.49	212.51	
	Weight of Ring(gm):	45.08	45.69	45.31	
	Before Shearing				_
	Weight of Wet Sample+Cont.(gm):	232.84	232.84	232.84	
	Weight of Dry Sample+Cont.(gm):	220.68	220.68	220.68	
	Weight of Container(gm):	71.79	71.79	71.79	
	Vertical Rdg.(in): Initial	0.2353	0.2783	0.0000	
	Vertical Rdg.(in): Final	0.2265	0.2752	-0.0056	
	After Shearing				_
	Weight of Wet Sample+Cont.(gm):	208.36	239.44	227.46	
	Weight of Dry Sample+Cont.(gm):	182.92	217.77	206.20	
	Weight of Container(gm):	39.05	65.67	57.44	
	Specific Gravity (Assumed):	2.70	2.70	2.70	
	Water Density(pcf):	62.43	62.43	62.43	

Project Name: Project No.: Boring No.: Sample No.: Sample Descript	Richland – Ston 13092-01 HS-10 R-3 ion: Dark bro	eridge wn silty, clayey s	and (SC-SM)	Tested By: Checked By: Sample Type: Depth (ft.)		ate: 04/20/16 ate: 04/27/16
Initial Dry Dens	sity (pcf):	116.4]	Final Dry Den	sity (pcf):	117.4
Initial Moisture	(%):	7.49		Final Moisture (%) : 13.9		13.9
Initial Length (in	n.):	1.0000		Initial Void Ratio: 0.4485		0.4485
Initial Dial Read	ding:	0.2653		Specific Gravity(assumed): 2.70		2.70
Diameter(in):		2.415		Initial Saturation	on (%)	45.1
Pressure (p) (ksf)	Final Reading (in)	Apparent Thickness (in)	Load Compliance (%)	Swell (+) Settlement (-) % of Sample Thickness	Void Ratio	Corrected Deformation (%)
0.100	0.2650	0.9997	0.00	-0.03	0.4480	-0.03
1.000	0.2567	0.9914	0.17	-0.86	0.4385	-0.69

0.17


-1.03

Percent Swell (+) / Settlement (-) After Inundation = -0.17

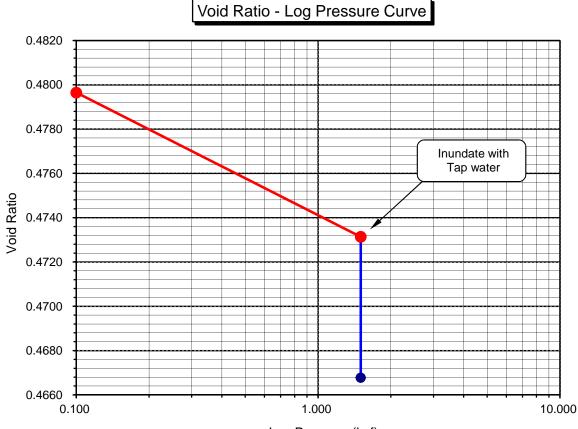
0.9897

0.2550

H2O

Swell-Settlement HS-10, R-3 @ 7.5

<u>-0</u>.86


0.4360

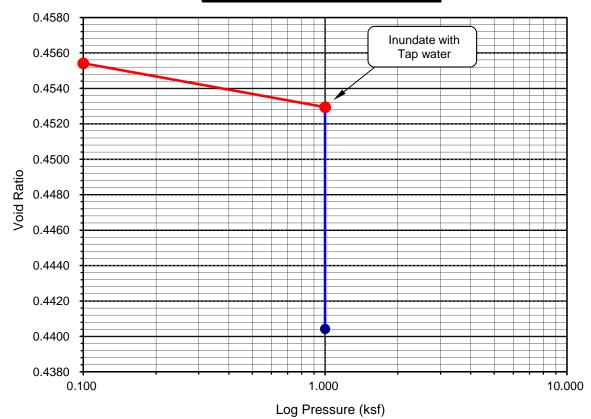
Project Name: Project No.:	Stoner	<u> </u>	,	G. Bathala J. Ward	Date: _ Date:	07/18/19 07/24/19
Boring No.:	HS-15	Sample	Type:	Ring		
Sample No.:	R-4	Depth (ft	t.)	10.0		
Sample Descript	tion:	Light olive brown well-graded sand with silt (SW-SM	N)			

Initial Dry Density (pcf):	113.9	Final Dry Density (pcf):	114.9
Initial Moisture (%):	1.91	Final Moisture (%) :	14.2
Initial Length (in.):	1.0000	Initial Void Ratio:	0.4796
Initial Dial Reading:	0.2809	Specific Gravity(assumed):	2.70
Diameter(in):	2.415	Initial Saturation (%)	10.7

Pressure (p) (ksf)	Final Reading (in)	Apparent Thickness (in)	Load Compliance (%)	Swell (+) Settlement (-) % of Sample Thickness	Void Ratio	Corrected Deformation (%)
0.100	0.2809	1.0000	0.00	0.00	0.4796	0.00
1.500	0.2739	0.9930	0.26	-0.70	0.4731	-0.44
H2O	0.2696	0.9887	0.26	-1.13	0.4668	-0.87

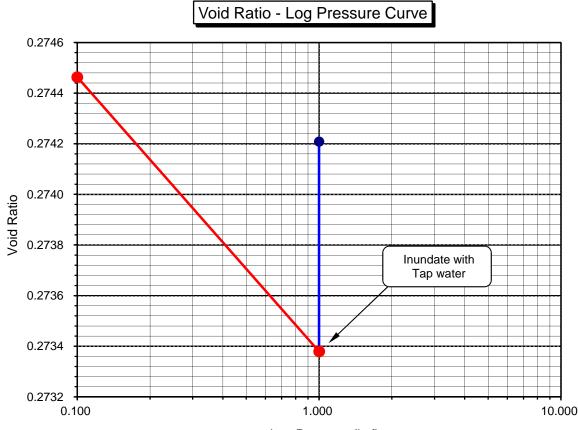
Percent Swell (+) / Settlement (-) After Inundation = -0.43

Log Pressure (ksf)


Project Name:	Stoner	dge Tested By:	G. Bathala	Date:	07/19/19
Project No.:	13092	01 Checked By:	J. Ward	Date:	07/24/19
Boring No.:	HS-22	Sample Type:	Ring		
Sample No.:	R-3	Depth (ft.)	7.5		
Sample Descrip	tion:	Light olive brown well-graded sand with silt (SW-SM)			

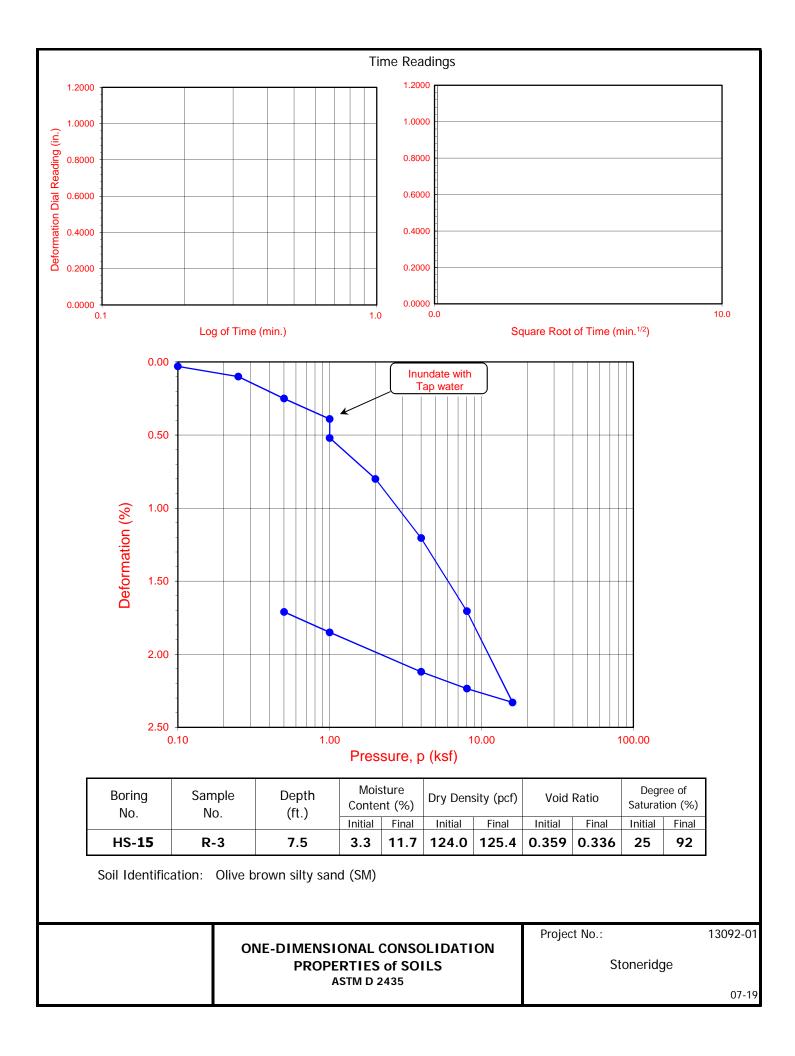
Initial Dry Density (pcf):	115.8	Final Dry Density (pcf):	117.0
Initial Moisture (%):	1.10	Final Moisture (%) :	13.7
Initial Length (in.):	1.0000	Initial Void Ratio:	0.4554
Initial Dial Reading:	0.2798	Specific Gravity(assumed):	2.70
Diameter(in):	2.415	Initial Saturation (%)	6.5

Pressure (p) (ksf)	Final Reading (in)	Apparent Thickness (in)	Load Compliance (%)	Swell (+) Settlement (-) % of Sample Thickness	Void Ratio	Corrected Deformation (%)
0.100	0.2798	1.0000	0.00	0.00	0.4554	0.00
1.000	0.2761	0.9963	0.20	-0.37	0.4529	-0.17
H2O	0.2675	0.9877	0.20	-1.23	0.4404	-1.03


Percent Swell (+) / Settlement (-) After Inundation = -0.86

Project Name: Project No.: Boring No.: Sample No.: Sample Descript	Stoneridge 13092-01 HS-24 R-2 tion: Yellowist	n brown silty, clay	yey sand (SC-SM	Tested By: Checked By: Sample Type: Depth (ft.)	G. Bathala Date: J. Ward Date: Ring 5.0	07/19/19 07/24/19
Initial Dry Dens	sity (pcf):	132.2		Final Dry Den	sity (pcf):	132.3
Initial Moisture	(%):	8.11		Final Moisture	(%):	11.1
Initial Length (in	n.):	1.0000		Initial Void Ra	tio:	0.2748
Initial Dial Read	ding:	0.3215		Specific Gravi	ty(assumed):	2.70
Diameter(in):		2.415		Initial Saturation	on (%)	79.6
			_			
Pressure (p) (ksf)	Final Reading (in)	Apparent Thickness (in)	Load Compliance (%)	Swell (+) Settlement (-) % of Sample Thickness	Void Ratio	Corrected Deformation (%)
0.100	0.32120	0.9997	0.00	-0.03	0.2745	-0.03
1.000	0.31765	0.9962	0.27	-0.39	0.2734	-0.12
H2O	0.31830	0.9968	0.27	-0.32	0.2742	-0.05

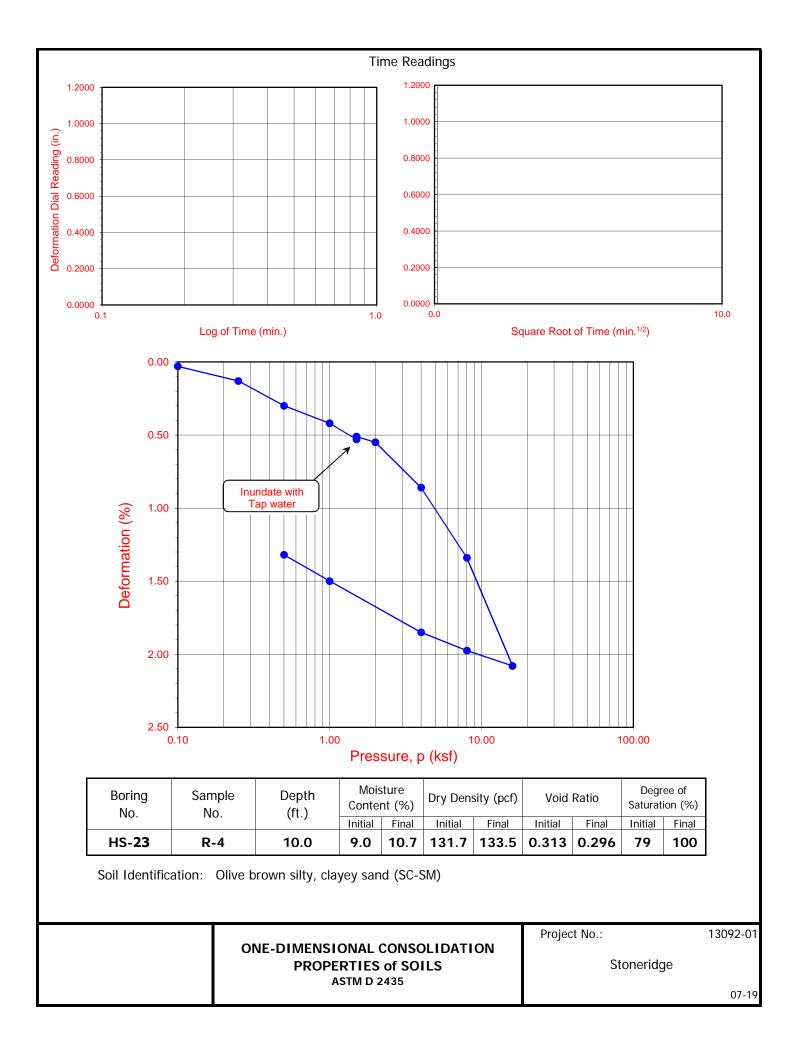
Percent Swell (+) / Settlement (-) After Inundation = 0.07



Log Pressure (ksf)

ONE-DIMENSIONAL CONSOLIDATION PROPERTIES of SOILS ASTM D 2435

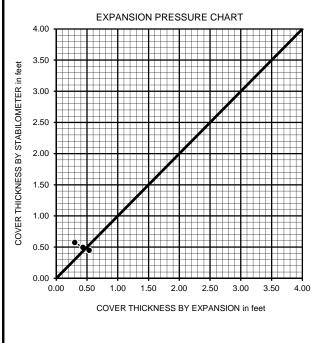
Project N	ame:	Stonerid	ge							Test	ed B	y: <u>G</u> .	Batl	hala	Da	ate:	07	/15	5/1	9
Project N	0.:	13092-01	I							Check	ked By	y: J.	Ward	b	Da	ate:	07	/24	/1	9
Boring No	D.:	HS-15								Dept	h (ft.):	7.5							
Sample N	lo.:	R-3		=						Sam	ple 1	Гуре	:		Ring	1	_			
•		Olive bro	wn silty s	and (SM)							•	51		-		,	-			
			·····, ·														-			
Sample D	iameter (ir	ı.)	2.415	0.365	-															
Sample T	hickness (i	n.)	1.000		-															
Wt. of Sa	mple + Rir	ng (g)	199.67	0.360	-						nunda	ate w	ith							
Weight of	Ring (g)		45.65								Тар	wate	r							
Height af	ter consol.	(in.)	0.9829		-															
Before	Test			0.355	-			+	K											-
Wt.Wet S	ample+Co	nt. (g)	335.83		-															
Wt.of Dry	Sample+	Cont. (g)	326.41	0.350	-															
Weight of	Container	(g)	39.23		-															
Initial Mo	isture Cont	ent (%)	3.3	Void Ratio	-															
Initial Dry	Density (ocf)	124.0	2 0.345						\rightarrow										-
Initial Sat	uration (%)	25	oic	-															
Initial Ver	tical Readi	ng (in.)	0.3017	-	-															
After T	est			0.340	-							N								
Wt.of We	t Sample+	Cont. (g)	280.67		-															
Wt. of Dr	y Sample+	Cont. (g)	263.36	0.335	-															_
Weight of	Container	(g)	69.53		-															
Final Mois	sture Conte	ent (%)	11.68		-									\mathbf{A}						
Final Dry	Density (ocf)	125.4	0.330	-															
Final Satu	iration (%))	92											_						
Final Vert	ical Readir	ıg (in.)	0.2818	0.325	-															
Specific G	iravity (ass	umed)	2.70		0.10			1	.00				10.	.00					10	00.
Water De	nsity (pcf)		62.43						Pre	essure	e, p	(ksf	i)							
1																				
Pressure	Final	Apparent	Load	Deformation		Correcte	d				Ti	me	Rea	ding	js					
(p)	Reading	Thickness	Compliance	% of Sample	Void Ratio	Deforma	-								-				_	


Final	Apparent	Load	Deformation % of	Void	Corrected		Lime Readings				
Reading (in.)	(in.)	(%)	Sample Thickness	Ratio	tion (%)		Date	Time	Elapsed Time (min)	Square Root of Time	Dial Rdgs. (in.)
0 301/	0 0007	0.00	0.03	0 350	0.03						
						-					
						F					
						F					
						-					
						F					
						F					
						F					
						F					
						Ē					
0.2751	0.9734	0.54	2.66	0.330	2.12	Ē					
0.2796	0.9779	0.36	2.21	0.334	1.85	Ī					
0.2818	0.9801	0.28	1.99	0.336	1.71	Ī					
	Reading (in.) 0.3002 0.2982 0.2960 0.2947 0.2910 0.2857 0.2791 0.2707 0.2729 0.2751 0.2796	Reading (in.) Thickness (in.) 0.3014 0.9997 0.3002 0.9985 0.2982 0.9965 0.2960 0.9943 0.2947 0.9930 0.2947 0.9930 0.2951 0.9843 0.2947 0.9843 0.2957 0.9840 0.2791 0.9774 0.2707 0.9690 0.2729 0.9712 0.2751 0.9734 0.2796 0.9779	Reading (in.)Thickness (in.)Compliance (%)0.30140.99970.000.30020.99850.050.29820.99650.100.29600.99430.180.29470.99300.180.29100.98930.270.28570.98400.400.27910.97740.560.27070.96900.770.27290.97120.650.27510.97340.540.27960.97790.36	Final Reading (in.)Apparent Thickness Compliance (%)Load % of Sample Thickness0.30140.99970.000.030.30020.99850.050.150.29820.99650.100.350.29600.99430.180.570.29470.99300.180.700.29100.98930.271.070.28570.98400.401.610.27910.97740.562.270.27070.96900.773.100.27290.97340.542.660.27960.97790.362.21	Final Reading (in.)Apparent Thickness (in.)Load Compliance (%)% of Sample ThicknessVoid Ratio0.30140.99970.000.030.3590.30020.99850.050.150.3580.29820.99650.100.350.3560.29600.99430.180.570.3540.29470.99300.180.700.3520.29100.98930.271.070.3480.28570.98400.401.610.3430.27910.97740.562.270.3360.27070.96900.773.100.3270.27290.97340.542.660.3300.27960.97790.362.210.334	Final Reading (in.)Apparent Thickness (in.)Load Compliance (%)% of Sample ThicknessVoid RatioCorrected Deforma- tion (%)0.30140.99970.000.030.3590.030.30020.99850.050.150.3580.100.29820.99650.100.350.3560.250.29600.99430.180.570.3540.390.29470.99300.180.700.3520.520.29100.98930.271.070.3480.800.28570.98400.401.610.3431.210.27010.97740.562.270.3361.710.27070.96900.773.100.3272.330.27290.97120.652.890.3292.240.27510.97340.542.660.3302.120.27960.97790.362.210.3341.85	Final Reading (in.)Apparent Thickness (in.)Load Compliance (%)% of Sample ThicknessVoid RatioCorrected Deforma- tion (%)0.30140.99970.000.030.3590.030.30020.99850.050.150.3580.100.29820.99650.100.350.3560.250.29600.99430.180.570.3540.390.29470.99300.180.700.3520.520.29100.98930.271.070.3480.800.28570.98400.401.610.3431.210.27070.96900.773.100.3272.330.27290.97120.652.890.3292.240.27510.97340.542.660.3302.120.27960.97790.362.210.3341.85	Final Reading (in.)Apparent Compliance (%)Load Compliance Sample ThicknessVoid RatioCorrected Deforma- tion (%)Date0.30140.99970.000.030.3590.03Date0.30020.99850.050.150.3580.100.29820.99650.100.350.3560.250.29600.99430.180.570.3540.390.29470.99300.180.700.3520.520.29100.98930.271.070.3480.800.28570.98400.401.610.3431.210.27070.96900.773.100.3272.330.27290.97120.652.890.3292.240.27510.97340.542.660.3302.120.27960.97790.362.210.3341.85	Final Reading (in.) Apparent Thickness Load Compliance (%) % of Sample Thickness Void Ratio Corrected Deforma- tion (%) Date Time 0.3014 0.9997 0.00 0.03 0.359 0.03 Date Time 0.3002 0.9985 0.05 0.15 0.358 0.10 Date Time 0.2982 0.9965 0.10 0.35 0.356 0.25 0.2960 0.9943 0.18 0.57 0.354 0.39 <	Hinal Reading (in.) Apparent Thickness (in.) Load Compliance (%) % of Sample Thickness Void Ratio Corrected Deforma- tion (%) Date Time Elapsed Time (min) 0.3014 0.9997 0.00 0.03 0.359 0.03 Date Time Elapsed 0.3002 0.9985 0.05 0.15 0.358 0.10 Elapsed Time Elapsed </td <td>Final Reading (in.) Thickness (in.) Load Compliance (%) % of Sample Thickness Void Ratio Corrected Deforma- tion (%) Date Time Elapsed Time (min) Square Root of Time 0.3014 0.99977 0.00 0.03 0.359 0.03 Date Time Elapsed Time (min) Square Root of Time 0.3002 0.9985 0.05 0.15 0.358 0.10 25 <</td>	Final Reading (in.) Thickness (in.) Load Compliance (%) % of Sample Thickness Void Ratio Corrected Deforma- tion (%) Date Time Elapsed Time (min) Square Root of Time 0.3014 0.99977 0.00 0.03 0.359 0.03 Date Time Elapsed Time (min) Square Root of Time 0.3002 0.9985 0.05 0.15 0.358 0.10 25 <

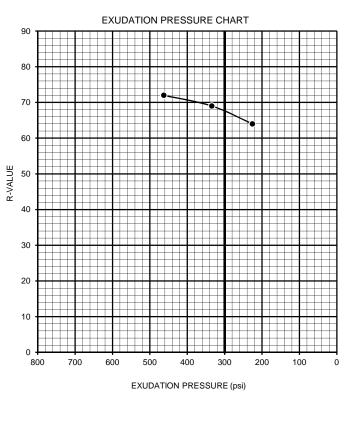
ONE-DIMENSIONAL CONSOLIDATION PROPERTIES of SOILS ASTM D 2435

Project Name:	Stonerido	ge									Te	este	d B	y: <u>G</u> .	Ba	thala	Da	ate:	07	/15	5/1	9
Project No.:	13092-01	I									Ch	necke	d By	/: <u>J.</u>	Wa	rd	Da	ate:	07	/24	1/1	9
Boring No.:	HS-23										De	epth	(ft.):	10	.0						
Sample No.:	R-4										Sa	amp	le T	уре):		Ring	3				
Soil Identification:	Olive bro	wn silty, c	laye	y sand	(SC-SI	M)										-						
-				0.315 -															_			
Sample Diameter (in	.)	2.415		0.010																		
Sample Thickness (in	ı.)	1.000		•																		
Wt. of Sample + Ring	g (g)	215.12		0.310																		
Weight of Ring (g)		42.58		0.010				\downarrow														
Height after consol. ((in.)	0.9868		-																		
Before Test				0.305						1												
Wt.Wet Sample+Con	ıt. (g)	390.82		0.000					Щ													
Wt.of Dry Sample+C	ont. (g)	361.89		-		l Ir	nundat		h													
Weight of Container	(g)	39.21	0	0.300			Tap w	ater	_													
Initial Moisture Conte	ent (%)	9.0	Void Ratio	0.500										N								
Initial Dry Density (p	cf)	131.7	R	-										$ \rangle$								
Initial Saturation (%))	79	oic	0.295			•															
Initial Vertical Readin	ng (in.)	0.3051	>	0.295					\mathbb{N}													
After Test				-												N						
Wt.of Wet Sample+C	Cont. (g)	278.57		0.290							\mathbf{i}											
Wt. of Dry Sample+C	Cont. (g)	261.60		0.230																		
Weight of Container	(g)	60.64		-										\square								
Final Moisture Conter	nt (%)	10.71		0.285													2					
Final Dry Density (p	cf)	133.5		0.205																		
Final Saturation (%)		100		-																		
Final Vertical Reading	g (in.)	0.2904		0.280																		
Specific Gravity (assu	umed)	2.77		0.280 -	0				1.	00					1	0.00					1	00.
Water Density (pcf)		62.43								Pre	essi	ure,	p ((ksi	F)							

Pressure	Final Reading	Apparent Thickness	Load Compliance	Deformation % of	Void	Corrected Deforma-	Time Readings				
(p) (ksf)	(in.)	(in.)	(%)	Sample Thickness	Ratio	tion (%)	Date	Time	Elapsed Time (min)	Square Root of Time	Dial Rdgs. (in.)
0.10	0.3048	0.9997	0.00	0.03	0.313	0.03					
0.25	0.3036	0.9985	0.02	0.15	0.311	0.13					
0.50	0.3017	0.9966	0.04	0.34	0.309	0.30					
1.00	0.3002	0.9951	0.07	0.49	0.308	0.42					
1.50	0.2989	0.9938	0.09	0.62	0.306	0.53					
1.50	0.2991	0.9940	0.09	0.60	0.306	0.51					
2.00	0.2985	0.9934	0.11	0.66	0.306	0.55					
4.00	0.2947	0.9896	0.18	1.04	0.302	0.86					
8.00	0.2889	0.9838	0.28	1.62	0.296	1.34					
16.00	0.2802	0.9751	0.41	2.49	0.286	2.08					
8.00	0.2818	0.9767	0.36	2.34	0.287	1.98					
4.00	0.2836	0.9785	0.30	2.15	0.289	1.85					
1.00	0.2882	0.9831	0.19	1.69	0.293	1.50					
0.50	0.2904	0.9853	0.15	1.47	0.296	1.32					

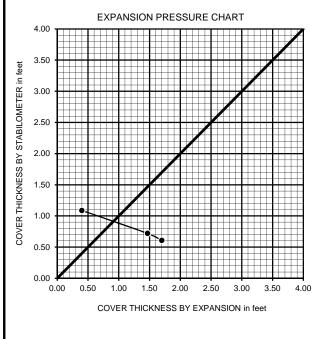

R-VALUE TEST RESULTS

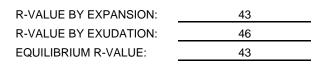
DOT CA Test 301

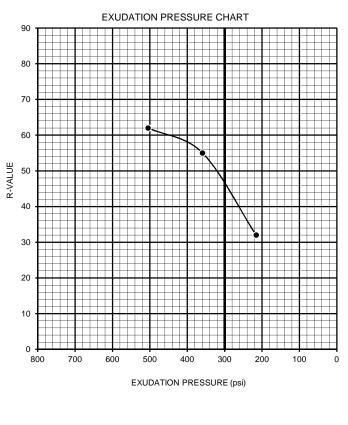

PROJECT NAME:	Richland – Stoneridge	PROJECT NUMBER:	13092-01
BORING NUMBER:	HS-3	DEPTH (FT.):	0-3
SAMPLE NUMBER:	<u>B-1</u>	TECHNICIAN:	S. Felter
SAMPLE DESCRIPTION:	Brown silty sand (SM)	DATE COMPLETED:	4/21/2016

TEST SPECIMEN	а	b	С
MOISTURE AT COMPACTION %	9.2	9.7	10.2
HEIGHT OF SAMPLE, Inches	2.46	2.48	2.53
DRY DENSITY, pcf	129.5	131.8	130.1
COMPACTOR PRESSURE, psi	350	240	175
EXUDATION PRESSURE, psi	463	334	225
EXPANSION, Inches x 10exp-4	16	13	9
STABILITY Ph 2,000 lbs (160 psi)	30	32	36
TURNS DISPLACEMENT	4.19	4.50	4.88
R-VALUE UNCORRECTED	72	69	64
R-VALUE CORRECTED	72	69	64

DESIGN CALCULATION DATA	а	b	с
GRAVEL EQUIVALENT FACTOR	1.0	1.0	1.0
TRAFFIC INDEX	5.0	5.0	5.0
STABILOMETER THICKNESS, ft.	0.45	0.50	0.58
EXPANSION PRESSURE THICKNESS, ft.	0.53	0.43	0.30


R-VALUE TEST RESULTS


DOT CA Test 301


PROJECT NAME:	Richland – Stoneridge	PROJECT NUMBER:	13092-01
BORING NUMBER:	<u>HS-9</u>	DEPTH (FT.):	0-4
SAMPLE NUMBER:	<u>B-1</u>	TECHNICIAN:	S. Felter
SAMPLE DESCRIPTION:	Brown silty, clayey sand (SC-SM)	DATE COMPLETED:	4/21/2016

TEST SPECIMEN	а	b	С
MOISTURE AT COMPACTION %	10.2	10.7	11.6
HEIGHT OF SAMPLE, Inches	2.43	2.42	2.46
DRY DENSITY, pcf	133.3	131.2	129.4
COMPACTOR PRESSURE, psi	250	200	125
EXUDATION PRESSURE, psi	504	359	216
EXPANSION, Inches x 10exp-4	51	44	12
STABILITY Ph 2,000 lbs (160 psi)	40	50	88
TURNS DISPLACEMENT	4.20	4.09	4.37
R-VALUE UNCORRECTED	64	57	32
R-VALUE CORRECTED	62	55	32

DESIGN CALCULATION DATA	а	b	с
GRAVEL EQUIVALENT FACTOR	1.0	1.0	1.0
TRAFFIC INDEX	5.0	5.0	5.0
STABILOMETER THICKNESS, ft.	0.61	0.72	1.09
EXPANSION PRESSURE THICKNESS, ft.	1.70	1.47	0.40

Appendix D Seismic Refraction Survey Report

SEISMIC REFRACTION SURVEY

RICHLAND STONERIDGE PROJECT

SOUTHEAST OF RAMONA EXPRESSWAY AND RIDER STREET

PERRIS AREA, RIVERSIDE COUNTY, CALIFORNIA

Project No. 193235-1

July 1, 2019

Prepared for:

LGC Geotechnical, Inc. 131 Calle Iglesia, Suite 200 San Clemente, CA 92672

Consulting Engineering Geology & Geophysics

LGC Geotechnical, Inc. 131 Calle Iglesia, Suite 200 San Clemente, CA 92672 July 1, 2019 Project No. 193235-1

Attention: Mr. Kevin Dyekman, Project Geologist

Regarding: Seismic Refraction Survey Richland Stoneridge Project Southeast of Ramona Expressway and Rider Street Perris Area, Riverside County, California LGC Project No. 13092-01

EXECUTIVE SUMMARY

As requested, this firm has performed a geophysical survey using the seismic refraction method for the above-referenced site. The purpose of this investigation was to assess the general seismic velocity characteristics of the underlying earth materials and to evaluate whether high velocity bedrock materials (non-rippable) may be present. Additionally, the structure and seismic velocity distribution of the subsurface earth materials was also assessed. This report will describe in further detail the procedures used and the results of our findings, along with presentation of representative seismic models for the survey traverse.

For this study, five survey traverses were performed across the subject property, as selected by your office. The traverses were located in the field by use of Google[™] Earth imagery (2019) and GPS coordinates. The approximate locations of these traverses are shown on the Seismic Line Location Map, Plate 1, of which the base map is a captured Google[™] Earth image (2019).

This opportunity to be of service is sincerely appreciated. If you should have questions regarding this report or do not understand the limitations of this study or the data and results that are presented, please do not hesitate to contact our office.

Respectfully submitted, **TERRA GEOSCIENCES**

Donn C. Schwartzkopf Principal Geophysicist PGP 1002

TABLE OF CONTENTS

	Page No.
INTRODUCTION	1
SEISMIC REFRACTION SURVEY	2
Methodology	2
Field Procedures	2
Data Processing	3
SUMMARY OF GEOPHYSICAL INTERPRETATION	4
Velocity Layer V1	5
Velocity Layer V2	5
Velocity Layer V3	5
GENERALIZED RIPPABILITY CHARACTERISTICS OF BEDROCK	6
Rippable Condition (0 - 4,000 ft/sec)	9
Marginally Rippable Condition (4,000 - 7,000 ft/sec)	9
Non-Rippable Condition (7,000 ft/sec or greater)	9
GEOLOGIC & EARTHWORK CONSIDERATIONS	10
SUMMARY OF FINDINGS AND CONCLUSIONS	10
Velocity Layer V1	10
Velocity Layer V2	11
Velocity Layer V3	11
CLOSURE	11
ILLUSTRATIONS	
Figure 1- Geologic Map	1
Table 1- Velocity Summary of Seismic Survey Lines	6
Table 2- Caterpillar Rippability Chart (D9 Ripper)	7
Table 3- Standard Caltrans Rippability chart Table 4- Summary of Rock Engineering Properties	7 7
Figure 2- Caterpillar D9R Ripper Performance Chart	8
Seismic Line Location Map	Plate 1
APPENDICES	
Layer Velocity Models	Appendix A
Refraction Tomographic Models	Appendix B
	Appendix C
References	Appendix D

INTRODUCTION

The subject study area is located southeast of Ramona Expressway and Rider Street, in the Perris area of Riverside County, California. Topographically, the subject study area is situated along the northwestern flank of some low-lying unnamed hills just south of the Bernasconi Hills, which is covered with dense shrub brush and annual weeds and grasses, with scattered numerous large boulder outcrops.

Geomorphically, the subject study area is located within the northwestern portion of the Perris Block, which is an eroded mass of Cretaceous and older crystalline rock forming generally flat-lying erosion surfaces now present at various elevations. More specifically, the subject property is located within the western transition zone of the southern Peninsular Ranges batholith, along the northwestern portion of the Cretaceous age Lakeview Mountains Valley pluton. Locally, as shown on Figure 1 below, surficial mapping by Morton (2003) indicates the subject study area to be underlain by Cretaceous age granitic rocks generally described as being a gray, medium- to coarse-grained, massive to foliated, biotite hornblende tonalite (map symbol Klmt). For reference, the approximate locations of the seismic traverses are indicated as the red lines in Figure 1 below.

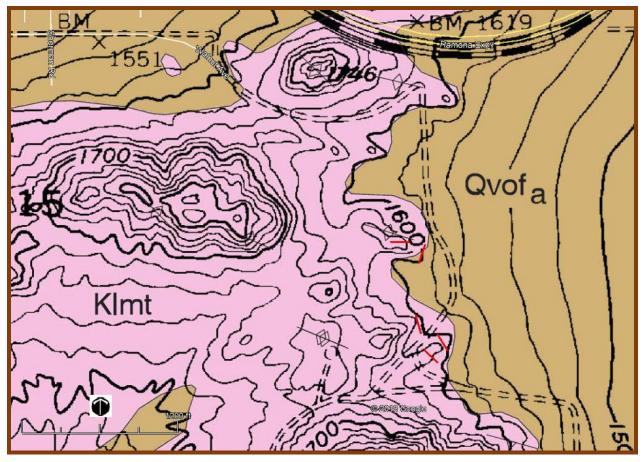


FIGURE 1- Geologic Map (Morton, 2003), Seismic traverses shown as red lines.

TERRA GEOSCIENCES

SEISMIC REFRACTION SURVEY

<u>Methodology</u>

The seismic refraction method consists of measuring (at known points along the surface of the ground) the travel times of compressional waves generated by an impulsive energy source and can be used to estimate the layering, structure, and seismic acoustic velocities of subsurface horizons. Seismic waves travel down and through the soils and rocks, and when the wave encounters a contact between two earth materials having different velocities, some of the wave's energy travels along the contact at the velocity of the lower layer. The fundamental assumption is that each successively deeper layer has a velocity greater than the layer immediately above it. As the wave travels along the contact, some of the wave's energy is refracted toward the surface where it is detected by a series of motion-sensitive transducers (geophones). The arrival time of the seismic wave at the geophone locations can be related to the relative seismic velocities of the subsurface layers in feet per second (fps), which can then be used to aid in interpreting both the depth and type of materials encountered.

Field Procedures

Five seismic refraction survey lines (Seismic Lines S-1 through S-5) have been performed along representative areas across the subject study area as selected by you. The traverses were located in the field by use of GoogleTM Earth imagery (2019) and GPS coordinates and have been delineated on the Seismic Line Location Map, as presented on Plate 1. The survey traverses were each 150 feet in length, which consisted of a total of twenty-four 14-Hertz geophones, spaced at regular six-foot intervals, in order to detect both the direct and refracted waves. A 16-pound sledge-hammer was used as the energy source to produce the seismic waves. Multiple hammer impacts were utilized at each shot point in order to increase the signal to noise ratio, which enhanced the primary seismic "P"-waves.

The seismic wave arrivals were digitally recorded in SEG-2 format on a Geometrics StrataVisor[™] NZXP model signal enhancement refraction seismograph. Seven shot points were utilized along each spread using forward, reverse, and several intermediate locations in order to obtain high resolution survey data for velocity analysis and depth modeling purposes. The data was acquired using a sampling rate of 0.0625 milliseconds having a record length of 0.064 seconds. No acquisition filters were used during data collection.

During acquisition, the seismograph displays the seismic wave arrivals on the computer screen which were used to analyze the arrival time of the primary seismic "P"-waves at each geophone station, in the form of a wiggle trace for quality control purposes in the field. If spurious "noise" was observed, the shot location was resampled during relatively quieter periods. Each geophone and seismic shot location were surveyed using a hand level and ruler for topographic correction, with "0" being the lowest point along each survey line.

Data Processing

The recorded seismic data was subsequently transferred to our office computer for processing and analyzing purposes, using the computer programs **SIPwin** (**S**eismic Refraction Interpretation **P**rogram for **Win**dows) developed by Rimrock Geophysics, Inc. (2004); **Refractor** (Geogiga, 2001-2018); and **Rayfract**[™] (Intelligent Resources, Inc., 1996-2019). All of the computer programs perform their individual analyses using exactly the same input data, which includes the first-arrival times of the "P"-waves and the survey line geometry.

- > **SIPwin** is a ray-trace modeling program that evaluates the subsurface using layer assignments based on time-distance curves and is better suited for layered media, using the "Seismic Refraction Modeling by Computer" method (Scott, 1973). The first step in the modeling procedure is to compute layer velocities by least-squares techniques. Then the program uses the delay-time method to estimate depths to the top of layer-2. A forward modeling routine traces rays from the shot points to each geophone that received a first-arrival ray refracted along the top of layer-2. The travel time of each such ray is compared with the travel time recorded in the field by the seismic system. The program then adjusts the layer-2 depths so as to minimize discrepancies between the computed ray-trace travel times and the first arrival times picked from the seismic waveform record. The process of ray tracing and model adjustment is repeated a total of six times to improve the accuracy of depths to the top of laver-2. This first-arrival picks were then used to generate the Layer Velocity Models using the **SIPwin** computer program, which presents the subsurface velocities as individual layers and are presented within Appendix A for reference. In addition, the associated Time-Distance Plot for each survey line, which shows the individual data picks of the first "P-wave" arrival times, also appears in Appendix A.
- > **Refractor** is seismic refraction software that also evaluates the subsurface using layer assignments utilizing interactive and interchangeable analytical methods that include the Delay-Time method, the ABC method, and the Generalized Reciprocal Method (GRM). These methods are used for defining irregular non-planar refractors and are briefly described below. The Delay-Time method will measure the delay time depth to a refractor beneath each geophone rather than at shot points. Delaytime is the time spent by a wave to travel up or down through the layer (slant path) compared to the time the wave would spend if traveling along the projection of the slant path on the refractor. The <u>ABC (intercept time) method makes use of critically</u> refracted rays converging on a common surface position. This method involves using three surface to surface travel times between three geophones and the velocity of the first layer in an equation to calculate depth under the central geophone and is applied to all other geophones on the survey line. The GRM method is a technique for delineating undulating refractors at any depth from in-line seismic refraction data consisting of forward and reverse travel-times and is capable of resolving dips of up to 20% and does not over-smooth or average the subsurface refracting layers. In addition, the technique provides an approach for recognizing and compensating for hidden layer conditions.

➤ RayfractTM is seismic refraction tomography software that models subsurface refraction, transmission, and diffraction of acoustic waves which generally indicates the relative structure and velocity distribution of the subsurface using first break energy propagation modeling. An initial 1D gradient model is created using the DeltatV method (Gebrande and Miller, 1985) which gives a good initial fit between modeled and picked first breaks. The DeltatV method is a turning-ray inversion method which delivers continuous depth vs. velocity profiles for all profile stations. These profiles consist of horizontal inline offset, depth, and velocity triples. The method handles real-life geological conditions such as velocity gradients, linear increasing of velocity with depth, velocity inversions, pinched-out layers and outcrops, and faults and local velocity anomalies. This initial model is then refined automatically with a true 2D WET (Wavepath Eikonal Traveltime) tomographic inversion (Schuster and Quintus-Bosz, 1993).

WET tomography models multiple signal propagation paths contributing to one first break, whereas conventional ray tracing tomography is limited to the modeling of just one ray per first break. This computer program performs the analysis by using the same first-arrival P-wave times and survey line geometry that were generated during the layer velocity model analyses. The associated Refraction Tomographic Models which display the subsurface earth material velocity structure, is represented by the velocity contours (isolines displayed in feet/second), supplemented with the colorcoded velocity shading for visual reference, and are presented within Appendix B.

The combined use of these computer programs provided a more thorough and comprehensive analysis of the subsurface structure and velocity characteristics. Each computer program has a specific purpose based on the objective of the analysis being performed. **SIPwin** and **Refractor** were primarily used for detecting generalized subsurface velocity layers providing "weighted average velocities." The processed seismic data of these two programs were compared and averaged to provide a final composite layer velocity model which provided a more thorough representation of the subsurface. **Rayfract**[™] provided tomographic velocity and structural imaging that is very conducive to detecting strong lateral velocity characteristics such as imaging corestones, dikes, and other subsurface structural characteristics.

SUMMARY OF GEOPHYSICAL INTERPRETATION

To begin our discussion, it is important to consider that the seismic velocities obtained within bedrock materials are influenced by the nature and character of the localized major structural discontinuities (foliation, fracturing, relic bedding, etc.), creating anisotropic conditions. Anisotropy (direction-dependent properties of materials) can be caused by "micro-cracks," jointing, foliation, layered or inter-bedded rocks with unequal layer stiffness, small-scale lithologic changes, etc. (Barton, 2007). Velocity anisotropy complicates interpretation and it should be noted that the seismic velocities obtained during this survey may have been influenced by the nature and character of any localized structural discontinuities within the bedrock underlying the subject site.

Generally, it is expected that higher (truer) velocities will be obtained when the seismic waves propagate along direction (strike) of the dominant structure, with a damping effect when the seismic waves travel in a perpendicular direction. Such variable directions can result in velocity differentials of between 2% to 40% depending upon the degree of the structural fabric (i.e., weakly-moderately-strongly foliated, respectively). Therefore, the seismic velocities obtained during our field study and as discussed below, should be considered minimum velocities at this time.

The first computer method described below used for data analysis is the traditional layer method (**SIPwin** and **Refractor**). Using this method, it should be understood that the data obtained represents an average of seismic velocities within any given layer. For example, high seismic velocity boulders, dikes, or other local lithologic inconsistencies, may be isolated within a low velocity matrix, thus yielding an average medium velocity for that layer. Therefore, in any given layer, a range of velocities could be anticipated, which can also result in a wide range of excavation characteristics. In general, the site where locally surveyed, was noted to be characterized by three major subsurface layers (Layers V1, V2, and V3) with respect to seismic velocities.

The following velocity layer summaries have been prepared using the **SIPwin** and **Refractor** analysis, with the representative Layer Velocity Model presented within Appendix A along with the respective Time-Distance Plot.

Velocity Layer V1:

This uppermost velocity layer (V1) is most likely comprised of colluvium, topsoil, wind-blown sands, and/or completely-weathered and fractured bedrock materials. This layer has an average weighted velocity of 1,336 to 1,659 fps, which is typical for these types of unconsolidated surficial earth materials.

Velocity Layer V2:

The second layer (V2) yielded a seismic velocity range of 3,330 to 4,763 fps, which is typical for highly-weathered granitic bedrock materials. This velocity range may indicate the presence of homogeneous weathered bedrock with a relatively wide spaced joint/fracture system and/or the possibility of buried relatively-fresher boulders within a very highly-weathered bedrock matrix.

• <u>Velocity Layer V3</u>:

The third layer (V3) indicates the presence of slightly-weathered bedrock, having a seismic velocity range of 8,279 to 11,260 fps. These higher velocities signify the decreasing effect of weathering as a function of depth and could indicate a slightly-weathered bedrock matrix that has a wide-spaced fracture system, or possibly the presence of abundant widely-scattered buried fresh large crystalline boulders in a moderately-weathered matrix, which based on the abundant large surface rock outcrops exposed across the site, appears likely.

The following table summarizes the results of the survey lines with respect to the "weighted average" seismic velocities for each layer, as indicated on the Layer Velocity Models, presented within Appendix A.

Seismic Line	V1 Layer (fps)	V2 Layer (fps)	V3 Layer (fps)
S-1	1,371	3,657	11,260
S-2	1,389	3,330	8,279
S-3	1,336	4,058	
S-4	1,373	3,498	10,169
S-5	1,659	4,763	10,717

TABLE 1- VELOCITY SUMMARY OF SEISMIC SURVEY LINES

Using **Rayfract**[™], tomographic models were also prepared for comparative purposes to better illustrate the general structure and velocity distribution of the subsurface, using velocity contour isolines, as presented within Appendix B. Although no discrete velocity layers or boundaries are created, these models generally resemble the corresponding overall average layer velocities as presented within Appendix A.

In general, the seismic velocity of the bedrock gradually increases with depth, with occasional lateral velocity differentials suggesting the local presence of buried corestones and/or dike structures. These corestones are expected as numerous bedrock outcrops are scattered across the hillside in the study area. The colors representing the velocity gradients have been standardized on all of the models for comparative purposes.

GENERALIZED RIPPABILITY CHARACTERISTICS OF BEDROCK

A summary of the generalized rippability characteristics of bedrock based on a compilation of rippability performance charts prepared by Caterpillar, Inc. (2018; see Figure 2, Page 8), Caltrans (Stephens, 1978), and Santi (2006), has been provided to aid in evaluating potential excavation difficulties with respect to the seismic velocities obtained along the local areas surveyed. These seismic velocity ranges and rippability potentials have been tabulated below for reference.

Granitic Rock Velocity	Rippability	
< 6,800	Rippable	
6,800 - 8,000	Moderately Rippable	
> 8,000	Non-Rippable	

TABLE 2- CATERPILLAR RIPPABILITY CHART (D9 Ripper)

Additionally, we have provided the Caltrans Rippability Chart as presented below within Table 2 for comparison. These values are from published Caltrans studies (Stephens, 1978) that are based on their experience and which appear to be more conservative than Caterpillar's rippability chart. It should be noted that the type of bedrock was not indicated.

TABLE 3- STANDARD CALTRANS RIPPABILITY CHART

Velocity (feet/sec ±)	Rippability	
< 3,500	Easily Ripped	
3,500 – 5,000	Moderately Difficult	
5,000 - 6,600	Difficult Ripping / Light Blasting	
> 6,600	Blasting Required	

Table 3 is partially modified from the "Engineering Behavior from Weathering Grade" as presented by Santi (2006), which also provides velocity ranges with respect to rippability potentials, along with other rock engineering properties that may be pertinent.

TABLE 4- SUMMARY OF ROCK ENGINEERING PROPERTIES

ENGINEERING PROPERTY: Slightly Weathered Moderately Weathered Highly Weathered Completely Weathered

Excavatability	Blasting necessary	Blasting to rippable	Generally rippable	Rippable
Slope Stability	½ :1 to 1:1 (H:V)	1:1 (H:V)	1:1 to 1.5:1 (H:V)	1.5:1 to 2:1 (H:V)
Schmidt Hammer Value	51 – 56	37 – 48	12 – 21	5 – 20
Seismic Velocity (fps)	8,200 – 13,125	5,000 – 10,000	3,300 – 6,600	1,650 – 3,300

The Caterpillar D9R Ripper Performance Chart (Caterpillar, 2018) has been provided on Figure 2 below for reference.

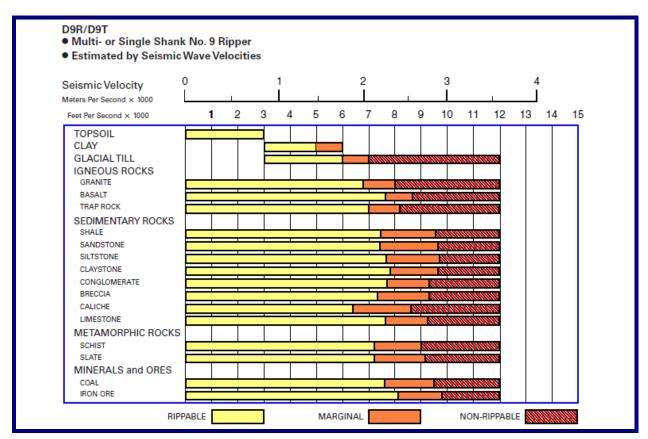


FIGURE 2- Caterpillar D9R Ripper Performance Chart (2018).

For purposes of the discussion in this report with respect to the expected bedrock rippability characteristics, we are assuming that a D9R/D9T dozer will be used as a minimum, such as discussed further below and as shown in Figure 2 above. Smaller excavating equipment will most likely result in slower production rates and possible refusal within relatively lower velocity bedrock materials. It should be noted that the decision for blasting of bedrock materials for facilitating the excavation process is sometimes made based upon economic production reasons and not solely on the rippability (velocity/hardness) characteristics of the bedrock.

A summary of the generalized rippability characteristics of granitic bedrock (such as present within the subject study area) has been provided below to aid in evaluating potential excavation difficulties with respect to the seismic velocities obtained along the local areas that were surveyed. The velocity ranges described below are general averages of Tables 2 and 3 presented in this report (see Page 7) and assume typical, good-working, heavy excavation equipment, such as D9R dozer using a single shank, as described by Caterpillar, Inc. (2000 and 2018).

However, different excavating equipment (i.e., trenching equipment) <u>may not</u> correlate well with these velocity ranges as the rippability performance charts are tailored for conventional bulldozer equipment and cannot be directly correlated. Trenching operations which utilize large excavator-type equipment within granitic bedrock materials, typically encounter very difficult to non-productable conditions where seismic velocities are generally greater than 4,000± fps, and less for smaller backhoe-type equipment.

These average seismic velocity ranges are summarized below:

<u>Rippable Condition (0 - 4,000 ft/sec)</u>:

This velocity range indicates rippable materials which may consist of alluvial-type deposits and decomposed granitic bedrock, with random hardrock floaters. These materials typically break down into silty sands (depending on parent lithologic materials), whereas floaters will require special disposal. Some areas containing numerous hardrock floaters may present utility trench problems. Large floaters exposed at or near finished grade may present problems for footing or infrastructure trenching.

Marginally Rippable Condition (4,000 - 7,000 ft/sec):

This range of seismic velocities indicates materials which may consist of moderately weathered bedrock and/or large areas of fresh bedrock materials separated by weathered fractured zones. These bedrock materials are generally rippable with difficulty by a Caterpillar D9R or equivalent. Excavations may produce material that will partially break down into a coarse, silty to clean sand, with a high percentage of very coarse sand to pebble-sized material depending on the parent bedrock lithology. Less fractured or weathered materials will probably require blasting to facilitate removal.

<u>Non-Rippable Condition (7,000 ft/sec or greater)</u>:

This velocity range includes non-rippable material consisting primarily of moderately fractured bedrock at lower velocities and only slightly fractured or unfractured rock at higher velocities. Materials in this velocity range may be marginally rippable, depending upon the degree of fracturing and the skill and experience of the operator. Tooth penetration is often the key to ripping success, regardless of seismic velocity. If the fractures and joints do not allow tooth penetration, the material may not be ripped effectively; however, pre-blasting or "popping" may induce sufficient fracturing to permit tooth entry. In their natural state, materials with these velocities are generally not desirable for building pad grade, due to difficulty in footing and utility trench excavation. Blasting will most likely produce oversized material, requiring special disposal.

GEOLOGIC & EARTHWORK CONSIDERATIONS

To evaluate whether a particular bedrock material can be ripped or excavated, this geophysical survey should be used in conjunction with the geologic and/or geotechnical report and/or information gathered for the subject project which may describe the physical properties of the bedrock. The physical characteristics of bedrock materials that favor ripping generally include the presence of fractures, faults, and other structural discontinuities, weathering effects, brittleness or crystalline structure, stratification or lamination, large grain size, moisture permeated clay, and low compressive strength. If the bedrock is foliated and/or fractured at depth, this structure could aid in excavation production.

Unfavorable bedrock conditions can include such characteristics as massive and homogeneous formations, non-crystalline structure, absence of planes of weakness, fine-grained materials, and formations of clay origin where moisture makes the material plastic. Use of these physical bedrock conditions along with the subsurface velocity characteristics as presented within this report should aid in properly evaluating the type of equipment that will be necessary and the production levels that can be anticipated for this project. A summary of excavation considerations is included within Appendix C in order to provide you and your grading contractor with a better understanding of the complexities of excavation in bedrock materials, so that proper planning and excavation techniques can be employed.

SUMMARY OF FINDINGS AND CONCLUSIONS

The raw field data was considered to be of good quality with minor amounts of ambient "noise" that was introduced during our survey, originating from vehicular traffic along Domenigoni Parkway to the north and wind sources. Analysis of the data and picking of the primary "P"-wave arrivals was therefore performed with little difficulty, with only minor interpolation of some data points being necessary.

Based on the results of our comparative seismic analyses of the computer programs **SIPwin**, **Refractor**, and **Rayfract**[™], the seismic refraction survey line models appear to generally coincide with one another, with some minor variances due to the methods that these programs process, integrate, and display the input data. The anticipated excavation potentials of the velocity layers encountered locally during our survey are as follows:

Velocity Layer V1:

No excavating difficulties are expected to be encountered within the uppermost, low-velocity V1 layer (average weighted velocity of 1,336 to 1,659 fps) and should excavate with conventional ripping. This surficial velocity layer is expected to be comprised of colluvium, topsoil, wind-blown sands, and/or completely-weathered and fractured bedrock materials.

<u>Velocity Layer V2</u>:

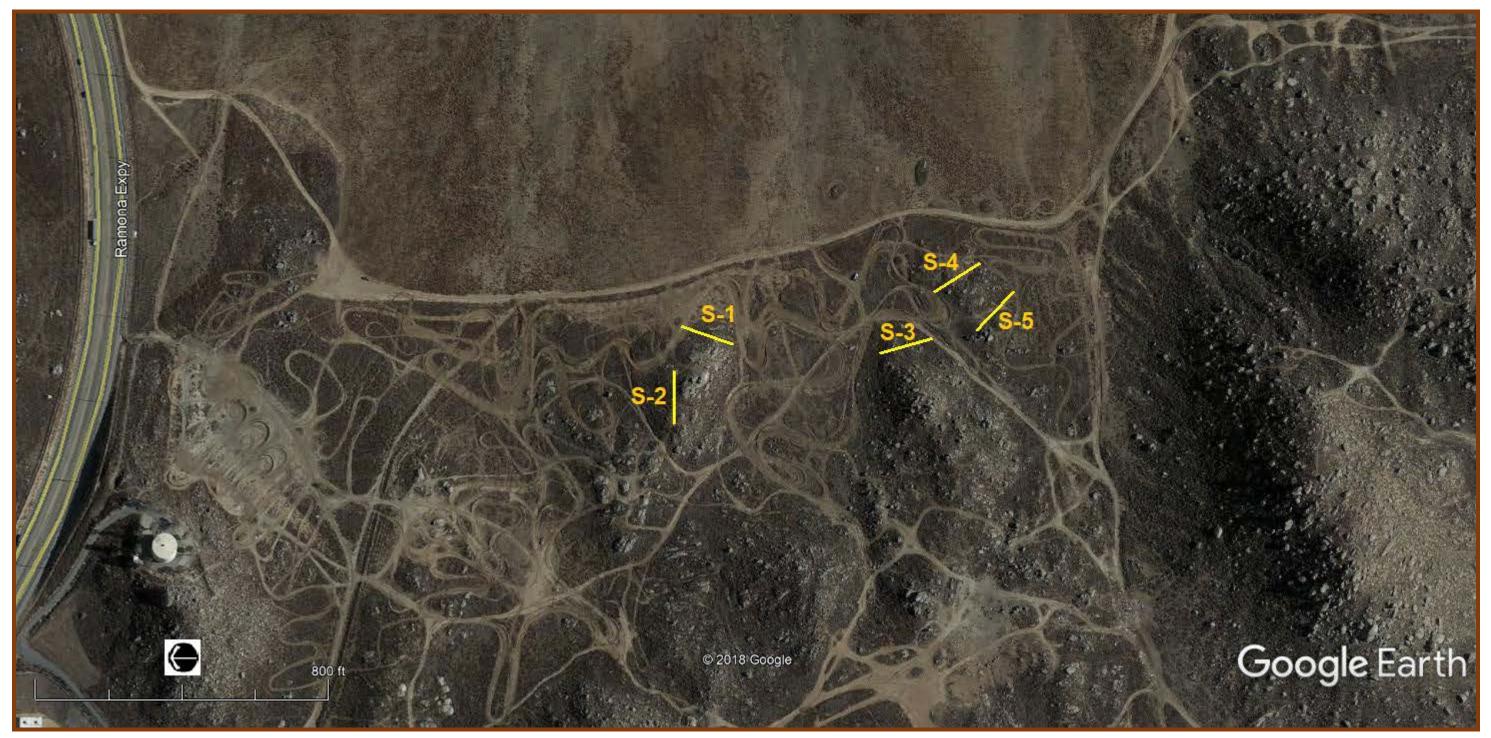
The second V2 layer (average weighted velocity of 3,330 to 4,763 fps) is believed to consist of highly-weathered granitic bedrock. Using the rock classifications as presented within Tables 2 through 4 and Figure 2, seismic wave velocities of less than 6,800± fps are generally noted to be within the threshold for conventional ripping. Isolated floaters (i.e., boulders, corestones, etc.) may be locally present within this layer, based on nearby surficial bedrock outcrops, and could produce somewhat difficult conditions locally. Placement of infrastructure within this velocity layer using excavator equipment may require some breaking and/or light blasting to obtain desired grade.

Velocity Layer V3:

The third V3 layer is believed to consist of slightly-weathered bedrock. Hard excavation difficulties within this velocity layer (average weighted velocity range of 8,279 to 11,260 fps) should be anticipated if encountered during grading. This layer may consist of relatively homogeneous bedrock with wide-spaced fracturing, or may contain higher velocity scattered corestones, dikes, and other lithologic variables, within a relatively lower velocity bedrock matrix. Significant blasting should be anticipated throughout this layer to achieve desired grade, including any infrastructure. Caterpillar (2018; see Figure 2) indicates this velocity range to be "non-rippable" using a D9R dozer or equivalent. Larger equipment may facilitate excavation potentials within this higher velocity layer. The absence of the V3 layer within Seismic Line S-3 indicates that the depth to this contact boundary is greater than 35± feet locally, based on the length of the seismic traverse performed.

The ray sampling coverage of the subsurface seismic waves that were acquired during the processing of the refraction tomographic models using **Rayfract**[™], appeared to be of good quality. Based on the tomographic modeling and typical excavation characteristics observed within bedrock materials of the southern California region, anticipation of gradual increasing hardness with depth should be anticipated during grading. Some lateral velocity variations should be expected to be encountered across the site generally due to the presence of buried corestones, dikes, and/or lithologic variabilities.

CLOSURE


The field geophysical survey was performed on June 25, 2019 by the undersigned using "state of the art" geophysical equipment and techniques along the selected traverse location. The seismic data was further evaluated using recently developed computerized tomographic inversion techniques to provide a more thorough analysis and understanding of the subsurface velocity and structural conditions. It should be noted that our data presented within this report was obtained along five specific locations therefore other areas in the local may contain different velocity layers and

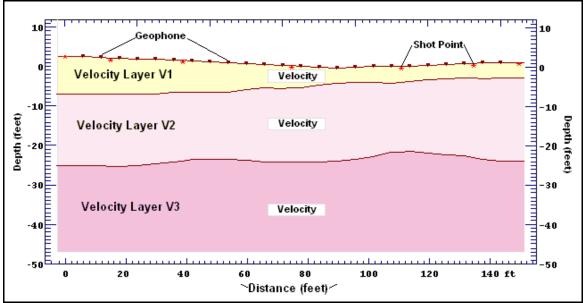
depths not encountered during our field survey. Additional survey traverses may be necessary to further evaluate the excavation characteristics across other portions of the site where cut grading will be proposed, if warranted. Estimates of layer velocity boundaries as presented in this report are generally considered to be within $10\pm$ percent of the total depth of the contact.

It is important to understand that the fundamental limitation for seismic refraction surveys is known as nonuniqueness, wherein a specific seismic refraction data set does not provide sufficient information to determine a single "true" earth model. Therefore, the interpretation of any seismic data set uses "best-fit" approximations along with the geologic models that appear to be most reasonable for the local area being surveyed. Client should also understand that when using the theoretical geophysical principles and techniques discussed in this report, sources of error are possible in both the data obtained, and in the interpretation, and that the results of this survey may not represent actual subsurface conditions. These are all factors beyond **Terra Geosciences** control and no guarantees as to the results of this survey can be made. We make no warranty, either expressed or implied.

In summary, the results of this seismic refraction survey are to be considered as an aid to assessing the rippability and excavation potentials of the bedrock locally. This information should be carefully reviewed by the grading contractor and representative "test" excavations with the proposed type of excavation equipment for the proposed construction should be considered, so that they may be correlated with the data presented within this report.

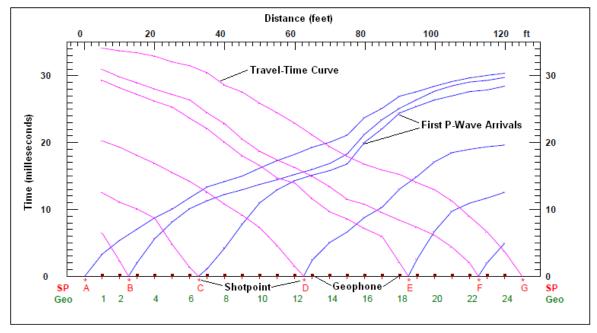
SEISMIC LINE LOCATION MAP

Base Map: Google™ Earth imagery (2019); Seismic traverses shown as yellow lines.

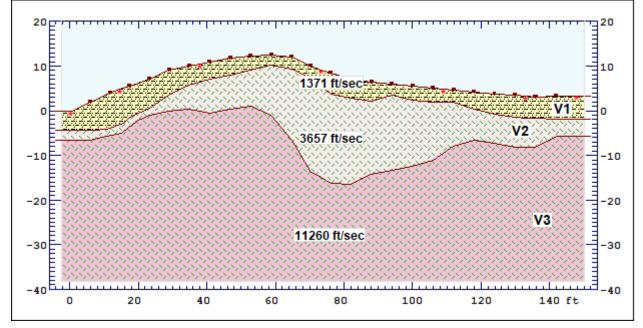

PLATE 1

APPENDIX A

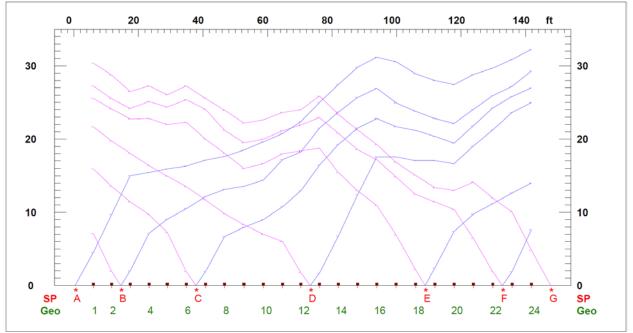
LAYER VELOCITY MODELS



LAYER VELOCITY MODEL LEGEND

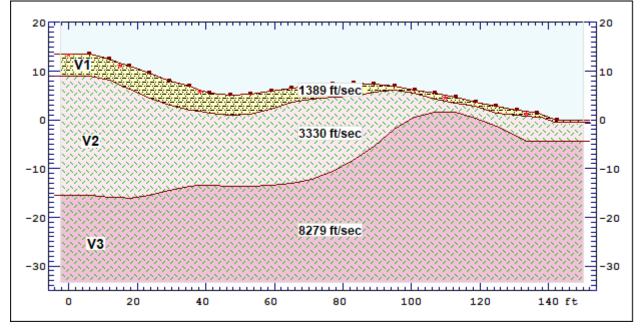

LAYER VELOCITY MODEL

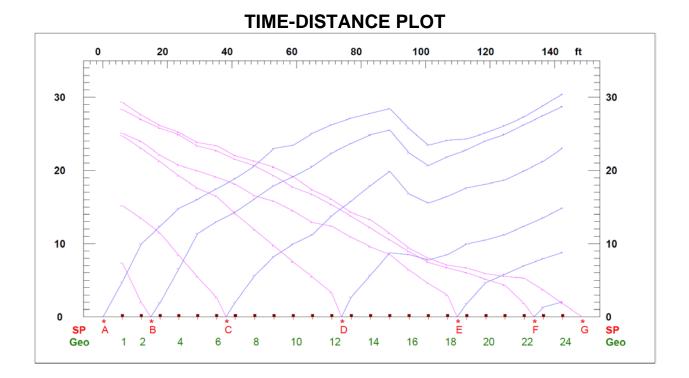
TIME-DISTANCE PLOT



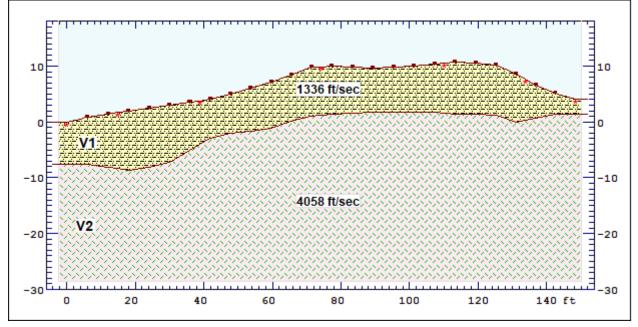
North 19° East >

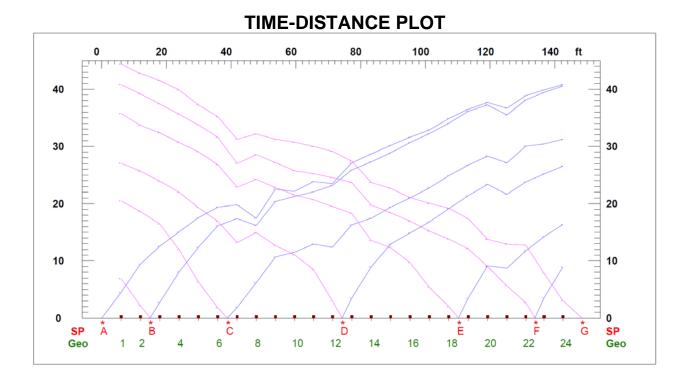
LAYER VELOCITY MODEL



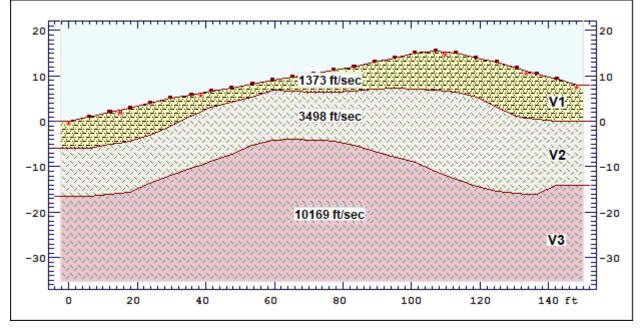

TIME-DISTANCE PLOT

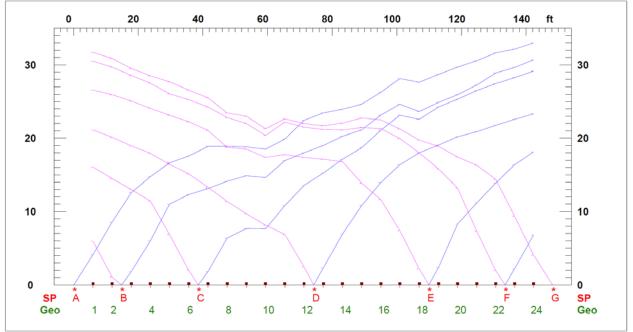
< West - East >


LAYER VELOCITY MODEL



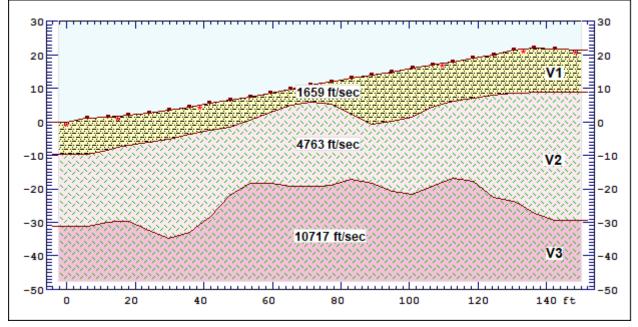
North 16° West >

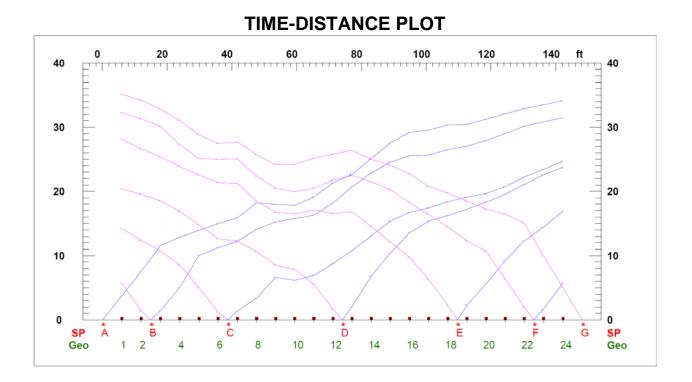

LAYER VELOCITY MODEL



North 33° West >

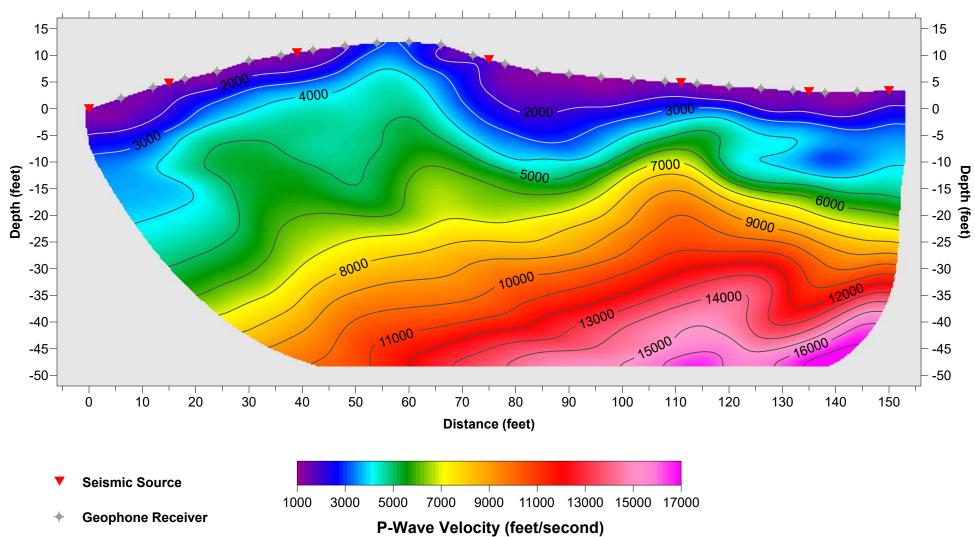
LAYER VELOCITY MODEL



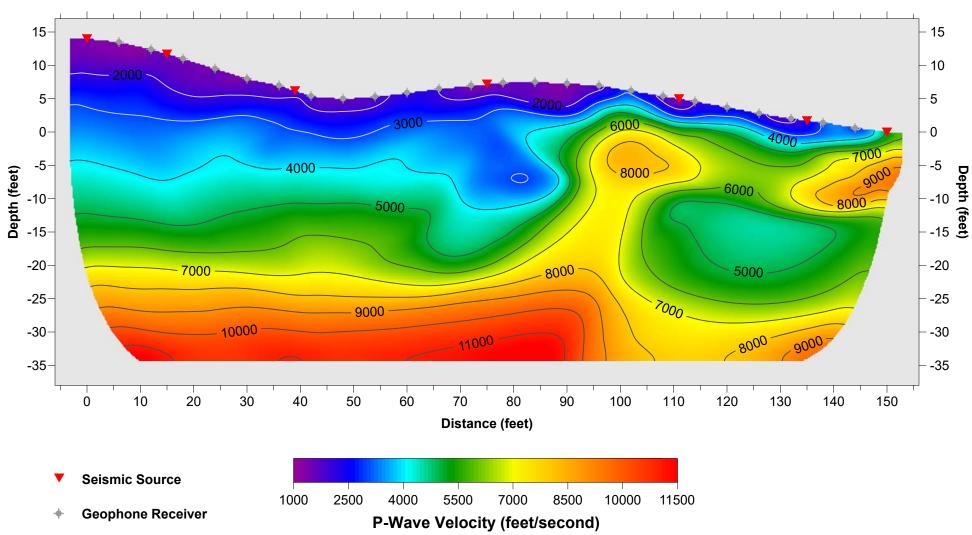

TIME-DISTANCE PLOT

North 47° West >

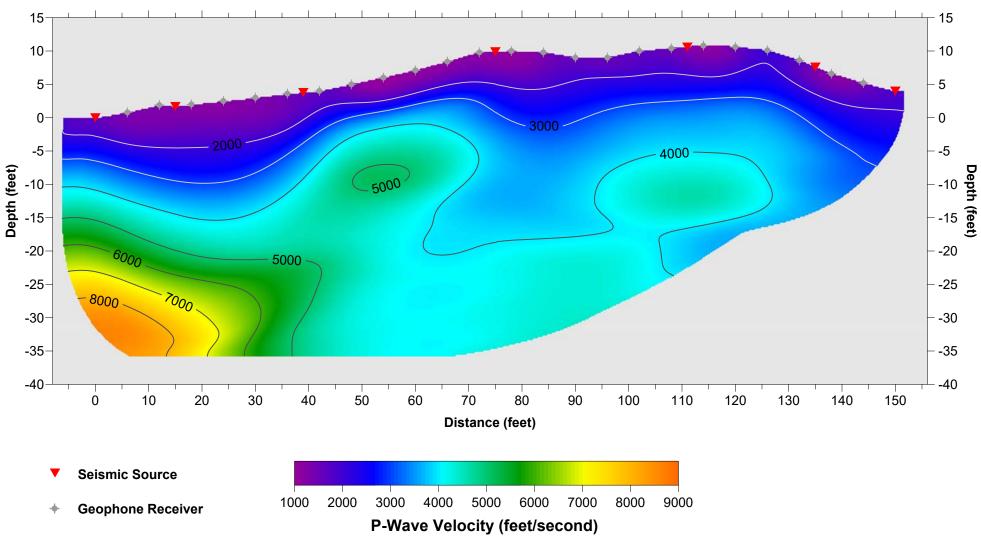
LAYER VELOCITY MODEL


APPENDIX B

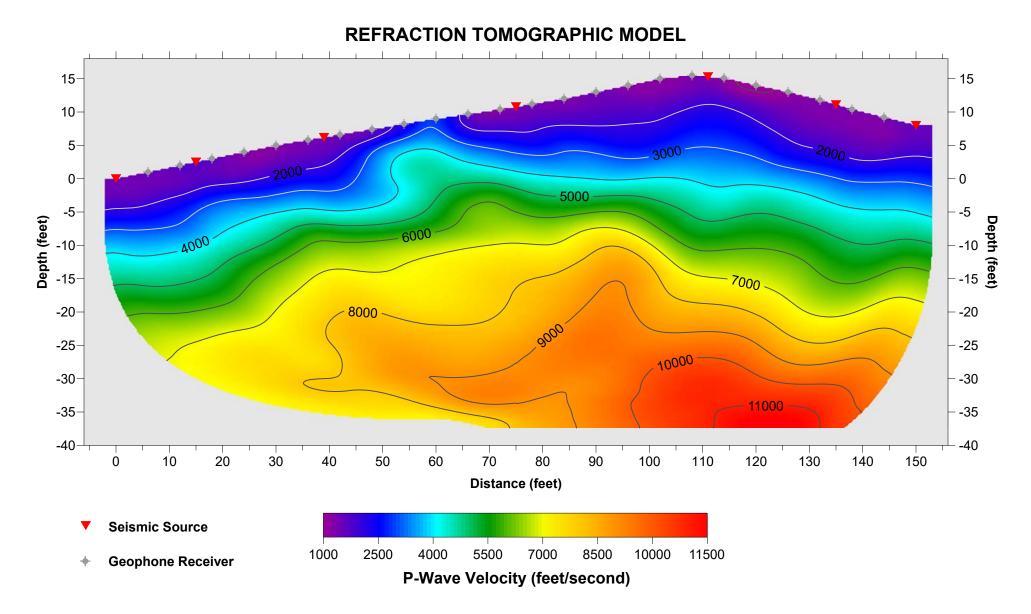
REFRACTION TOMOGRAPHIC MODELS


SEISMIC LINE S-1 North 19° East →

REFRACTION TOMOGRAPHIC MODEL

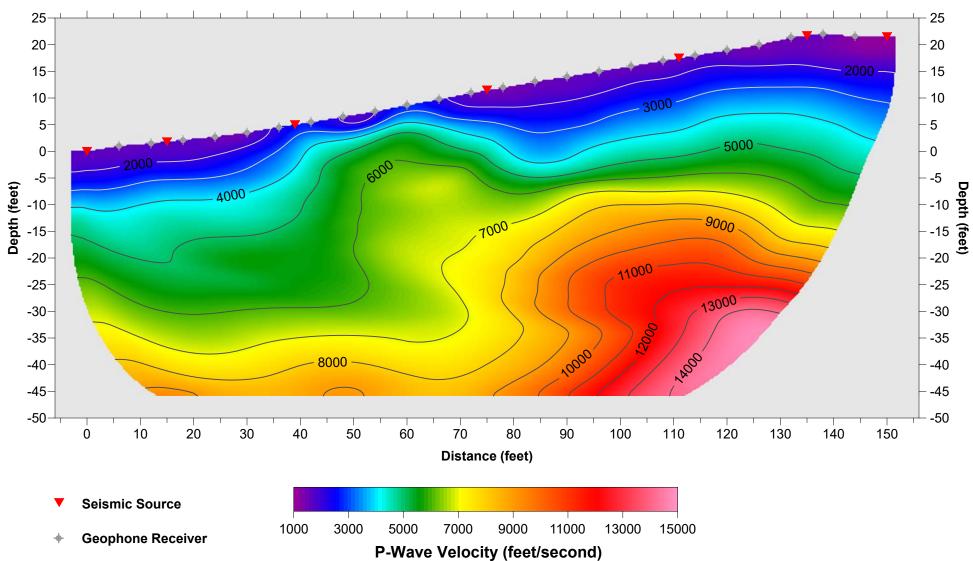

< West - East >

REFRACTION TOMOGRAPHIC MODEL

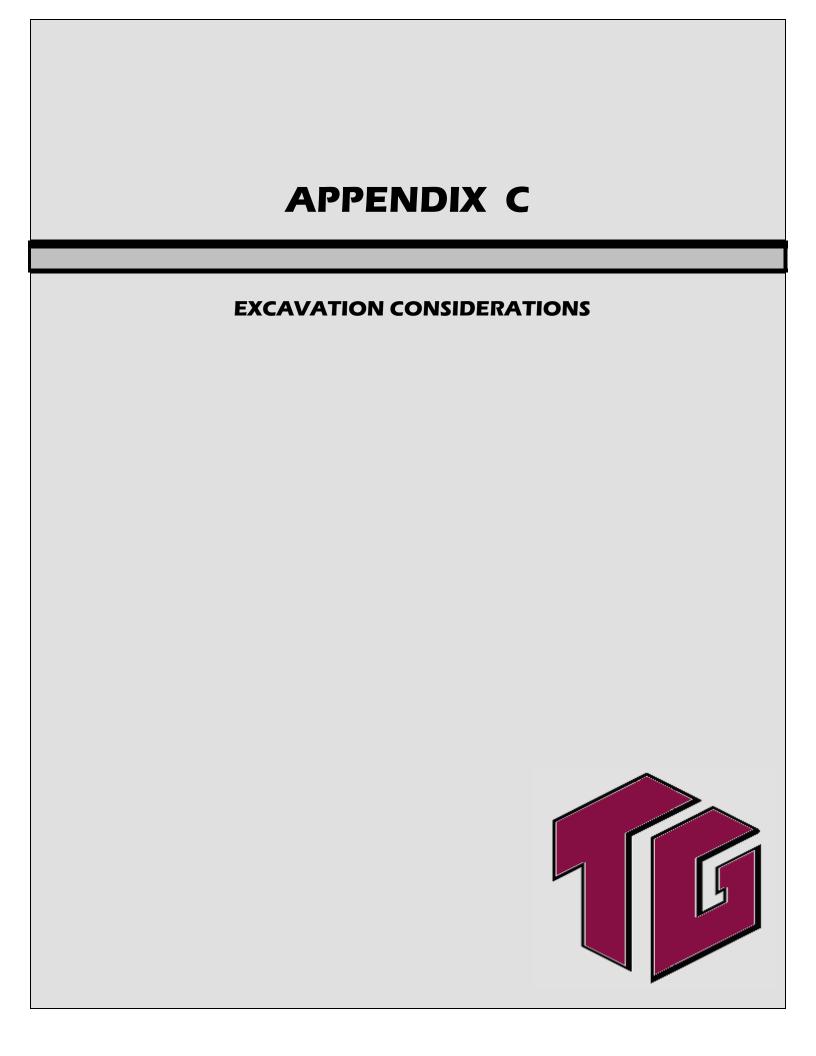


North 16° West →

REFRACTION TOMOGRAPHIC MODEL



North 33° West →



North 47° West →

REFRACTION TOMOGRAPHIC MODEL

SCALE: 1:1 (Horizontal = Vertical)

EXCAVATION CONSIDERATIONS

These excavation considerations have been included to provide the client with a brief overall summary of the general complexity of hard bedrock excavation. It is considered the client's responsibility to ensure that the grading contractor they select is both properly licensed and gualified, with experience in hard-bedrock ripping processes. To evaluate whether a particular bedrock material can be ripped, this geophysical survey should be used in conjunction with the geologic or geotechnical report prepared for the project which describes the physical properties of the bedrock. The physical characteristics of bedrock materials that favor ripping generally include the presence of fractures, faults and other structural discontinuities, weathering effects, brittleness or crvstalline structure, stratification of lamination, large grain size, moisture permeated clay, and low compressive strength. Unfavorable conditions can include such characteristics as massive and homogeneous formations, non-crystalline structure, absence of planes of weakness, fine-grained materials, and formations of clay origin where moisture makes the material plastic.

When assessing the potential rippability of the underlying bedrock of a given site, the above geologic characteristics along with the estimated seismic velocities can then be used to evaluate what type of equipment may be appropriate for the proposed grading. When selecting the proper ripping equipment there are three primary factors to consider, which are:

- Down Pressure available at the tip, which determines the ripper penetration that can be attained and maintained,
- Tractor flywheel horsepower, which determines whether the tractor can advance the tip, and,
- Tractor gross-weight, which determines whether the tractor will have sufficient traction to use the horsepower.

In addition to selecting the appropriate tractor, selection of the proper ripper design is also important. There are basically three designs, being radial, parallelogram, and adjustable parallelogram, of which the contractor should be aware of when selecting the appropriate design to be used for the project. The penetration depth will depend upon the down-pressure and penetration angle, as well as the length of the shank tips (short, intermediate, and long).

Also, important in the excavation process is the ripping technique used as well as the skill of the individual tractor operator. These techniques include the use of one or more ripping teeth, up- and down-hill ripping, and the direction of ripping with respect to the geologic structure of the bedrock locally. The use of two tractors (one to push the first tractor-ripper) can extend the range of materials that can be ripped. The second tractor can also be used to supply additional down-pressure on the ripper. Consideration of light blasting can also facilitate the ripper penetration and reduce the cost of moving highly consolidated rock formations.

All of the combined factors above should be considered by both the client and the grading contractor, to ensure that the proper selection of equipment and ripping techniques are used for the proposed grading.

APPENDIX D

REFERENCES

REFERENCES

American Society for Testing and Materials, Intl. (ASTM), 2000, <u>Standard Guide for</u> <u>Using the Seismic Refraction Method for Subsurface Investigation</u>, Designation D 5777-00, 13 pp.

Barton, N., 2007, <u>Rock Quality, Seismic Velocity, Attenuation and Anisotropy</u>, Taylor & Francis Group Publishers, 729 pp.

California State Board for Geologists and Geophysicists, Department of Consumer Affairs, 1998, <u>Guidelines for Geophysical Reports for Environmental and Engineering Geology</u>, 5 pp.

Caterpillar, Inc., 2000, <u>Handbook of Ripping</u>, Twelfth Edition, Caterpillar, Inc., Peoria, Illinois, 31 pp.

Caterpillar, Inc., 2018, <u>Caterpillar Performance Handbook</u>, Edition 48, Caterpillar, Inc., Peoria, Illinois, 2,442 pp.

Geometrics, Inc., 2004, <u>StrataVisor™ NZXP Operation Manual</u>, Revision B, San Jose, California, 234 pp.

Geogiga Technology Corp., 2001-2018, <u>Geogiga Seismic Pro Refractor Software</u> <u>Program</u>, Version 9.0, http://www.geogiga.com/.

Google[™] Earth, 2019, Version Build 7.3.2.5776 (64-bit), (<u>http://earth.google.com/</u>).

Intelligent Resources, Inc., 1991-2019, <u>Rayfract™ Seismic Refraction Tomography</u> <u>Software</u>, Version 3.36, (<u>http://rayfract.com/</u>).

Morton, D.M., 2003, <u>Geologic Map of the Perris 7.5' Quadrangle, Riverside County,</u> <u>California</u>, U.S.G.S. Open-File Report 03-270, Scale 1: 24,000.

Rimrock Geophysics, Inc., 2004, <u>SIPwin, Seismic Refraction Interpretation Program</u> for Windows, Version 2.78, User Manual 78 pp.

Santi, P.M., 2006, <u>Field Methods for Characterizing Weak Rock for Engineering</u>, *in*, Environmental & Engineering Geoscience, Volume XII, No. 1, February 2006, pp. 1-11.

Scott, James H., 1973, <u>Seismic Refraction Modeling by Computer</u>, *in* Geophysics, Volume 38, No. 2, pp. 271-284.

Schuster, G. T. and Quintus-Bosz, A., (1993), <u>Wavepath Eikonal Traveltime</u> Inversion: Theory, *in*, *Geophysics*, Vol. 58, No. 9, September, pp. 1314-1323.

Stephens, E., 1978, <u>Calculating Earthwork Factors Using Seismic Velocities</u>, California Department of Transportation Report No. FHWA-CA-TL-78-23, 63 pp.

Appendix E Infiltration Test Results

		131 Calle	LGC Geo	Test Data She ptechnical, Inc lemente, CA 92672 te		1	
			Project Name:	Stoneric	dge		
		Pr	oject Number:	13092-	01		
			Date:				
		В	oring Number:	-1			
		Ľ					
	Test hole di	mensions (if	circular)		Test pit di	mensions (if	rectangular)
		g Depth (feet)*:	-		-	Pit Depth (feet):	U .
						it Length (feet):	
	Boring Diameter (inches): 8 Pipe Diameter (inches): 3					Breadth (feet):	
	*measured at time of test		-				
(What th	inimum test Head (I ne sounder tape sho I ndy Soil Criter	ould read)	Boring Depth - (!	5 x Boring Radius)	8.4 ft	should be close testing for DEE	ue on the sounder ta e to this value during P testing fill to 4 feet
e-rest (Su		14)	-				top of hole
	Start Time	Stop Time	Time Interval	Initial Depth to	Final Depth	Total Change	Greater Than or
		-			to Water	in Water Level	Equal to
Trial No.	(24:HR)	(24:HR)	(min)	Water (feet)	(f = + +)	(f +)	OFfeet last
	. ,	· ,	. ,		(feet)	(feet)	
1 2 f two consecut	7:59 8:24 tive measurements	8:24 8:49 show that six incl	25.0 25.0 nes of water seeps av	7.26 7.26 vay in less than 25 mi	7.26 7.31 nutes, the test	0.00 0.05 shall be run for an	
1 2 f two consecut easurements t pproximately 3	7:59 8:24 tive measurements aken every 10 minu 30 minute intervals)	8:24 8:49 show that six incl utes. Otherwise, p	25.0 25.0 nes of water seeps av	7.26 7.26 vay in less than 25 mi nt, and then obtain at	7.26 7.31 nutes, the test	0.00 0.05 shall be run for an	No No additional hour with
1 2 f two consecut easurements t	7:59 8:24 tive measurements taken every 10 minu 30 minute intervals)	8:24 8:49 show that six incl ites. Otherwise, p) with a precision	25.0 25.0 nes of water seeps av ore-soak (fill) overnigh of at least 0.25 inche	7.26 7.26 vay in less than 25 mi nt, and then obtain at is	7.26 7.31 inutes, the test least twelve m	0.00 0.05 shall be run for an easurements per	No No additional hour with hole over at least six
1 2 f two consecut easurements t pproximately 3	7:59 8:24 tive measurements aken every 10 minu 30 minute intervals) Pata Start Time	8:24 8:49 show that six inclutes. Otherwise, p with a precision Stop Time	25.0 25.0 hes of water seeps av pre-soak (fill) overnigh of at least 0.25 inche Time Interval, Δt	7.26 7.26 vay in less than 25 mi nt, and then obtain at s Initial Depth to	7.26 7.31 nutes, the test	0.00 0.05 shall be run for an easurements per	No No additional hour with
1 2 F two consecut easurements t pproximately 3 Iain Test D	7:59 8:24 tive measurements taken every 10 minu 30 minute intervals)	8:24 8:49 show that six incl ites. Otherwise, p) with a precision	25.0 25.0 nes of water seeps av ore-soak (fill) overnigh of at least 0.25 inche	7.26 7.26 vay in less than 25 mi nt, and then obtain at is	7.26 7.31 inutes, the test least twelve m	0.00 0.05 shall be run for an easurements per	No No additional hour with hole over at least six Calculated
1 2 two consecut easurements t oproximately 3 Iain Test D	7:59 8:24 tive measurements aken every 10 minu 30 minute intervals) Pata Start Time	8:24 8:49 show that six inclutes. Otherwise, p with a precision Stop Time	25.0 25.0 hes of water seeps av pre-soak (fill) overnigh of at least 0.25 inche Time Interval, Δt	7.26 7.26 vay in less than 25 mi nt, and then obtain at s Initial Depth to	7.26 7.31 inutes, the test least twelve m Final Depth to Water, D _f	0.00 0.05 shall be run for an easurements per Change in Water Level,	No No additional hour with hole over at least six Calculated Infiltration
1 2 f two consecut easurements t oproximately a lain Test D Trial No.	7:59 8:24 tive measurements aken every 10 minu 30 minute intervals) Pata Start Time (24:HR)	8:24 8:49 show that six inclutes. Otherwise, p with a precision Stop Time (24:HR)	25.0 25.0 hes of water seeps av ore-soak (fill) overnigh of at least 0.25 inche Time Interval, Δt (min)	7.26 7.26 vay in less than 25 mi nt, and then obtain at is Initial Depth to Water, D _o (feet)	7.26 7.31 inutes, the test least twelve m Final Depth to Water, D _f (feet)	0.00 0.05 shall be run for an easurements per Change in Water Level, AD (feet)	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr)
1 2 i two consecut easurements t poproximately i Iain Test D Trial No. 1	7:59 8:24 tive measurements aken every 10 minu 30 minute intervals) Pata Start Time (24:HR) 8:49	8:24 8:49 show that six inclutes. Otherwise, p with a precision Stop Time (24:HR) 9:19	25.0 25.0 hes of water seeps av pre-soak (fill) overnigh of at least 0.25 inche Time Interval, Δt (min) 30.0	7.26 7.26 vay in less than 25 mint, and then obtain at is Initial Depth to Water, D _o (feet) 7.31	7.26 7.31 inutes, the test least twelve m Final Depth to Water, D _f (feet) 7.40	0.00 0.05 shall be run for an easurements per Change in Water Level, AD (feet) 0.09	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.13
1 2 two consecut easurements t oproximately 3 Itain Test D Trial No. 1 2	7:59 8:24 tive measurements aken every 10 minu 30 minute intervals) Pata Start Time (24:HR) 8:49 9:19	8:24 8:49 show that six inclutes. Otherwise, p with a precision Stop Time (24:HR) 9:19 9:49	25.0 25.0 nes of water seeps av pre-soak (fill) overnigh of at least 0.25 inche Time Interval, Δt (min) 30.0 30.0	7.26 7.26 vay in less than 25 mi nt, and then obtain at is Initial Depth to Water, D _o (feet) 7.31 7.24	7.26 7.31 inutes, the test least twelve m Final Depth to Water, D _f (feet) 7.40 7.31	0.00 0.05 shall be run for an easurements per Change in Water Level, <u>AD (feet)</u> 0.09 0.07	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.13 0.10
1 2 f two consecut easurements t pproximately f lain Test D Trial No. 1 2 3	7:59 8:24 tive measurements saken every 10 minu 30 minute intervals) Pata Start Time (24:HR) 8:49 9:19 9:49	8:24 8:49 show that six incl ites. Otherwise, p with a precision Stop Time (24:HR) 9:19 9:49 10:19	25.0 25.0 res of water seeps av ore-soak (fill) overnigh of at least 0.25 inche Time Interval, Δt (min) 30.0 30.0 30.0	7.26 7.26 vay in less than 25 mi nt, and then obtain at is Initial Depth to Water, D _o (feet) 7.31 7.24 7.31	7.26 7.31 inutes, the test least twelve m Final Depth to Water, D _f (feet) 7.40 7.31 7.39	0.00 0.05 shall be run for an easurements per Change in Water Level, AD (feet) 0.09 0.07 0.08	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.13 0.10 0.11
1 2 f two consecut easurements t pproximately 3 Itain Test D Trial No. 1 2 3 4	7:59 8:24 tive measurements aken every 10 minu 30 minute intervals) Pata Start Time (24:HR) 8:49 9:19 9:19 9:49 10:19	8:24 8:49 show that six inclutes. Otherwise, p with a precision Stop Time (24:HR) 9:19 9:49 10:19 10:49	25.0 25.0 nes of water seeps avore-soak (fill) overnight of at least 0.25 inches Time Interval, Δt (min) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	7.26 7.26 7.26 vay in less than 25 mint, and then obtain at rs Initial Depth to Water, D _o (feet) 7.31 7.24 7.31 7.19	7.26 7.31 inutes, the test least twelve m Final Depth to Water, D _f (feet) 7.40 7.31 7.39 7.23	0.00 0.05 shall be run for an easurements per Water Level, AD (feet) 0.09 0.07 0.08 0.04	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.13 0.10 0.11 0.05
1 2 f two consecut easurements t pproximately 3 Iain Test D Trial No. 1 2 3 4 5	7:59 8:24 tive measurements aken every 10 minu 30 minute intervals) 7077 Start Time (24:HR) 8:49 9:19 9:49 10:19 10:49	8:24 8:49 show that six inclutes. Otherwise, p with a precision Stop Time (24:HR) 9:19 9:49 10:19 10:49 11:19	25.0 25.0 nes of water seeps average of water seeps average of at least 0.25 inches Time Interval, Δt (min) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	7.26 7.26 7.26 vay in less than 25 mint, and then obtain at rs Initial Depth to Water, D _o (feet) 7.31 7.24 7.31 7.19 7.23	7.26 7.31 inutes, the test least twelve m Final Depth to Water, D _f (feet) 7.40 7.31 7.39 7.23 7.30	0.00 0.05 shall be run for an easurements per Water Level, <u>AD (feet)</u> 0.09 0.07 0.08 0.04 0.04 0.07	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.13 0.10 0.11 0.05 0.10
1 2 f two consecut easurements t pproximately 3 Nain Test D Trial No. 1 2 3 4 5 6	7:59 8:24 tive measurements saken every 10 minu 30 minute intervals) 7000 8000 8000 8100 8100 919 9:49 9:49 9:49 10:19 10:49 11:19	8:24 8:49 show that six incl ites. Otherwise, p with a precision Stop Time (24:HR) 9:19 9:49 10:19 10:49 11:19 11:49	25.0 25.0 25.0 nes of water seeps avertige of at least 0.25 inche Time Interval, Δt (min) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	7.26 7.26 vay in less than 25 mi nt, and then obtain at is Initial Depth to Water, D _o (feet) 7.31 7.24 7.31 7.24 7.31 7.19 7.23 7.30	7.26 7.31 inutes, the test least twelve m Final Depth to Water, D _f (feet) 7.40 7.31 7.39 7.23 7.30 7.37	0.00 0.05 shall be run for an easurements per Water Level, <u>AD (feet)</u> 0.09 0.07 0.08 0.04 0.04 0.07 0.07	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.13 0.10 0.11 0.05 0.10 0.10 0.10
1 2 f two consecut easurements t pproximately 3 Itain Test D Trial No. 1 2 3 4 5 6 7	7:59 8:24 tive measurements aken every 10 minu 30 minute intervals) Pata Start Time (24:HR) 8:49 9:19 9:19 9:49 10:19 10:49 11:19 11:49	8:24 8:49 show that six inclutes. Otherwise, p with a precision (24:HR) 9:19 9:49 10:19 10:49 11:19 11:49 12:19	25.0 25.0 nes of water seeps avore-soak (fill) overnigh of at least 0.25 inche Time Interval, Δt (min) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	7.26 7.26 7.26 vay in less than 25 mint, and then obtain at the o	7.26 7.31 inutes, the test least twelve m Final Depth to Water, D _f (feet) 7.40 7.31 7.39 7.23 7.30 7.37 7.26	0.00 0.05 shall be run for an easurements per Water Level, AD (feet) 0.09 0.07 0.08 0.04 0.04 0.07 0.07 0.07 0.07 0.07	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.13 0.10 0.11 0.05 0.10 0.10 0.10 0.10 0.10
1 2 f two consecut easurements t pproximately 3 Jain Test D Trial No. 1 2 3 4 5 6 7 8	7:59 8:24 tive measurements aken every 10 minu 30 minute intervals) 7077 Start Time (24:HR) 8:49 9:19 9:49 10:19 10:19 10:49 11:19 11:49 12:19	8:24 8:49 show that six inclutes. Otherwise, p with a precision Stop Time (24:HR) 9:19 9:49 10:19 10:49 11:19 11:49 12:19 12:49	25.0 25.0 nes of water seeps averts seeps averts seeps averts seeps averts seeps averts ave	7.26 7.26 7.26 vay in less than 25 mi nt, and then obtain at is Initial Depth to Water, D _o (feet) 7.31 7.24 7.31 7.24 7.31 7.19 7.23 7.30 7.20 7.20 7.26	7.26 7.31 inutes, the test least twelve m Final Depth to Water, D _f (feet) 7.40 7.31 7.39 7.23 7.30 7.37 7.26 7.31	0.00 0.05 shall be run for an easurements per Water Level, <u>AD (feet)</u> 0.09 0.07 0.08 0.04 0.04 0.07 0.07 0.07 0.07 0.07 0.07	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.13 0.10 0.11 0.10 0.11 0.05 0.10 0.10 0.10
1 2 f two consecut easurements t pproximately 3 Jain Test D Trial No. 1 2 3 4 5 6 7 8 9	7:59 8:24 tive measurements saken every 10 minu 30 minute intervals) 7000 5000 5000 5000 5000 5000 5000 500	8:24 8:49 show that six inclutes. Otherwise, p with a precision Stop Time (24:HR) 9:19 9:49 10:19 10:49 11:19 11:49 12:19 12:49 13:19	25.0 25.0 25.0 nes of water seeps avertiges of at least 0.25 inches Time Interval, Δt (min) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	7.26 7.26 7.26 vay in less than 25 mi nt, and then obtain at is Initial Depth to Water, D _o (feet) 7.31 7.24 7.31 7.24 7.31 7.23 7.30 7.20 7.26 7.31	7.26 7.31 inutes, the test least twelve m Final Depth to Water, D _f (feet) 7.40 7.31 7.39 7.23 7.30 7.37 7.26 7.31 7.38	0.00 0.05 shall be run for an easurements per Water Level, <u>AD (feet)</u> 0.09 0.07 0.08 0.04 0.07 0.07 0.07 0.06 0.05 0.07	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.13 0.10 0.11 0.05 0.10 0.10 0.10 0.10 0.08 0.07 0.10
1 2 f two consecut easurements t pproximately 3 Jain Test D Trial No. 1 2 3 4 5 6 7 8 9 10	7:59 8:24 tive measurements aken every 10 minu 30 minute intervals) 70ta Start Time (24:HR) 8:49 9:19 9:19 9:49 10:19 10:49 11:19 11:49 12:19 12:49 13:19	8:24 8:49 show that six inclutes. Otherwise, p with a precision Stop Time (24:HR) 9:19 9:49 10:19 10:49 11:19 11:49 12:19 12:49 13:19 13:49	25.0 25.0 25.0 nes of water seeps avore-soak (fill) overnight of at least 0.25 inche Time Interval, Δt (min) 30.0	7.26 7.26 7.26 vay in less than 25 mint, and then obtain at is Initial Depth to Water, D _o (feet) 7.31 7.24 7.31 7.24 7.31 7.23 7.30 7.20 7.26 7.31 7.25	7.26 7.31 inutes, the test least twelve m Final Depth to Water, D _f (feet) 7.40 7.31 7.39 7.23 7.30 7.37 7.26 7.31 7.38 7.32	0.00 0.05 shall be run for an easurements per Water Level, AD (feet) 0.09 0.07 0.08 0.04 0.07 0.07 0.07 0.06 0.05 0.07 0.07	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.13 0.10 0.11 0.11 0.05 0.10 0.10 0.10 0.08 0.07 0.10 0.10 0.10

Calculated Infiltration Rate (With Factor of Safety)
--

Notes:

Sketch:

0.0

Based on Guidelines from: Riverside County (9/1/2011) Spreadsheet Revised on: 10/26/2016

			Infiltration	Test Data She	<u>eet</u>			
			LGC Geo	otechnical, Inc				
		131 Calle	Iglesia Suite 200, San C	lemente, CA 92672 te	el. (949) 369-614	1		
			Project Name:	Stonerio	dge			
		Pr	oject Number:	13092-	01			
			Date:	6/25/20)19			
		B	oring Number:	l-2	_			
	Test hole di	mensions (if	circular)		Test pit di	imensions (if	rectangular)	
	Borin	g Depth (feet)*:	5			Pit Depth (feet):		
	Boring Diameter (inches): 8				F	Pit Length (feet):		
Pipe Diameter (inches): 3				Pi	t Breadth (feet):			
	*measured at time of test							
Mi	nimum test Head (D _o):					ue on the sounder ta	
(What th	ne sounder tape sho	ould read)	Boring Depth - (5 x Boring Radius)	3.4 ft		e to this value during	
re-Test (Sa	ndy Soil Criter	ia)*				-	P testing fill to 4 feet top of hole	
	,	-,			Final Depth	Total Change	Greater Than or	
Trial No.	Start Time	Stop Time	Time Interval	Initial Depth to	to Water	in Water Level	Equal to	
	(24:HR)	(24:HR)	(min)	Water (feet)				
ind ite.	(24:HR)	(24:HR)	(min)	Water (feet)	(feet)	(feet)	0.5 feet (ves/no	
1	(24:HR) 8:46	(24:HR) 9:11	(min) 25.0	Water (feet) 3.09	(feet) 3.35	(feet) 0.26	0.5 feet (yes/no No	
1 2 two consecut	8:46 9:11 ive measurements	9:11 9:36 show that six inch	25.0 25.0 nes of water seeps av	3.09 3.16 vay in less than 25 mi	3.35 3.35 nutes, the test	0.26 0.19 shall be run for an	No additional hour with	
1 2 Two consecut easurements t	8:46 9:11 vive measurements aken every 10 minu 30 minute intervals	9:11 9:36 show that six inch ites. Otherwise, p	25.0 25.0 nes of water seeps av	3.09 3.16 way in less than 25 mi ht, and then obtain at	3.35 3.35 nutes, the test	0.26 0.19 shall be run for an	No No additional hour with	
1 2 two consecut easurements t oproximately 3	8:46 9:11 ive measurements aken every 10 minu 30 minute intervals	9:11 9:36 show that six inch ites. Otherwise, p with a precision	25.0 25.0 nes of water seeps av re-soak (fill) overnig of at least 0.25 inche	3.09 3.16 way in less than 25 mi ht, and then obtain at	3.35 3.35 nutes, the test	0.26 0.19 shall be run for an neasurements per h	No No additional hour with	
1 2 two consecut easurements t oproximately 3	8:46 9:11 vive measurements aken every 10 minu 30 minute intervals ata Start Time	9:11 9:36 show that six inch ites. Otherwise, p with a precision Stop Time	25.0 25.0 nes of water seeps av re-soak (fill) overnig of at least 0.25 inche	3.09 3.16 way in less than 25 mi ht, and then obtain at s Initial Depth to	3.35 3.35 inutes, the test least twelve m	0.26 0.19 shall be run for an neasurements per h Change in Water Level,	No No additional hour with hole over at least six	
1 2 two consecut casurements t pproximately 3 dain Test D Trial No.	8:46 9:11 vive measurements aken every 10 minu 0 minute intervals ata Start Time (24:HR)	9:11 9:36 show that six inch ites. Otherwise, p with a precision Stop Time (24:HR)	25.0 25.0 nes of water seeps av re-soak (fill) overnig of at least 0.25 inche Time Interval, ∆t (min)	3.09 3.16 way in less than 25 mi ht, and then obtain at s Initial Depth to Water, D _o (feet)	3.35 3.35 inutes, the test least twelve m Final Depth to Water, D _f (feet)	0.26 0.19 shall be run for an neasurements per h Change in Water Level, AD (feet)	No No additional hour with nole over at least six Calculated Infiltration Rate(in/hr)	
1 2 two consecut easurements t pproximately a Cain Test D Trial No. 1	8:46 9:11 ve measurements aken every 10 minu 0 minute intervals ata Start Time (24:HR) 9:36	9:11 9:36 show that six inch ites. Otherwise, p with a precision Stop Time (24:HR) 10:06	25.0 25.0 nes of water seeps av re-soak (fill) overnig of at least 0.25 inche Time Interval, Δt (min) 30.0	3.09 3.16 way in less than 25 mi ht, and then obtain at es Initial Depth to Water, D _o (feet) 3.17	3.35 3.35 inutes, the test least twelve m Final Depth to Water, D _f (feet) 3.39	0.26 0.19 shall be run for an neasurements per h Change in Water Level, AD (feet) 0.22	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.47	
1 2 two consecut easurements t poproximately 3 dain Test D Trial No. 1 2	8:46 9:11 ive measurements aken every 10 minu 0 minute intervals 0 ata Start Time (24:HR) 9:36 10:06	9:11 9:36 show that six inch ites. Otherwise, p with a precision Stop Time (24:HR) 10:06 10:36	25.0 25.0 res of water seeps av re-soak (fill) overnig of at least 0.25 inche Time Interval, Δt (min) 30.0 30.0	3.09 3.16 way in less than 25 mi ht, and then obtain at s Initial Depth to Water, D _o (feet) 3.17 3.00	3.35 3.35 inutes, the test least twelve m Final Depth to Water, D _f (feet) 3.39 3.27	0.26 0.19 shall be run for an heasurements per h Water Level, <u>AD (feet)</u> 0.22 0.27	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.47 0.53	
1 2 two consecut easurements t poproximately 3 Dain Test D Trial No. 1 2 3	8:46 9:11 vive measurements aken every 10 minu 0 minute intervals oto Start Time (24:HR) 9:36 10:06 10:36	9:11 9:36 show that six inch ites. Otherwise, p with a precision Stop Time (24:HR) 10:06 10:36 11:06	25.0 25.0 res of water seeps av re-soak (fill) overnig of at least 0.25 inche Time Interval, Δt (min) 30.0 30.0 30.0	3.09 3.16 way in less than 25 mi ht, and then obtain at is Initial Depth to Water, D _o (feet) 3.17 3.00 3.01	3.35 3.35 inutes, the test least twelve m Final Depth to Water, D _f (feet) 3.39 3.27 3.28	0.26 0.19 shall be run for an neasurements per h Water Level, <u>AD (feet)</u> 0.22 0.27 0.27	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.47 0.53 0.53	
1 2 two consecut easurements t pproximately 3 Itain Test D Trial No. 1 2 3 4	8:46 9:11 vive measurements aken every 10 minu 0 minute intervals ata Start Time (24:HR) 9:36 10:06 10:36 11:06	9:11 9:36 show that six inch ites. Otherwise, p with a precision (24:HR) 10:06 10:36 11:06 11:36	25.025.0nes of water seeps awre-soak (fill) overnigionof at least 0.25 inchesTime Interval, Δt (min)30.030.030.030.030.030.0	3.09 3.16 way in less than 25 mi ht, and then obtain at ts Initial Depth to Water, D _o (feet) 3.17 3.00 3.01 3.03	3.35 3.35 inutes, the test least twelve m Final Depth to Water, D _f (feet) 3.39 3.27 3.28 3.29	0.26 0.19 shall be run for an neasurements per h Water Level, AD (feet) 0.22 0.27 0.27 0.26	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.47 0.53 0.53 0.53	
1 2 two consecut easurements t poproximately 3 Cain Test D Trial No. 1 2 3 4 5	8:46 9:11 ive measurements aken every 10 minu 30 minute intervals ata Start Time (24:HR) 9:36 10:06 10:36 11:06 11:36	9:11 9:36 show that six inch ites. Otherwise, p with a precision (24:HR) 10:06 10:36 11:06 11:36 12:06	25.0 25.0 res of water seeps av re-soak (fill) overnig of at least 0.25 inche Time Interval, Δt (min) 30.0 30.0 30.0 30.0 30.0 30.0	3.09 3.16 way in less than 25 mi ht, and then obtain at ts Initial Depth to Water, D _o (feet) 3.17 3.00 3.01 3.03 3.03	3.35 3.35 inutes, the test least twelve m to Water, D _f (feet) 3.39 3.27 3.28 3.29 3.29	0.26 0.19 shall be run for an heasurements per h Water Level, <u>AD (feet)</u> 0.22 0.27 0.27 0.27 0.26 0.26	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.47 0.53 0.53 0.52	
1 2 two consecut easurements t poproximately 3 dain Test D Trial No. 1 2 3 4 5 6	8:46 9:11 ive measurements aken every 10 minu 0 minute intervals 0 tata Start Time (24:HR) 9:36 10:06 10:36 11:06 11:36 12:06	9:11 9:36 show that six inch ites. Otherwise, p with a precision (24:HR) 10:06 10:36 11:06 11:36 12:06 12:36	25.0 25.0 nes of water seeps av re-soak (fill) overnig of at least 0.25 inche Time Interval, Δt (min) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	3.09 3.16 way in less than 25 mi ht, and then obtain at is Initial Depth to Water, D _o (feet) 3.17 3.00 3.01 3.03 3.03 3.03 3.03	3.35 3.35 inutes, the test least twelve m to Water, D _f (feet) 3.39 3.27 3.28 3.29 3.29 3.29 3.32	0.26 0.19 shall be run for an neasurements per h Water Level, <u>AD (feet)</u> 0.22 0.27 0.27 0.26 0.26 0.25	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.47 0.53 0.53 0.53 0.52 0.52 0.51	
1 2 two consecut easurements t pproximately 3 dain Test D Trial No. 1 2 3 4 5 6 7	8:46 9:11 ive measurements aken every 10 minu 30 minute intervals ata Start Time (24:HR) 9:36 10:06 10:36 11:06 11:36 12:06 12:36	9:11 9:36 show that six inch ites. Otherwise, p with a precision (24:HR) 10:06 10:36 11:06 11:36 12:06 12:36 13:06	25.0 25.0 nes of water seeps aware-soak (fill) overnights of at least 0.25 inchesting Time Interval, Δt (min) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	3.09 3.16 way in less than 25 mint, and then obtain at the obtain a	3.35 3.35 inutes, the test least twelve m to Water, D _f (feet) 3.39 3.27 3.28 3.29 3.29 3.29 3.32 3.35	0.26 0.19 shall be run for an neasurements per h Water Level, AD (feet) 0.22 0.27 0.27 0.27 0.26 0.26 0.26 0.25 0.23	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.47 0.53 0.53 0.52 0.52 0.51 0.51	
1 2 two consecut easurements t poproximately a lain Test D Trial No. 1 2 3 4 5 6 7 8	8:46 9:11 ive measurements aken every 10 minu 30 minute intervals ata Start Time (24:HR) 9:36 10:06 10:36 11:06 11:36 12:06 12:36 13:06	9:11 9:36 show that six inch ites. Otherwise, p with a precision (24:HR) 10:06 10:36 11:06 11:36 12:06 12:36 13:06 13:36	25.0 25.0 re-soak (fill) overnigion of at least 0.25 inches Time Interval, Δt (min) 30.0	3.09 3.16 way in less than 25 mi ht, and then obtain at s Initial Depth to Water, D _o (feet) 3.17 3.00 3.01 3.03 3.03 3.03 3.03 3.07 3.12 3.14	3.35 3.35 inutes, the test least twelve m Final Depth to Water, D _f (feet) 3.39 3.27 3.28 3.29 3.29 3.29 3.32 3.35 3.37	0.26 0.19 shall be run for an beasurements per h Water Level, ΔD (feet) 0.22 0.27 0.27 0.26 0.27 0.26 0.26 0.26 0.26 0.23	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.47 0.53 0.53 0.53 0.52 0.52 0.51 0.51 0.48	
1 2 two consecut easurements t poproximately 3 dain Test D Trial No. 1 2 3 4 5 6 7 8 9	8:46 9:11 ive measurements aken every 10 minu 0 minute intervals orto Start Time (24:HR) 9:36 10:06 10:36 11:06 11:36 11:36 12:06 12:36 13:06 13:36	9:11 9:36 show that six inch ites. Otherwise, p with a precision (24:HR) 10:06 10:36 11:06 11:36 12:06 12:36 13:36 13:36 14:06	25.0 25.0 re-soak (fill) overnig of at least 0.25 inches Time Interval, Δt (min) 30.0 30	3.09 3.16 way in less than 25 mi ht, and then obtain at is Initial Depth to Water, D _o (feet) 3.17 3.00 3.01 3.03 3.03 3.03 3.03 3.07 3.12 3.14 3.06	3.35 3.35 inutes, the test least twelve m to Water, D _f (feet) 3.39 3.27 3.28 3.29 3.29 3.29 3.29 3.32 3.35 3.37 3.30	0.26 0.19 shall be run for an neasurements per h Water Level, <u>AD (feet)</u> 0.22 0.27 0.27 0.26 0.26 0.26 0.25 0.23 0.23 0.23 0.24	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.47 0.53 0.53 0.53 0.52 0.52 0.51 0.51 0.48 0.48 0.48	
1 2 two consecut easurements t pproximately 3 Pain Test D Trial No. 1 2 3 4 5 6 7 8 9 10	8:46 9:11 ive measurements aken every 10 minu 30 minute intervals ata Start Time (24:HR) 9:36 10:06 10:36 11:06 11:36 12:06 12:36 13:06 13:36 14:06	9:11 9:36 show that six inch ites. Otherwise, p with a precision (24:HR) 10:06 10:36 11:06 11:36 12:06 12:36 13:06 13:36 14:06 14:36	25.0 25.0 pes of water seeps away re-soak (fill) overnig of at least 0.25 inches Time Interval, Δt (min) 30.0	$ \begin{array}{r} 3.09 \\ 3.16 \\ way in less than 25 mint, and then obtain at the obtain $	3.35 3.35 inutes, the test least twelve m to Water, D _f (feet) 3.39 3.27 3.28 3.29 3.29 3.29 3.29 3.32 3.35 3.37 3.30 3.21	0.26 0.19 shall be run for an neasurements per h Water Level, AD (feet) 0.22 0.27 0.27 0.27 0.27 0.26 0.26 0.26 0.26 0.25 0.23 0.23 0.23 0.24 0.29	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.47 0.53 0.53 0.52 0.52 0.51 0.51 0.48 0.48 0.48 0.48	
1 2 itwo consecut easurements t poproximately 3 Jain Test D Trial No. 1 2 3 4 5 6 7 8 9	8:46 9:11 ive measurements aken every 10 minu 0 minute intervals orto Start Time (24:HR) 9:36 10:06 10:36 11:06 11:36 11:36 12:06 12:36 13:06 13:36	9:11 9:36 show that six inch ites. Otherwise, p with a precision (24:HR) 10:06 10:36 11:06 11:36 12:06 12:36 13:36 13:36 14:06	25.0 25.0 re-soak (fill) overnig of at least 0.25 inches Time Interval, Δt (min) 30.0 30	3.09 3.16 way in less than 25 mi ht, and then obtain at is Initial Depth to Water, D _o (feet) 3.17 3.00 3.01 3.03 3.03 3.03 3.03 3.07 3.12 3.14 3.06	3.35 3.35 inutes, the test least twelve m to Water, D _f (feet) 3.39 3.27 3.28 3.29 3.29 3.29 3.29 3.32 3.35 3.37 3.30	0.26 0.19 shall be run for an neasurements per h Water Level, <u>AD (feet)</u> 0.22 0.27 0.27 0.26 0.26 0.26 0.25 0.23 0.23 0.23 0.24	No No additional hour with hole over at least six Calculated Infiltration Rate(in/hr) 0.47 0.53 0.53 0.53 0.52 0.52 0.51 0.51 0.48 0.48 0.48	

actor	of	Safety	
-------	----	--------	--

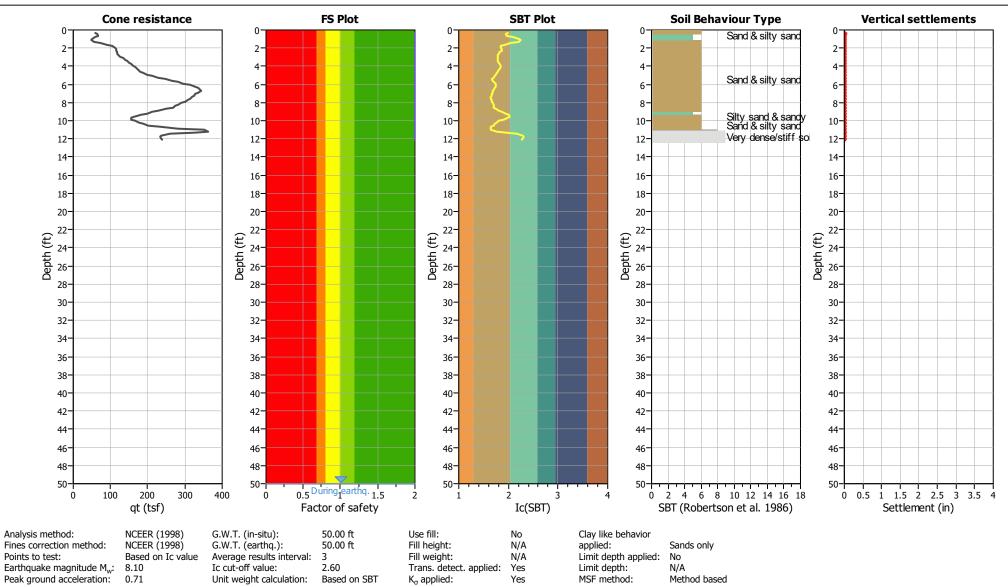
Calculated Infiltration Rate (With Factor of Safety)

Notes:

Sketch:

GC technical, Inc.

0.2


Based on Guidelines from: Riverside County (9/1/2011) Spreadsheet Revised on: 10/26/2016

Appendix F Liquefaction Analysis

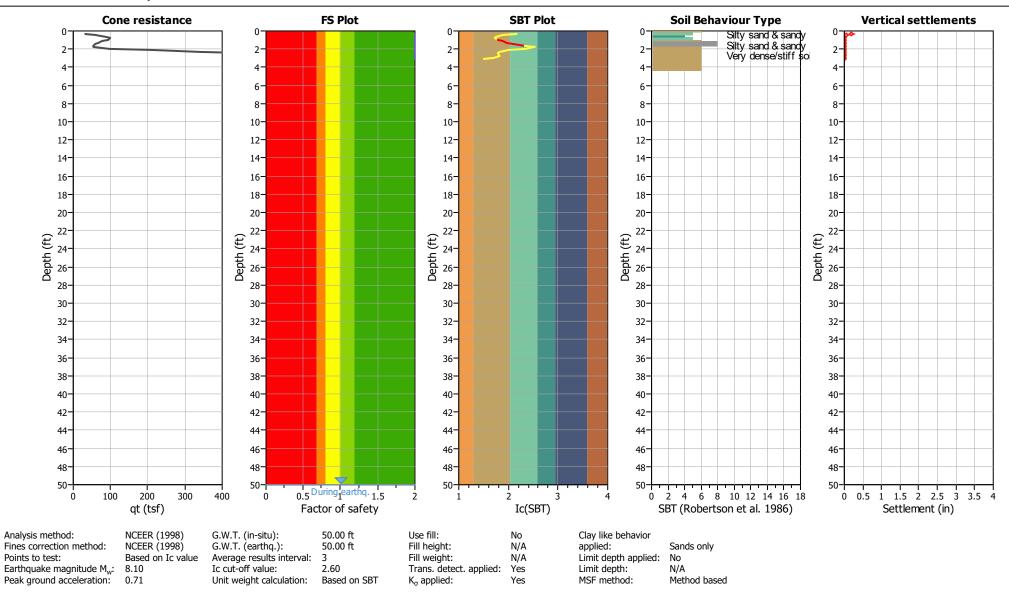
Project: Stoneridge

Location: Riverside County

CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:00:23 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq

CPT: CPT-01

Total depth: 12.14 ft

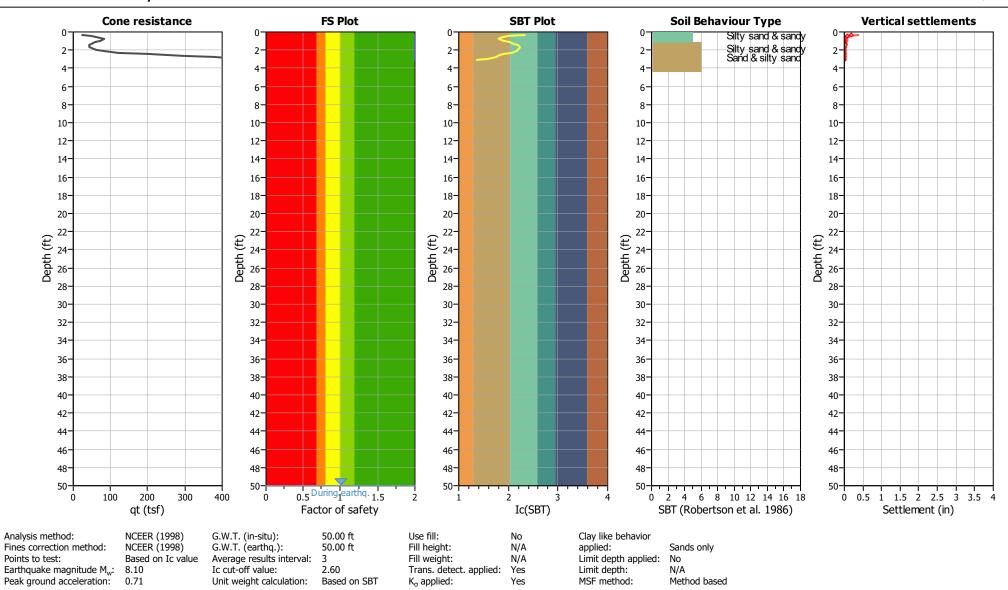


Project: Stoneridge

Location: Riverside County

CPT: CPT-02

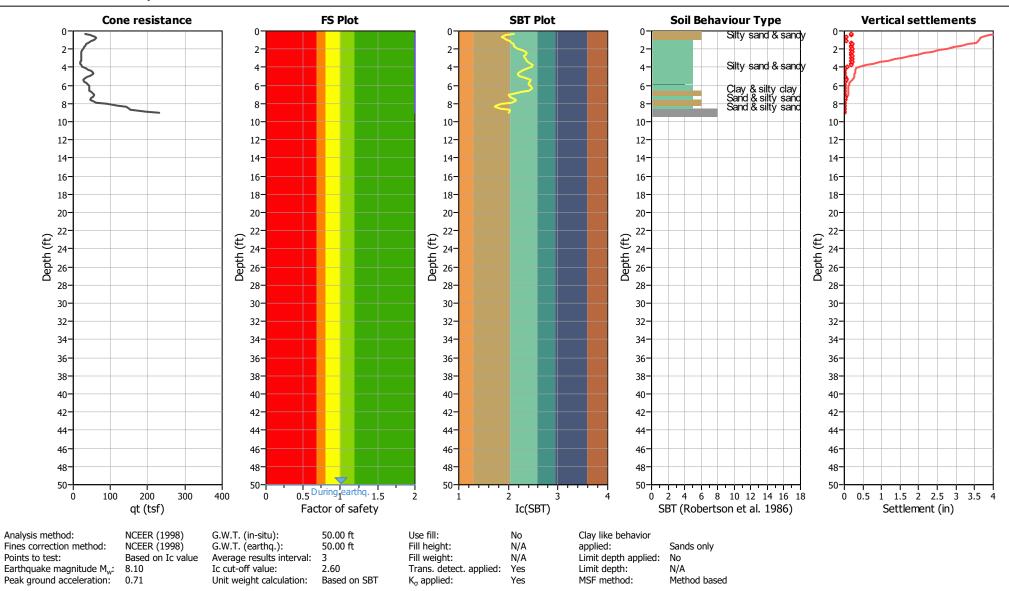
Total depth: 3.12 ft



CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:00:24 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq

Project: Stoneridge

Location: Riverside County

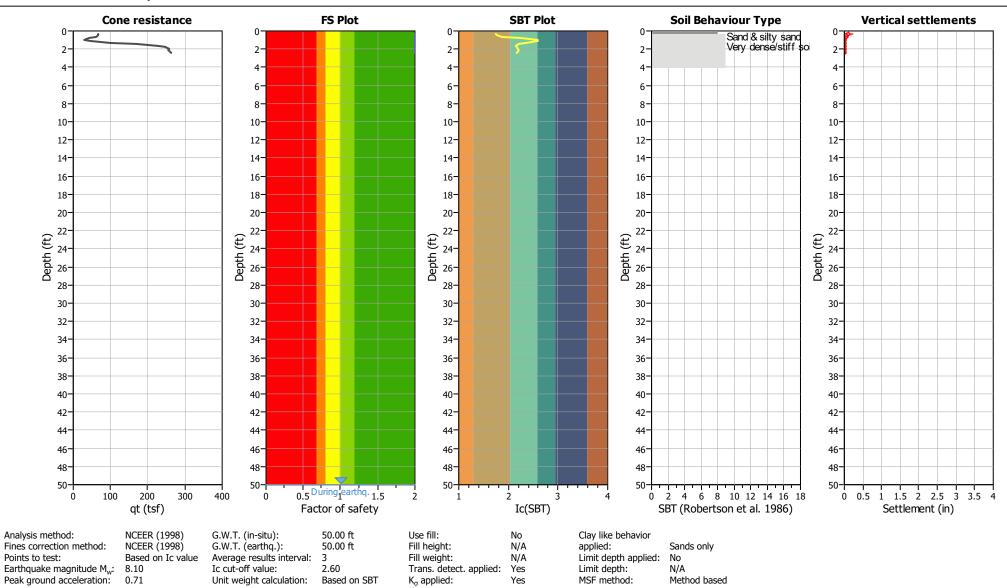

CPT: CPT-03

Total depth: 3.12 ft

Project: Stoneridge

Location: Riverside County

CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:00:26 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq

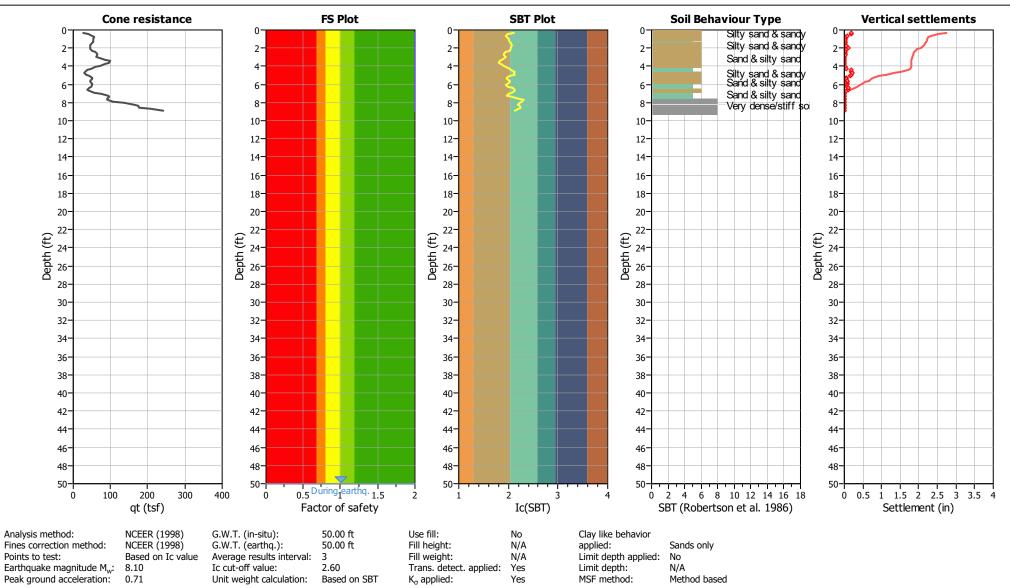

CPT: CPT-04

Total depth: 9.02 ft

Project: Stoneridge

Location: Riverside County

CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:00:28 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq

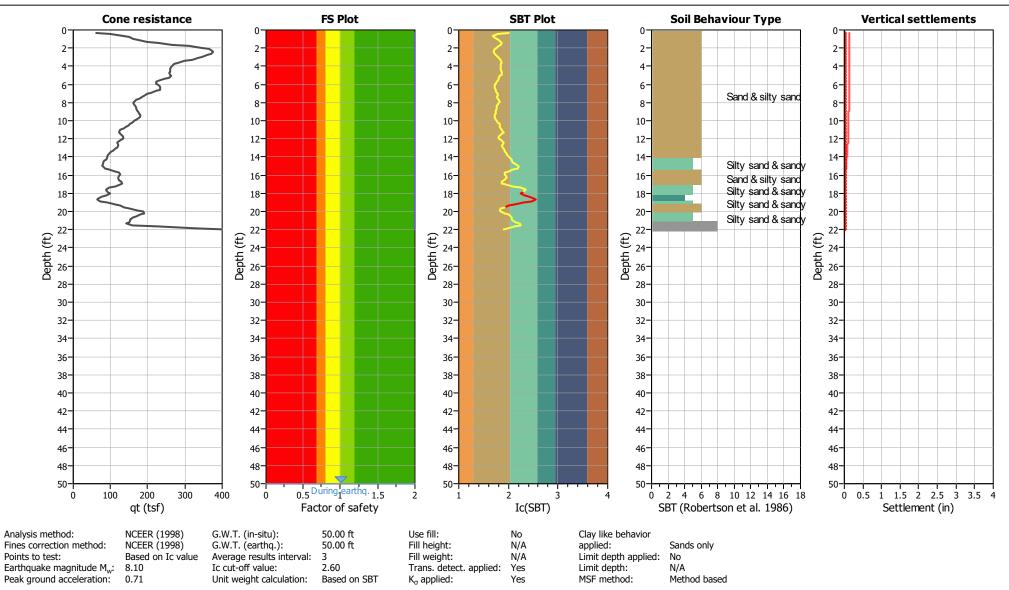

CPT: CPT-05

Total depth: 2.46 ft

Project: Stoneridge

Location: Riverside County

CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:00:29 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq

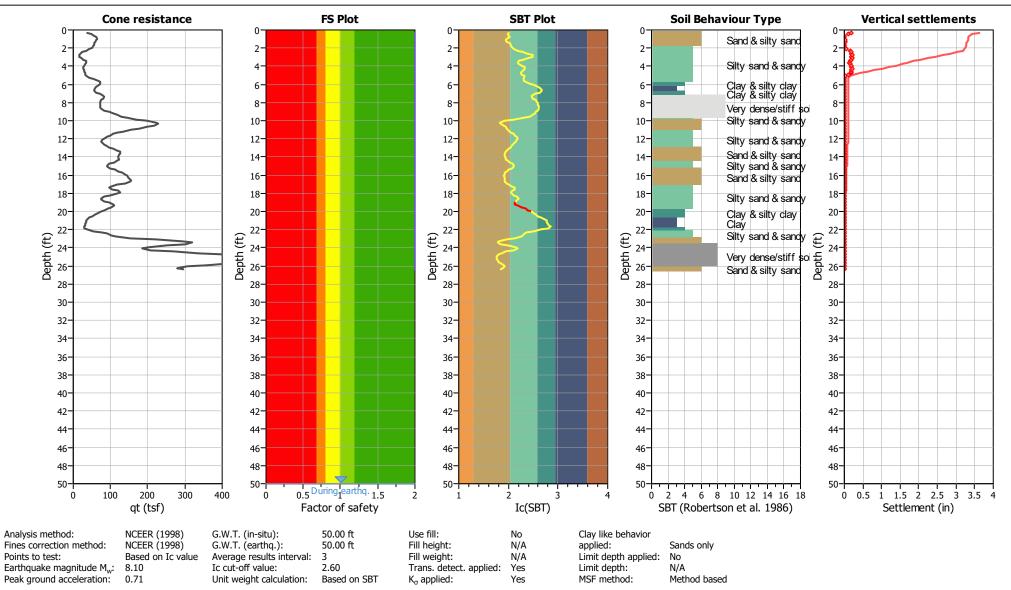

CPT: CPT-06

Total depth: 8.86 ft

Project: Stoneridge

Location: Riverside County

CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:00:30 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq

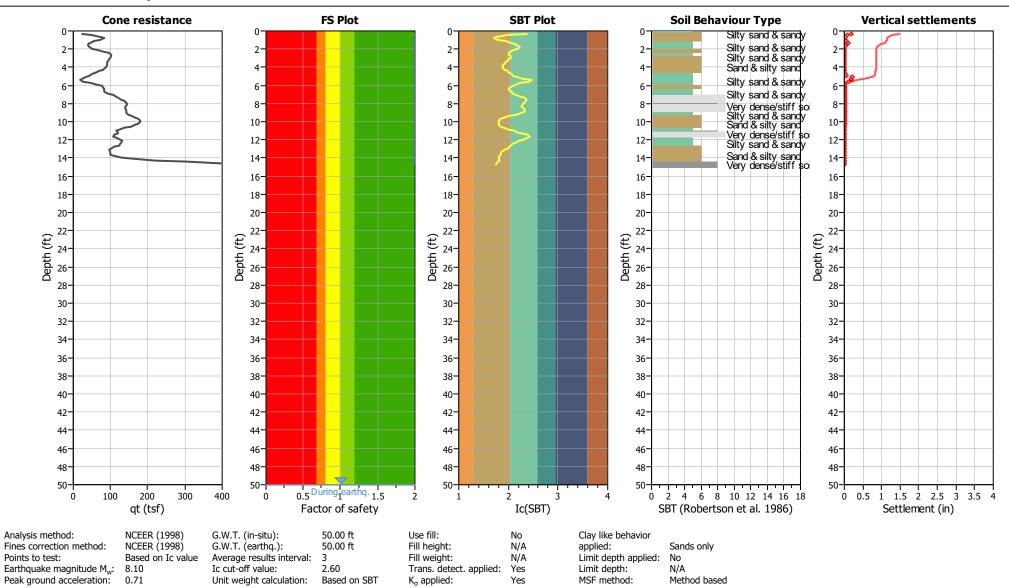

CPT: CPT-07

Total depth: 21.98 ft

Project: Stoneridge

Location: Riverside County

CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:00:32 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq


CPT: CPT-08

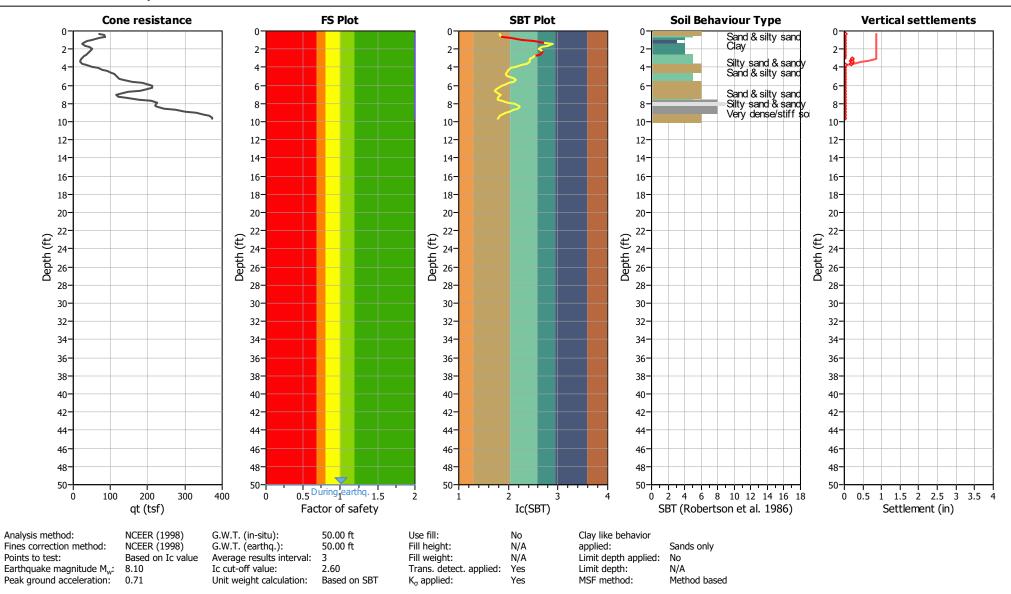
Total depth: 26.41 ft

Project: Stoneridge

Location: Riverside County

CPT: CPT-09

Total depth: 14.76 ft

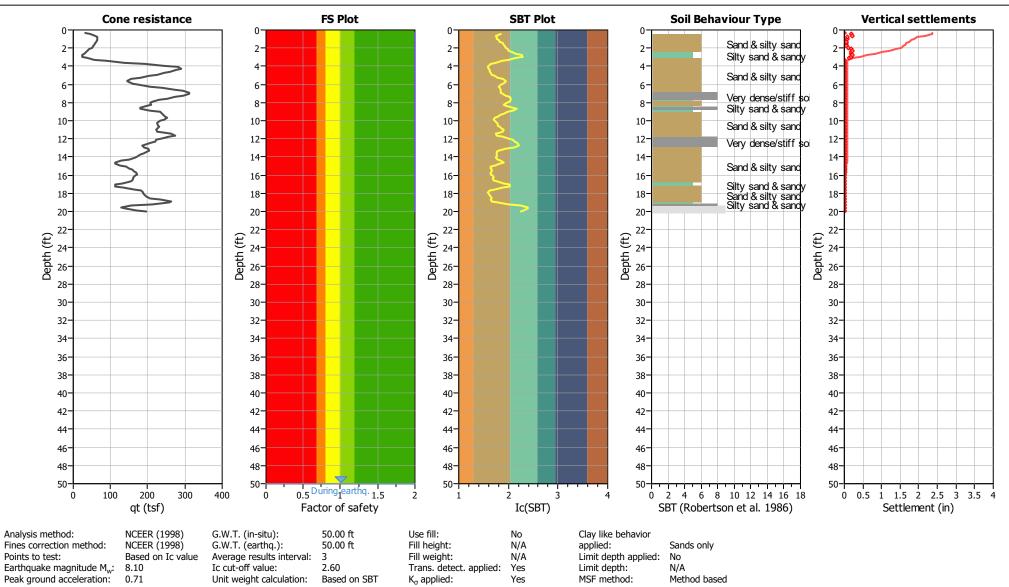


Project: Stoneridge

Location: Riverside County

CPT: CPT-10

Total depth: 9.68 ft

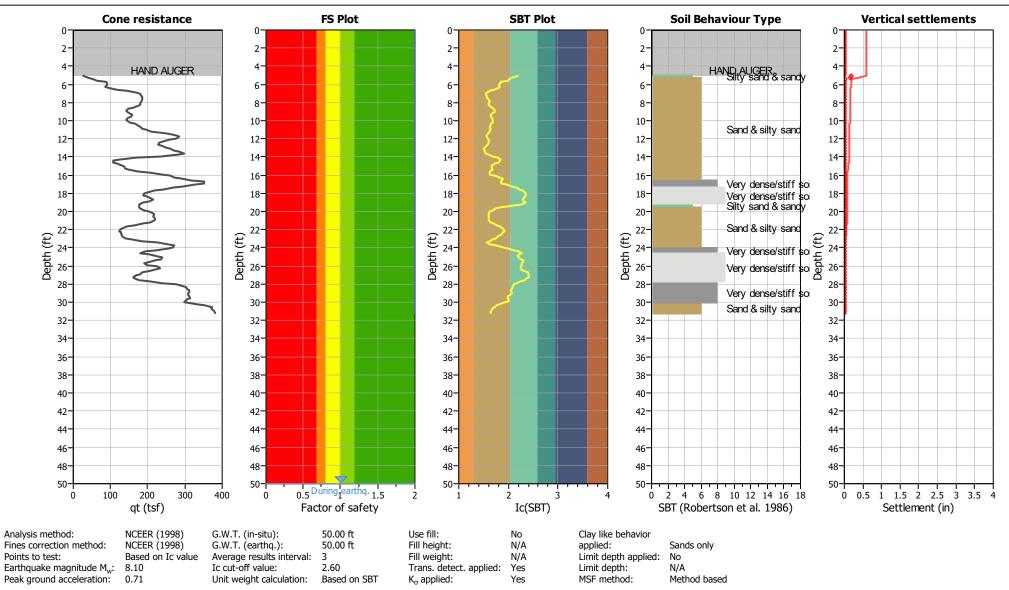


CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:00:36 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq

Project: Stoneridge

Location: Riverside County

CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:00:38 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq

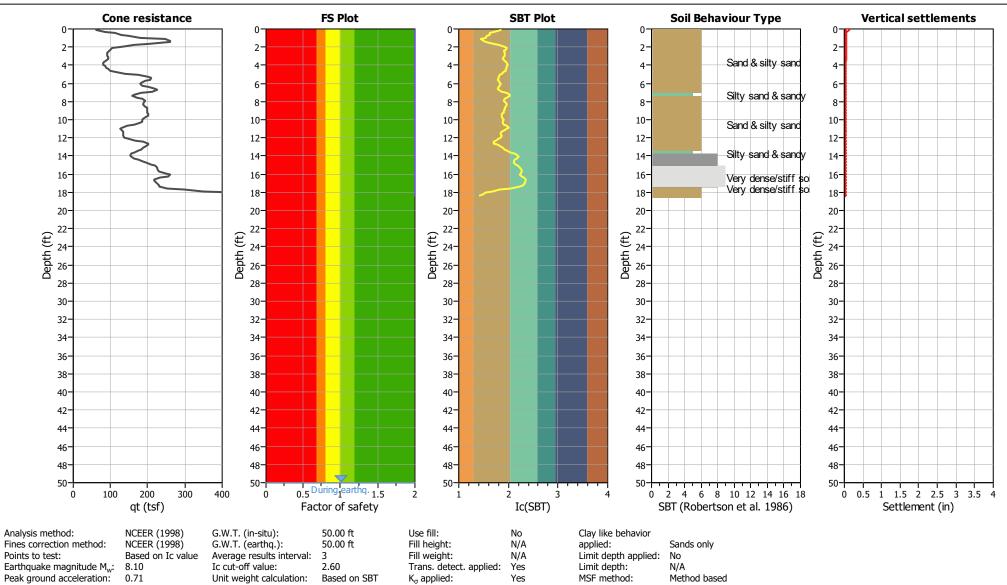

CPT: CPT-11

Total depth: 20.01 ft

Project: Stoneridge

Location: Riverside County

CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:00:39 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq

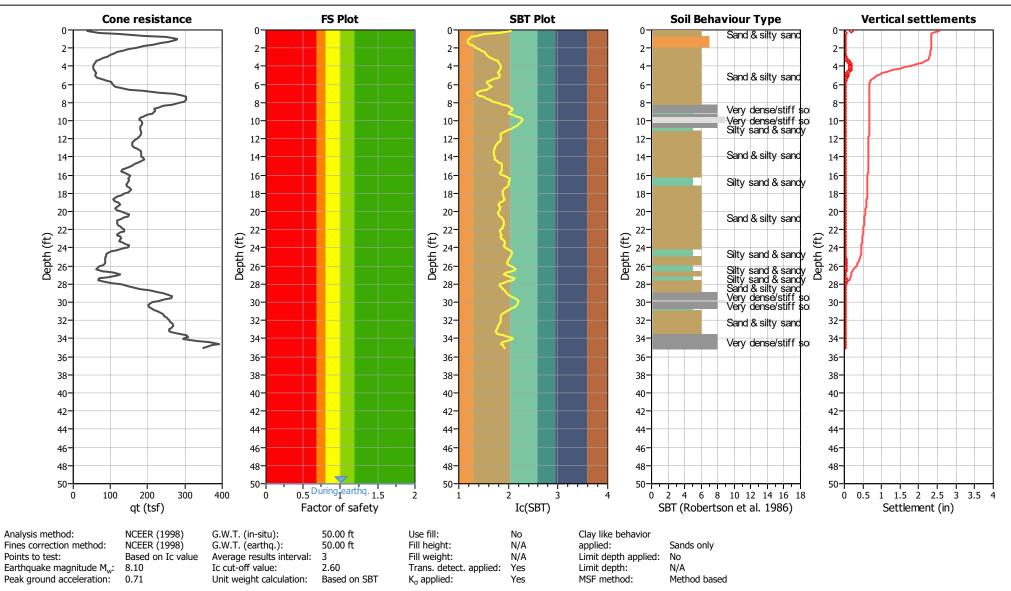

CPT: CPT-12

Total depth: 31.17 ft

Project: Stoneridge

Location: Riverside County

CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:00:41 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq

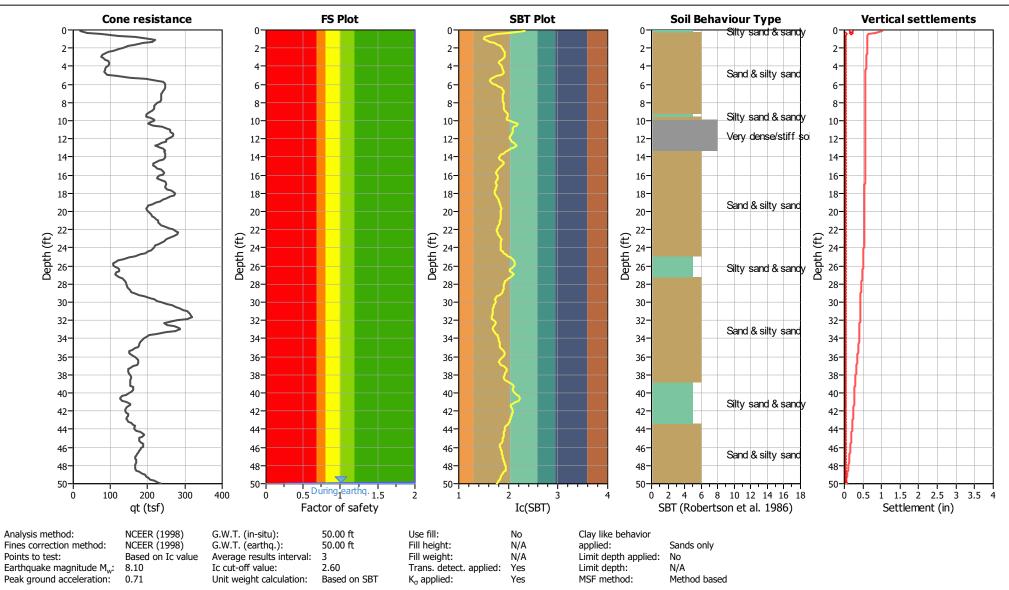

CPT: CPT-13

Total depth: 18.37 ft

Project: Stoneridge

Location: Riverside County

CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:00:43 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq

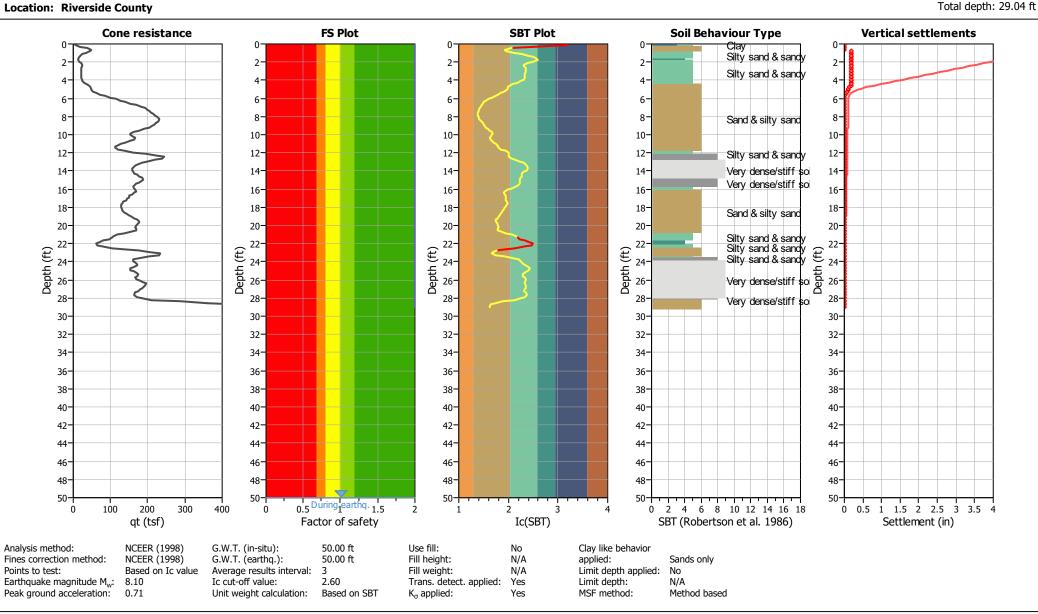

CPT: CPT-14

Total depth: 35.10 ft

Project: Stoneridge

Location: Riverside County

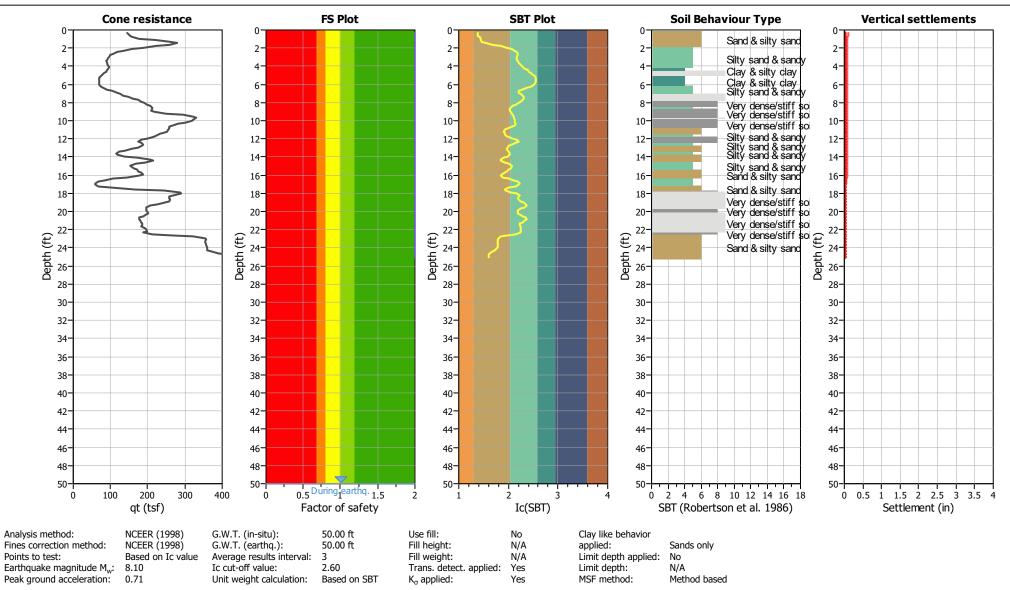
CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:00:45 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq


CPT: CPT-15

Total depth: 50.03 ft

Project: Stoneridge

CPT: CPT-16

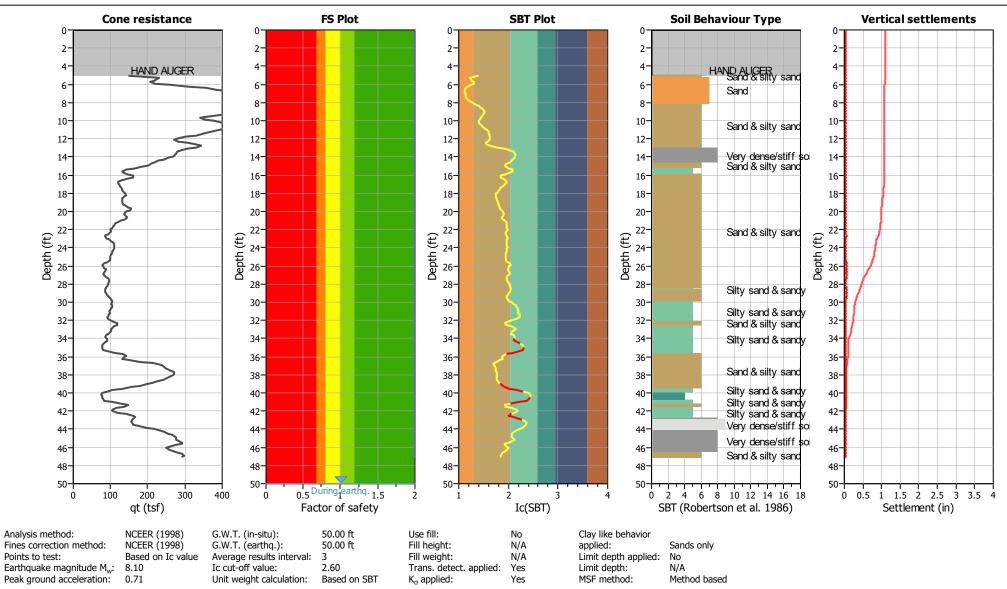


CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:00:48 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq

Project: Stoneridge

Location: Riverside County

CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:00:51 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq

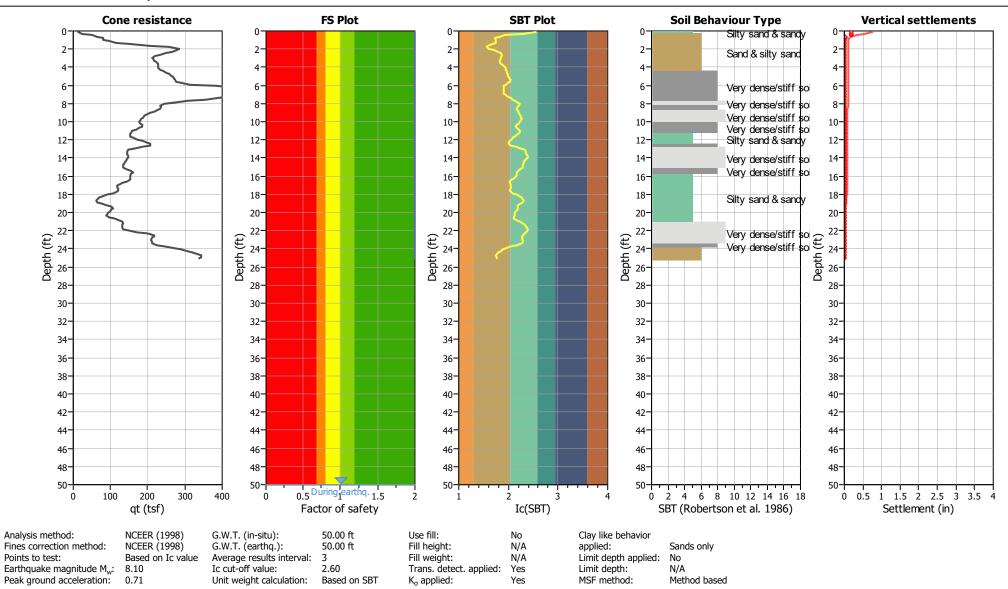

CPT: CPT-17

Total depth: 25.10 ft

Project: Stoneridge

Location: Riverside County

CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:00:57 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq

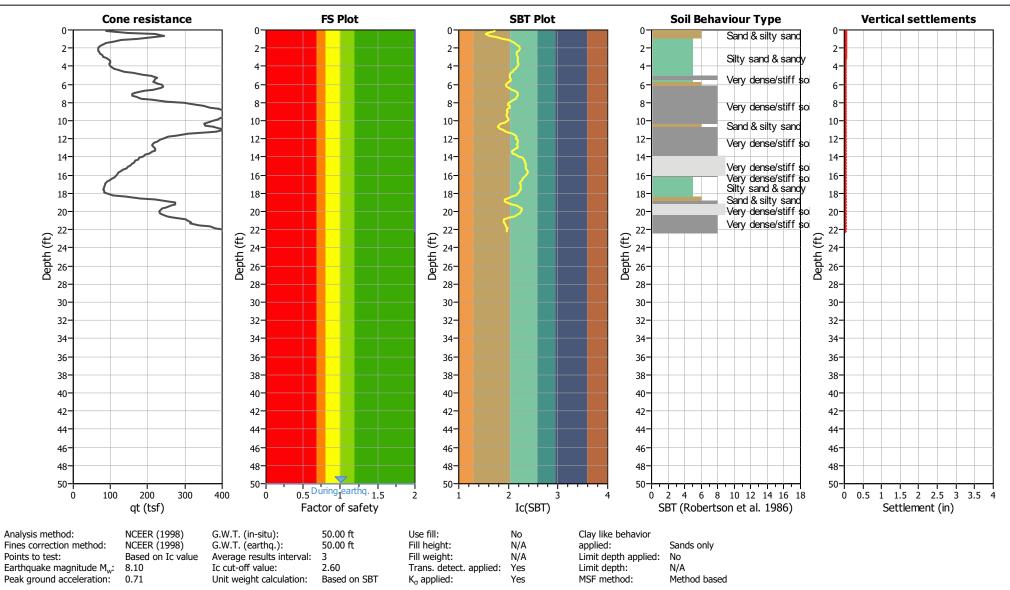

CPT: CPT-18

Total depth: 47.08 ft

Project: Stoneridge

Location: Riverside County

CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:01:02 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq

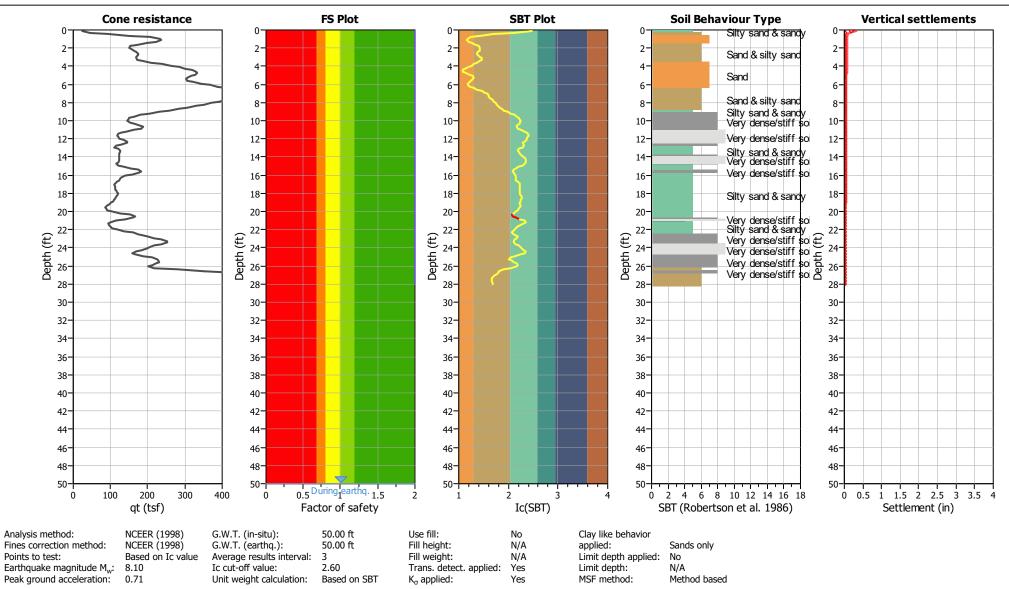

CPT: CPT-19

Total depth: 25.10 ft

Project: Stoneridge

Location: Riverside County

CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:01:09 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq

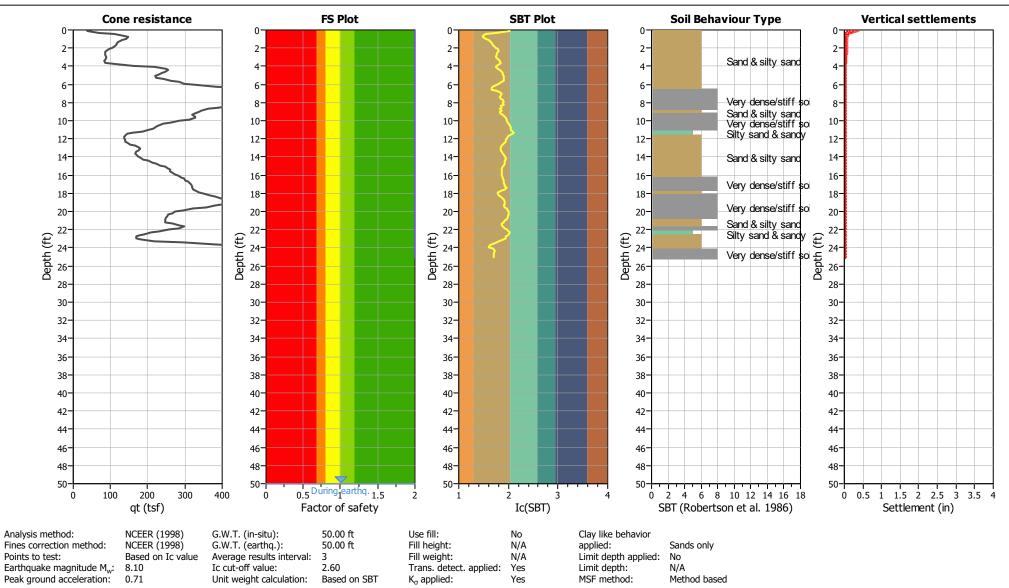

CPT: CPT-20

Total depth: 22.15 ft

Project: Stoneridge

Location: Riverside County

CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:01:16 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq

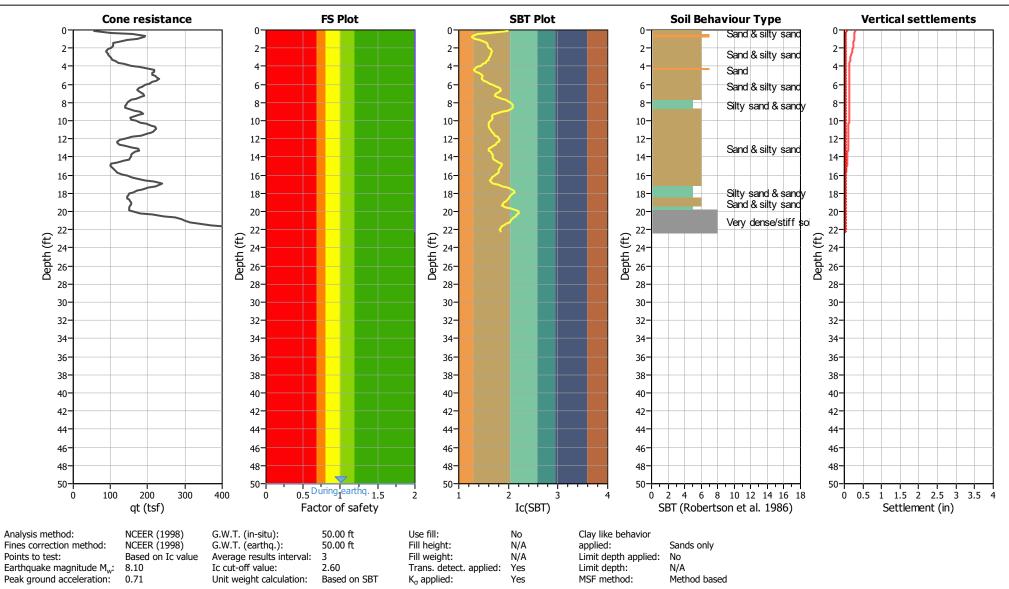

CPT: CPT-21

Total depth: 28.05 ft

Project: Stoneridge

Location: Riverside County

CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:01:21 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq

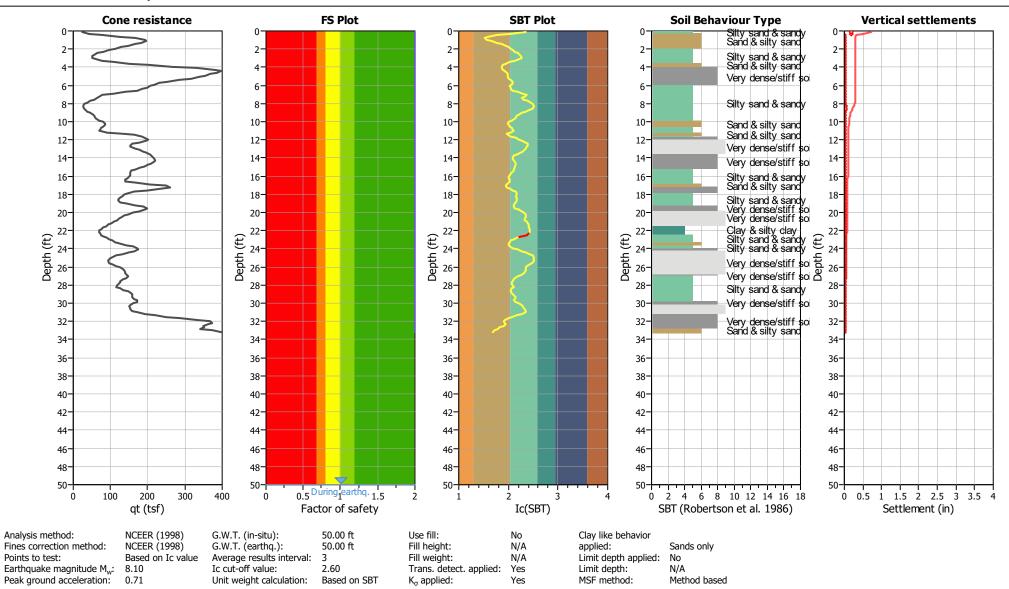

CPT: CPT-22

Total depth: 25.10 ft

Project: Stoneridge

Location: Riverside County

CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:01:24 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq


CPT: CPT-23

Total depth: 22.15 ft

Project: Stoneridge

Location: Riverside County

CPeT-IT v.2.1.6.8 - CPTU data presentation & interpretation software - Report created on: 6/30/2021, 6:01:29 PM Project file: \\LGC-SERVER02\z-drive2\2013\13092-01 Richland Communities - Stoneridge\Engineering\Liquefaction\2021 Analysis (2019 CBC Update)\Ciq_13092-01_2019 CBC.clq

CPT: CPT-24

Total depth: 33.14 ft

Appendix G General Earthwork Specifications for Rough Grading

1.0 <u>General</u>

1.1 <u>Intent</u>

These General Earthwork and Grading Specifications are for the grading and earthwork shown on the approved grading plan(s) and/or indicated in the geotechnical report(s). These Specifications are a part of the recommendations contained in the geotechnical report(s). In case of conflict, the specific recommendations in the geotechnical report shall supersede these more general Specifications. Observations of the earthwork by the project Geotechnical Consultant during the course of grading may result in new or revised recommendations that could supersede these specifications or the recommendations in the geotechnical report(s).

1.2 <u>The Geotechnical Consultant of Record</u>

Prior to commencement of work, the owner shall employ a qualified Geotechnical Consultant of Record (Geotechnical Consultant). The Geotechnical Consultant shall be responsible for reviewing the approved geotechnical report(s) and accepting the adequacy of the preliminary geotechnical findings, conclusions, and recommendations prior to the commencement of the grading.

Prior to commencement of grading, the Geotechnical Consultant shall review the "work plan" prepared by the Earthwork Contractor (Contractor) and schedule sufficient personnel to perform the appropriate level of observation, mapping, and compaction testing.

During the grading and earthwork operations, the Geotechnical Consultant shall observe, map, and document the subsurface exposures to verify the geotechnical design assumptions. If the observed conditions are found to be significantly different than the interpreted assumptions during the design phase, the Geotechnical Consultant shall inform the owner, recommend appropriate changes in design to accommodate the observed conditions, and notify the review agency where required.

The Geotechnical Consultant shall observe the moisture-conditioning and processing of the subgrade and fill materials and perform relative compaction testing of fill to confirm that the attained level of compaction is being accomplished as specified. The Geotechnical Consultant shall provide the test results to the owner and the Contractor on a routine and frequent basis.

1.3 <u>The Earthwork Contractor</u>

The Earthwork Contractor (Contractor) shall be qualified, experienced, and knowledgeable in earthwork logistics, preparation and processing of ground to receive fill, moistureconditioning and processing of fill, and compacting fill. The Contractor shall review and accept the plans, geotechnical report(s), and these Specifications prior to commencement of grading. The Contractor shall be solely responsible for performing the grading in accordance with the project plans and specifications. The Contractor shall prepare and submit to the owner and the Geotechnical Consultant a work plan that indicates the sequence of earthwork grading, the number of "equipment" of work and the estimated quantities of daily earthwork contemplated for the site prior to commencement of grading. The Contractor shall inform the owner and the

Geotechnical Consultant of changes in work schedules and updates to the work plan at least 24 hours in advance of such changes so that appropriate personnel will be available for observation and testing. The Contractor shall not assume that the Geotechnical Consultant is aware of all grading operations.

The Contractor shall have the sole responsibility to provide adequate equipment and methods to accomplish the earthwork in accordance with the applicable grading codes and agency ordinances, these Specifications, and the recommendations in the approved geotechnical report(s) and grading plan(s). If, in the opinion of the Geotechnical Consultant, unsatisfactory conditions, such as unsuitable soil, improper moisture condition, inadequate compaction, insufficient buttress key size, adverse weather, etc., are resulting in a quality of work less than required in these specifications, the Geotechnical Consultant shall reject the work and may recommend to the owner that construction be stopped until the conditions are rectified. It is the contractor's sole responsibility to provide proper fill compaction.

2.0 <u>Preparation of Areas to be Filled</u>

2.1 <u>Clearing and Grubbing</u>

Vegetation, such as brush, grass, roots, and other deleterious material shall be sufficiently removed and properly disposed of in a method acceptable to the owner, governing agencies, and the Geotechnical Consultant.

The Geotechnical Consultant shall evaluate the extent of these removals depending on specific site conditions. Earth fill material shall not contain more than 1 percent of organic materials (by volume). Nesting of the organic materials shall not be allowed.

If potentially hazardous materials are encountered, the Contractor shall stop work in the affected area, and a hazardous material specialist shall be informed immediately for proper evaluation and handling of these materials prior to continuing to work in that area.

As presently defined by the State of California, most refined petroleum products (gasoline, diesel fuel, motor oil, grease, coolant, etc.) have chemical constituents that are considered to be hazardous waste. As such, the indiscriminate dumping or spillage of these fluids onto the ground may constitute a misdemeanor, punishable by fines and/or imprisonment, and shall not be allowed. The contractor is responsible for all hazardous waste relating to his work. The Geotechnical Consultant does not have expertise in this area. If hazardous waste is a concern, then the Client should acquire the services of a qualified environmental assessor.

2.2 Processing

Existing ground that has been declared satisfactory for support of fill by the Geotechnical Consultant shall be scarified to a minimum depth of 6 inches. Existing ground that is not satisfactory shall be over-excavated as specified in the following section. Scarification shall continue until soils are broken down and free of oversize material and the working surface is reasonably uniform, flat, and free of uneven features that would inhibit uniform compaction.

2.3 <u>Over-excavation</u>

In addition to removals and over-excavations recommended in the approved geotechnical report(s) and the grading plan, soft, loose, dry, saturated, spongy, organic-rich, highly fractured or otherwise unsuitable ground shall be over-excavated to competent ground as evaluated by the Geotechnical Consultant during grading.

2.4 <u>Benching</u>

Where fills are to be placed on ground with slopes steeper than 5:1 (horizontal to vertical units), the ground shall be stepped or benched. Please see the Standard Details for a graphic illustration. The lowest bench or key shall be a minimum of 15 feet wide and at least 2 feet deep, into competent material as evaluated by the Geotechnical Consultant. Other benches shall be excavated a minimum height of 4 feet into competent material or as otherwise recommended by the Geotechnical Consultant. Fill placed on ground sloping flatter than 5:1 shall also be benched or otherwise over-excavated to provide a flat subgrade for the fill.

2.5 <u>Evaluation/Acceptance of Fill Areas</u>

All areas to receive fill, including removal and processed areas, key bottoms, and benches, shall be observed, mapped, elevations recorded, and/or tested prior to being accepted by the Geotechnical Consultant as suitable to receive fill. The Contractor shall obtain a written acceptance from the Geotechnical Consultant prior to fill placement. A licensed surveyor shall provide the survey control for determining elevations of processed areas, keys, and benches.

3.0 <u>Fill Material</u>

3.1 <u>General</u>

Material to be used as fill shall be essentially free of organic matter and other deleterious substances evaluated and accepted by the Geotechnical Consultant prior to placement. Soils of poor quality, such as those with unacceptable gradation, high expansion potential, or low strength shall be placed in areas acceptable to the Geotechnical Consultant or mixed with other soils to achieve satisfactory fill material.

3.2 <u>Oversize</u>

Oversize material defined as rock, or other irreducible material with a maximum dimension greater than 8 inches, shall not be buried or placed in fill unless location, materials, and placement methods are specifically accepted by the Geotechnical Consultant. Placement operations shall be such that nesting of oversized material does not occur and such that oversize material is completely surrounded by compacted or densified fill. Oversize material shall not be placed within 10 vertical feet of finish grade or within 2 feet of future utilities or underground construction.

3.3 <u>Import</u>

If importing of fill material is required for grading, proposed import material shall meet the requirements of the geotechnical consultant. The potential import source shall be given to the Geotechnical Consultant at least 48 hours (2 working days) before importing begins so that its suitability can be determined and appropriate tests performed.

4.0 <u>Fill Placement and Compaction</u>

4.1 <u>Fill Layers</u>

Approved fill material shall be placed in areas prepared to receive fill (per Section 3.0) in near-horizontal layers not exceeding 8 inches in loose thickness. The Geotechnical Consultant may accept thicker layers if testing indicates the grading procedures can adequately compact the thicker layers. Each layer shall be spread evenly and mixed thoroughly to attain relative uniformity of material and moisture throughout.

4.2 <u>Fill Moisture Conditioning</u>

Fill soils shall be watered, dried back, blended, and/or mixed, as necessary to attain a relatively uniform moisture content at or slightly over optimum. Maximum density and optimum soil moisture content tests shall be performed in accordance with the American Society of Testing and Materials (ASTM Test Method D1557).

4.3 Compaction of Fill

After each layer has been moisture-conditioned, mixed, and evenly spread, it shall be uniformly compacted to not less than 90 percent of maximum dry density (ASTM Test Method D1557). Compaction equipment shall be adequately sized and be either specifically designed for soil compaction or of proven reliability to efficiently achieve the specified level of compaction with uniformity.

4.4 <u>Compaction of Fill Slopes</u>

In addition to normal compaction procedures specified above, compaction of slopes shall be accomplished by backrolling of slopes with sheepsfoot rollers at increments of 3 to 4 feet in fill elevation, or by other methods producing satisfactory results acceptable to the Geotechnical Consultant. Upon completion of grading, relative compaction of the fill, out to the slope face, shall be at least 90 percent of maximum density per ASTM Test Method D1557.

4.5 <u>Compaction Testing</u>

Field tests for moisture content and relative compaction of the fill soils shall be performed by the Geotechnical Consultant. Location and frequency of tests shall be at the Consultant's discretion based on field conditions encountered. Compaction test locations will not necessarily be selected on a random basis. Test locations shall be selected to verify adequacy of compaction levels in areas that are judged to be prone to inadequate compaction (such as close to slope faces and at the fill/bedrock benches).

4.6 <u>Frequency of Compaction Testing</u>

Tests shall be taken at intervals not exceeding 2 feet in vertical rise and/or 1,000 cubic yards of compacted fill soils embankment. In addition, as a guideline, at least one test shall be taken on slope faces for each 5,000 square feet of slope face and/or each 10 feet of vertical height of slope. The Contractor shall assure that fill construction is such that the testing schedule can be accomplished by the Geotechnical Consultant. The Contractor shall stop or slow down the earthwork construction if these minimum standards are not met.

4.7 <u>Compaction Test Locations</u>

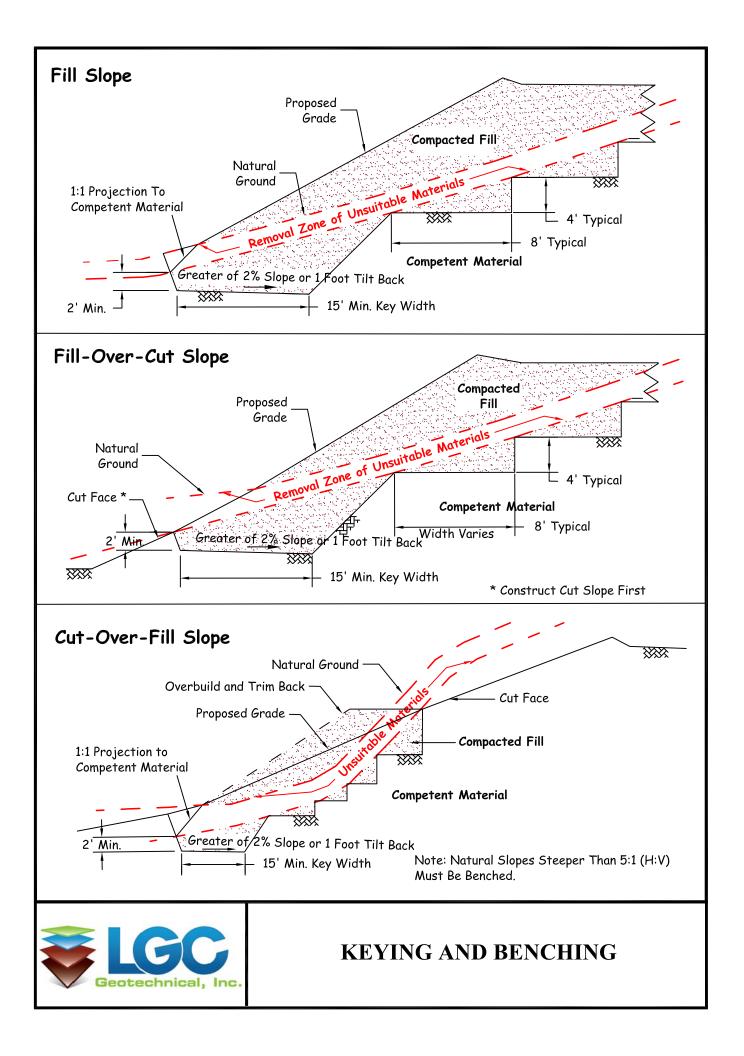
The Geotechnical Consultant shall document the approximate elevation and horizontal coordinates of each test location. The Contractor shall coordinate with the project surveyor to assure that sufficient grade stakes are established so that the Geotechnical Consultant can determine the test locations with sufficient accuracy. At a minimum, two grade stakes within a horizontal distance of 100 feet and vertically less than

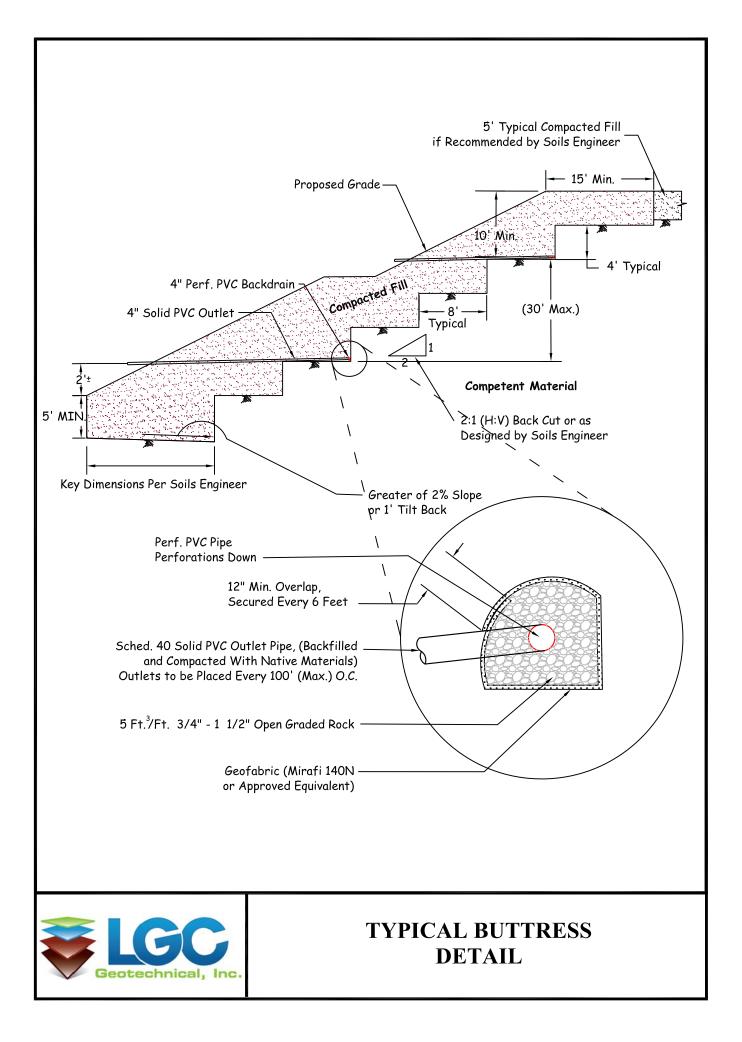
5 feet apart from potential test locations shall be provided.

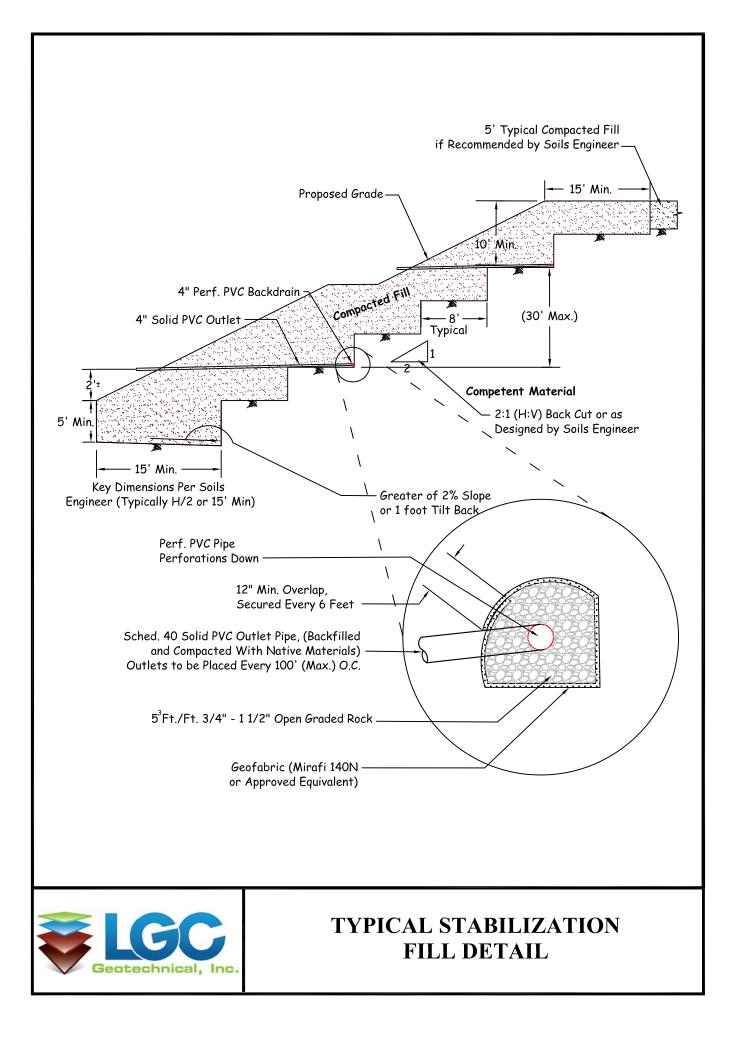
5.0 <u>Subdrain Installation</u>

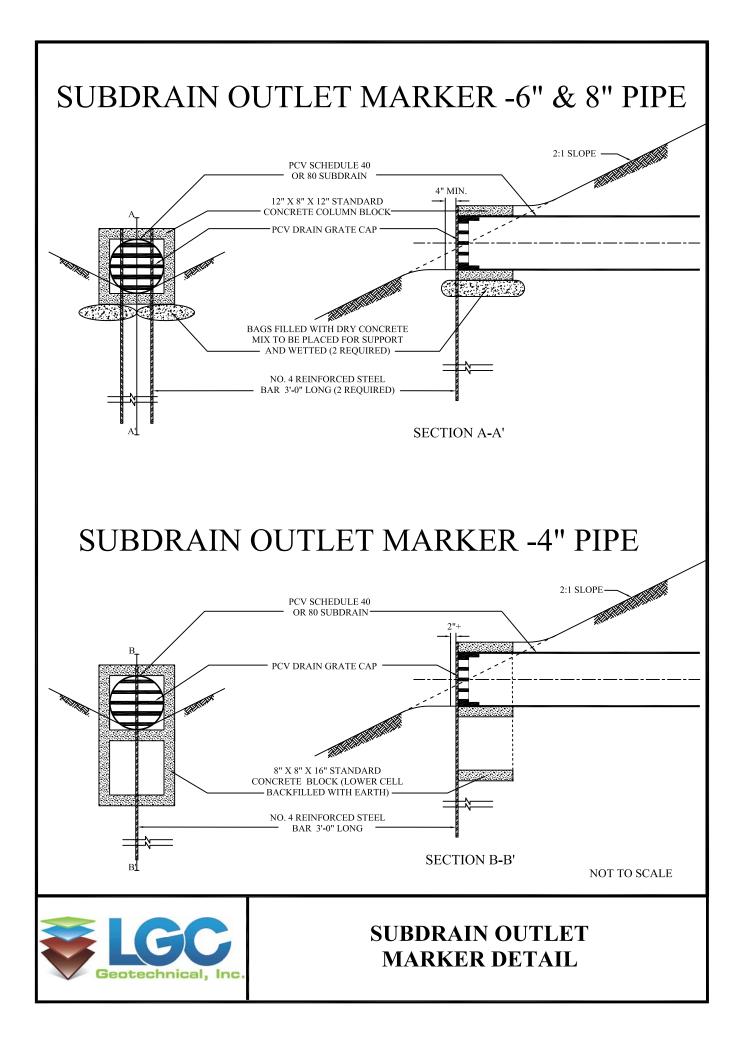
Subdrain systems shall be installed in accordance with the approved geotechnical report(s), the grading plan, and the Standard Details. The Geotechnical Consultant may recommend additional subdrains and/or changes in subdrain extent, location, grade, or material depending on conditions encountered during grading. All subdrains shall be surveyed by a land surveyor/civil engineer for line and grade after installation and prior to burial. Sufficient time should be allowed by the Contractor for these surveys.

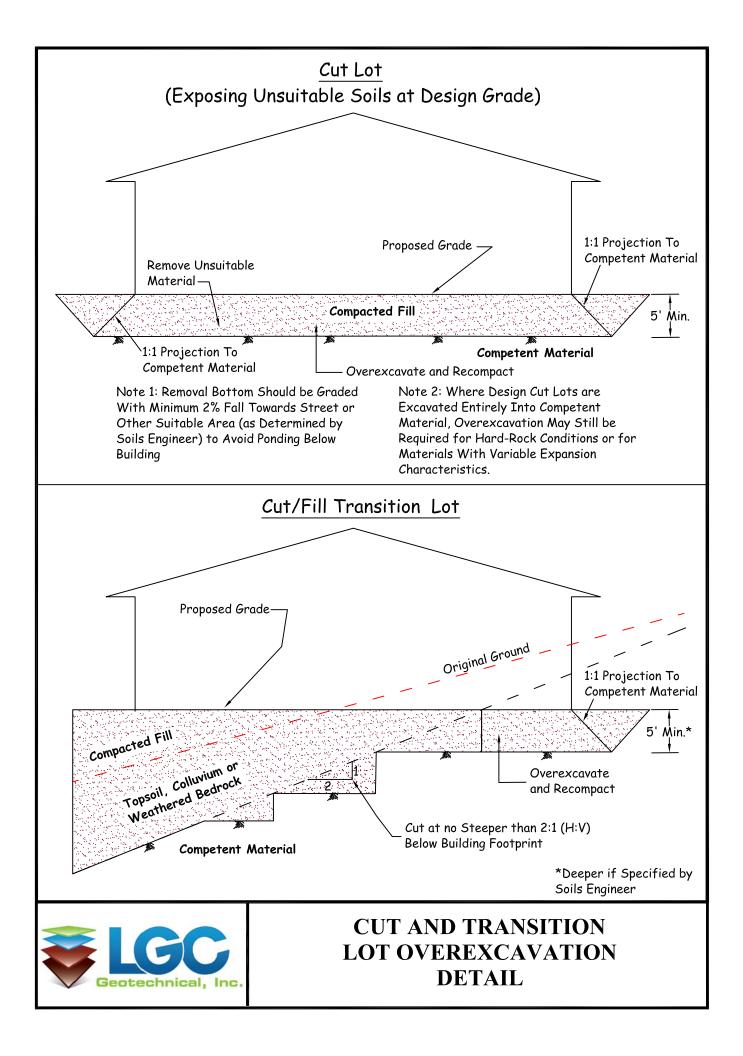
6.0 <u>Excavation</u>


Excavations, as well as over-excavation for remedial purposes, shall be evaluated by the Geotechnical Consultant during grading. Remedial removal depths shown on geotechnical plans are estimates only. The actual extent of removal shall be determined by the Geotechnical Consultant based on the field evaluation of exposed conditions during grading. Where fill-over-cut slopes are to be graded, the cut portion of the slope shall be made, evaluated, and accepted by the Geotechnical Consultant prior to placement of materials for construction of the fill portion of the slope, unless otherwise recommended by the Geotechnical Consultant.


7.0 <u>Trench Backfills</u>


- 7.1 The Contractor shall follow all OHSA and Cal/OSHA requirements for safety of trench excavations.
- 7.2 All bedding and backfill of utility trenches shall be done in accordance with the applicable provisions of Standard Specifications of Public Works Construction. Bedding material shall have a Sand Equivalent greater than 30 (SE>30). The bedding shall be placed to 1 foot over


the top of the conduit and densified by jetting. Backfill shall be placed and densified to a minimum of 90 percent of maximum from 1 foot above the top of the conduit to the surface.


- **7.3** The jetting of the bedding around the conduits shall be observed by the Geotechnical Consultant.
- 7.4 The Geotechnical Consultant shall test the trench backfill for relative compaction. At least one test should be made for every 300 feet of trench and 2 feet of fill.
- **7.5** Lift thickness of trench backfill shall not exceed those allowed in the Standard Specifications of Public Works Construction unless the Contractor can demonstrate to the Geotechnical Consultant that the fill lift can be compacted to the minimum relative compaction by his alternative equipment and method.

